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1 Introduction and main result

In many evolution processes, the states of systems are changed abruptly at certain instants,
which leads to impulsive behaviors in dynamical systems [2, 11, 13]. In recent years, the in-
vestigation of differential equations with impulses got particular attention by a lot of scholars,
because of the widespread application of these impulsive differential systems in biology, me-
chanics, engineering and chaos theory, etc. [5, 6, 13, 21, 22].

Some classical approaches, such as the method of upper and lower solutions with the
monotone iterative technique, the coincidence degree theory of Mawhin and the fixed point
theory, were used to study impulsive problems [2, 11]. Especially, in the remarkable work of
Nieto and O’Regan [13], by constructing a variational structure, they converted the problem
of finding solutions for a second order impulsive equation to that of the existence of critical
points for the corresponding energy functional [19]. After that, the variational methods and
critical point theory were applied to prove the existence and multiplicity of solutions for
second order, fourth order and fractional order impulsive differential equations by more and
more researchers, see [1–4, 7–11, 13, 14, 16–20].
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2 H. Ou

Our purpose is to investigate the existence of multiple subharmonic solutions for the fol-
lowing second order impulsive systems

ẍ(t) +∇V(t, x(t)) = 0,

∆
(

ẋi (tj
))

= ẋi
(

t+j
)
− ẋi

(
t−j
)
= Iij

(
xi (tj

))
, i = 1, 2, . . . , N, j = 1, 2, . . . , l,

x(0) = x(pT), ẋ(0) = ẋ(pT),

(1.1)

where x ∈ RN , ∇V ∈ C([0, T]× RN , RN) denotes the gradient of V in x, Iij ∈ C
(
RN , R

)
and

impulses occur at instants tj with j ∈ Z∗ = Z\{0}, 0 < t1 < · · · < tl < T and tj+l = tj.
In [11], Luo, Xiao and Xu studied the existence of subharmonic solutions for the equation

with non-negative impulses as follows{
ẍ(t) + f (t, x(t)) = 0, a.e. t ∈ R\{tk | k ∈ Z∗},

∆ẋ(tk) = x(t+k )− x(t−k ) = Ik(x(tk)), k ∈ Z∗,

where f ∈ C(R × R, R) and Ik ≥ 0 are impulses that happen at instants tk. Bai and Wang [2]
generalized the results in [11] to allow a negative impulse term. Here, motivated by [2,11], we
investigate the existence of multiple subharmonic solutions for system (1.1).

By a classical solution of (1.1), we mean a function

x ∈
{

w ∈ C([0, pT], RN) : w|[tj,tj+1] ∈ H2([tj, tj+1], RN), j = 1, 2, . . . , l
}

,

which satisfies the differential equation in (1.1) and the boundary conditions x(0) = x(pT),
ẋ(0) = ẋ(pT), the limits ẋi(t+j ), ẋi(t−j ), i = 1, 2, . . . , N, j = 1, 2, . . . , l, exist and verify the
impulsive conditions in (1.1).

Now we state our main result.

Theorem 1.1. Suppose that V(t, x) and Iij(x) satisfy the following conditions.

(H1) V(t, x) = V(−t, x) = V(t,−x) = V(t + T
2 , x) for every (t, x) ∈ [0, T]× RN .

(H2) For every x ∈ RN , t ∈ [0, T], there exist constants δ > 0 and A > Ā > 0 such that

V(t, x) ≥ Ā
2
|x|2, |x| ≤ δ

and
V(t, x)− (∇V(t, 0), x) ≤ A

2
|x|2.

(H3) For i = 1, 2, . . . , N, j = 1, 2, . . . , l, there exist constants dij ≥ 0 such that

Iij(x) ≤ dij|x|, x ∈ RN .

(H4) There exists an integer p > 1 such that

1 − 2ρp2T > 0,
4ω2

Ā − 4D/T
< p2 <

ω2s2
p

2ρTω2s2
p + A + 2ρ/T

and (
ω2

2p2 − ρTω2 − ρ

T

)
|x|2 − V(t, x) → +∞, as |x| → ∞,

where ω = 2π
T , ρ = ∑l

j=1 ∑N
j=1 dij, D = ∑l

j=1
(

∑N
i=1 d2

ij
) 1

2 and sp is the smallest prime factor
of p.
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(H5) ∇V satisfies∫ T

0
|∇V(t, 0)|2 dt < δ2 min

{
K1(K2 − K3),

(
K1 −

3ω2T
p2

)
(4K2 − K3)

}
,

K1 = T
(

Ā − ω2

p2

)
− 4D, K2 =

ω2s2
p

2p2

(
1 − 2ρp2T

)
, K3 =

A
2
+

ρ

T
.

(H6) Suppose that q0 is rational. If both x(t) and ∇V(t, x) have minimal period q0T
2 , then q0

is an integer.

Then the impulsive system (1.1) possesses at least three periodic solutions. Two of them have
minimal period pT and the other one has minimal period pT

2 .

Remark 1.2. In [11], Luo, Xiao and Xu investigated second order impulsive differential equa-
tions with a non-negative impulse term and obtained the existence of at least one solution
with minimal period pT. Bai and Wang [2] generalized the results of [11] by proving the
existence of at least one solution with prescribed minimal period for second order impulsive
systems allowing negative impulse terms. Here, we also do not have to assume that the im-
pulse term is non-negative. Giving a suitable range of p and

∫ T
0 |∇V(t, 0)|2dt, we find three

solutions with prescribed minimal periods for system (1.1).

2 Proof of the theorem

In the first place, we recall some basic notations. Let p > 1 is an integer, T > 0. We denote the
inner product on RN by (·, ·). H1

pT(R
N) is a Hilbert space, which defined as

H1
pT = {x : [0, pT] → RN | x is absolutely continuous, x(0) = x(pT), ẋ ∈ L2(0, pT; RN)}.

Let ⟨·, ·⟩ be the inner product on H1
pT, i.e.

⟨x, y⟩ =
∫ pT

0
(ẋ, ẏ)dt +

∫ pT

0
(x, y)dt, x, y ∈ H1

pT,

which induces the norm ∥x∥ = ⟨x, x⟩. Additionally, the energy functional corresponds to
system (1.1) is

φ(x) =
∫ pT

0

[
1
2
|ẋ|2 − V(t, x)

]
dt +

pl

∑
j=1

N

∑
i=1

∫ xi(tj)

0
Iij(s)ds, x ∈ H1

pT.

It follows that 〈
φ′(x), y

〉
=
∫ pT

0
(ẋ, ẏ)dt −

∫ pT

0
(∇V(t, x), y)dt

+
pl

∑
j=1

N

∑
j=1

Iij

(
xi (tj

))
yi(tj), x, y ∈ H1

pT.
(2.1)

Definition 2.1. A function x is called a weak pT-periodic solution of (1.1) if and only if the
following equation holds

∫ pT

0
(ẋ, ẏ)dt +

pl

∑
j=1

N

∑
j=1

Iij

(
xi (tj

))
yi(tj) =

∫ pT

0
(∇V(t, x), y)dt, ∀y ∈ H1

pT.
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The critical points of φ correspond to periodic solutions of impulsive system (1.1). Indeed,
suppose x is a critical point of φ, by (2.1) and the Definition 2.1, x is a weak pT-periodic
solution of (1.1). Moreover, for every y ∈ H1

pT, we have

〈
φ′(x), y

〉
=
∫ pT

0
(ẋ, ẏ)dt −

∫ pT

0
(∇V(t, x), y)dt +

pl

∑
j=1

N

∑
j=1

Iij

(
xi(tj)

)
yi (tj

)
=−

∫ pT

0
(ẍ, y)dt −

∫ pT

0
(∇V(t, x), y)dt.

(2.2)

It follows from (2.2) that

ẍ(t) +∇V(t, x) = 0, a.e. t ∈ [tj, tj+1].

Then we get x ∈ H2([tj, tj+1], RN) and

ẍ(t) +∇V(t, x) = 0, a.e. t ∈ [0, pT].

Multiplying the above equation by y ∈ H1
pT and integrating over [0, pT], we obtain

pl

∑
j=1

N

∑
j=1

∆
(

ẋi (tj
))

yi(tj) =
pl

∑
j=1

N

∑
j=1

Iij

(
xi (tj

))
yi(tj).

Thus, ∆
(
ẋi (tj

))
= Iij

(
xi (tj

))
for i = 1, 2, . . . , N, j = 1, 2, . . . , l, and the impulsive conditions

in (1.1) are verified.
For the sake of convenience, let us define a couple of subspaces of H1

pT. Set

X =
{

x ∈ H1
pT | x(t) = −x(−t)

}
, Y =

{
x ∈ H1

pT | x
(

t +
pT
2

)
= −x(t)

}
,

then we can define
X1 = X ∩ Y, X2 = X ∩ Y⊥,

Y1 = X⊥ ∩ Y, Y2 = X⊥ ∩ Y⊥.

Clearly, we have H1
pT = X1 ⊕ X2 ⊕ Y1 ⊕ Y2. In the following, we denote the norm of x on L2

pT
and L∞

pT by ∥x∥L2 and ∥x∥∞ respectively.

Lemma 2.2 ([12]). Suppose that W is a reflexive Banach space, φ : W → R is weakly lower
semi-continuous and coercive on W, then φ attains its minimum on W.

Lemma 2.3. Under condition (H1), critical points of φ on X1 (or X2, Y1, Y2) are also critical
points of φ on H1

pT. The minimal period of such a critical point is an integer multiple of T
2 .

Proof. On the one hand, if x is a critical point of φ on X, then

⟨φ′(x), y⟩ = 0, ∀y ∈ X.
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Let y ∈ X⊥, it can be deduced from (H1) and (2.2) that

⟨φ′(x), y⟩ = −
∫ pT

2

− pT
2

(ẍ, y)dt −
∫ pT

2

− pT
2

(∇V(t, x), y)dt

= −
∫ pT

2

0
(ẍ, y)dt −

∫ pT
2

0
(∇V(t, x), y)dt

−
∫ pT

2

0
(ẍ(−t), y(−t))dt −

∫ pT
2

0
(∇V(−t, x(−t)), y(−t))dt

= −
∫ pT

2

0
(ẍ, y)dt −

∫ pT
2

0
(∇V(t, x), y)dt

−
∫ pT

2

0
(−ẍ(t), y(t))dt −

∫ pT
2

0
(−∇V(t, x(t)), y(t))dt

= 0.

(2.3)

Thus, ⟨φ′(x), y⟩ = 0, for all y ∈ H1
pT.

On the other hand, providing that x is a critical point of φ on X1, set y ∈ X2, we find

〈
φ′(x), y

〉
= −

∫ pT
2

− pT
2

(ẍ, y)dt −
∫ pT

2

− pT
2

(∇V(t, x), y)dt

= −
∫ pT

2

0
(ẍ, y)dt −

∫ pT
2

0
(∇V(t, x), y)dt

−
∫ pT

2

0

(
ẍ
(

t − pT
2

)
, y
(

t − pT
2

))
dt

−
∫ pT

2

0

(
∇V

(
t − pT

2
, x
(

t − pT
2

))
, y
(

t − pT
2

))
dt

= −
∫ pT

2

0
(ẍ, y)dt −

∫ pT
2

0
(∇V(t, x), y)dt

−
∫ pT

2

0
(−ẍ(t), y(t))dt −

∫ pT
2

0
(∇V(t,−x(t)), y(t))dt

= 0.

It follows that x is a critical point of φ on X. From (2.3) we know that x is a critical point of φ

on H1
pT.

By a similar discussion, one can prove the cases of X2, Y1, Y2 alike.
If the minimal period of x(t) is pT

2q , where q is an integer. From (1.1) we have

ẍ
(

t +
pT
2q

)
+∇V

(
t +

pT
2q

, x
(

t +
pT
2q

))
= 0. (2.4)

It follows from (2.4) that ∇V(t, x(t)) has minimal period pT
2q . Then by (H6), p

q is an integer,

which means that the minimal period of x(t) is an integer multiple of T
2 .

Lemma 2.4 ([15]). Suppose that H(t, x) ∈ C1([0, T]× RN , R) with H(t, x) → +∞ as |x| → ∞
uniformly in t ∈ [0, T], then there exist a real function γ ∈ L1([0, T], R) and a subadditive
function G : RN → R, i.e.

G(x + y) ≤ G(x) + G(y), x, y ∈ RN , (2.5)
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such that
H(t, x) ≥ G(x) + γ(t), x ∈ RN , (2.6)

G(x) → +∞ as |x| → ∞, (2.7)

0 ≤ G(x) ≤ |x|+ 1, x ∈ RN . (2.8)

Lemma 2.5. Under condition (H4), φ is coercive on X1 (or X2, Y1).

Proof. From Lemma 2.4 and (H4), there exist G(x) and γ(t) ∈ L1([0, T], R) such that(
ω2

2p2 − ρTω2 − ρ

T

)
|x|2 − V(t, x) ≥ G(x) + γ(t). (2.9)

To begin with, we claim that
∫ pT

0 G(x)dt is coercive on

X1
1 =

{
r sin

ωt
p

| r ∈ RN
}

⊂ X1.

Providing that {xn} is a sequence in X1
1 with ∥xn∥ → ∞ as n → ∞, we can set xn(t) = rn sin ωt

p ,
where rn ∈ RN and |rn| → +∞ as n → ∞. By (2.7), for every L > 0, there exists M > 0 such
that

G(x) ≥ L, |x| ≥ M. (2.10)

Since |rn| → +∞ as n → ∞, there exists N0 > 0 such that |rn| > 2M for n > N0. Furthermore,
it is clear that

|xn(t)| > M, ∀t ∈
[

pT
12

,
5pT
12

]
∪
[

7pT
12

,
11pT

12

]
, n > N0. (2.11)

From (2.10) and (2.11) we have∫ pT

0
G(xn)dt >

2pLT
3

, n > N0.

The coercivity of
∫ pT

0 G(x)dt follows from the arbitrariness of L and {xn}.
Let x ∈ X1 and x = x1 + x2, where x1 ∈ X1

1 , x2 ∈ (X1
1)

⊥ ∩ X1. By the Parseval equality,

∥ẋ1∥2
L2 =

ω2

p2 ∥x1∥2
L2 , ∥ẋ2∥2

L2 ≥
9ω2

p2 ∥x2∥2
L2 , ∥ẋ2∥2

L2 ≥
9ω2

9ω2 + p2 ∥x2∥2. (2.12)

Additionally, (2.5) implies that

G(x1) = G(x − x2) ≤ G(x) + G(−x2). (2.13)

It can be deduced from (H3) that∣∣∣∣∣ pl

∑
j=1

N

∑
i=1

∫ yi(tj)

0
Iij(s)ds

∣∣∣∣∣ ≤ pl

∑
j=1

N

∑
i=1

1
2

dij
∣∣y (tj

)∣∣2
≤

pl

∑
j=1

N

∑
i=1

dij

(
∥y∥2

L2

pT
+ pT∥ẏ∥2

L2

)
≤ ρ

T
∥y∥2

L2 + ρp2T∥ẏ∥2
L2 , y ∈ H1

pT.

(2.14)
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To the best of our knowledge, the formula (2.14) was first proved in [2]. For more details,
please refer to (2.9) in [2]. From (H4), (2.9), (2.12), (2.13) and (2.14), we have

φ(x) =
1
2

∫ pT

0
|ẋ|2dt −

∫ pT

0
V(t, x)dt +

pl

∑
j=1

N

∑
i=1

∫ xi(tj)

0
Iij(s)ds

≥
(

1
2
− ρp2T

) ∫ pT

0
|ẋ|2dt − ρ

T

∫ pT

0
|x|2dt −

∫ pT

0
V(t, x)dt

=

(
1
2
− ρp2T

) ∫ pT

0

(
|ẋ1|2 + |ẋ2|2 −

ω2

p2 |x1|2 −
ω2

p2 |x2|2
)

dt

+
∫ pT

0

[(
ω2

2p2 − ρω2T − ρ

T

)
|x|2 − V(t, x)

]
dt

≥ 8
9

(
1
2
− ρp2T

) ∫ pT

0
|ẋ2|2 dt +

∫ pT

0
[G (x) + γ(t)]dt

≥ 8
9

(
1
2
− ρp2T

)
∥ẋ2∥2

L2 +
∫ pT

0
G (x1)dt −

∫ pT

0
G (−x2)dt +

∫ pT

0
γ(t)dt

≥ 8
9

(
1
2
− ρp2T

)
∥ẋ2∥2

L2
+
∫ pT

0
G (x1)dt − pT(1 + ∥x2∥∞ + ∥γ∥∞)

≥ 8ω2

9ω2 + p2

(
1
2
− ρp2T

)
∥x2∥2 +

∫ pT

0
G (x1)dt − C1∥x2∥ − C2,

(2.15)

where C1 and C2 are positive constants. With
∫ pT

0 G(x1)dt being coercive on X1 and

∥x∥ → ∞ if and only if (∥x1∥2 + ∥x2∥2)
1
2 → ∞,

it follows from (2.15) that φ(x) is coercive on X1.
Through replacing X1

1 with

X1
2 =

{
b sin

2ωt
p

| b ∈ RN
}

,

Y1
1 =

{
c cos

ωt
p

| c ∈ RN
}

,

repeating the above arguments with a small modification, one can prove the coercivity of φ

on X2 and Y1.

Proof of Theorem 1.1. According to Lemma 2.2, Lemma 2.3 and Lemma 2.5, there exists x∗1 ∈ X1

such that
⟨φ′(x∗1), y⟩ = 0, ∀y ∈ H1

pT. (2.16)

In what follows, we show that the minimal period of x∗1 is pT by contradiction. Suppose
that x∗1 has minimal period pT

q1
, where q1 > 1 is an integer. From Lemma 2.3, the minimal

period of x∗1 is multiple of T
2 , which means that q1 = 2 or q1 ≥ sp.

If q1 = 2, by Fourier expansion,

x∗1 =
+∞

∑
k=1

a∗k sin
2kωt

p
, a∗k ∈ RN .
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However, for every x ∈ X1, we have

x =
+∞

∑
k=1

ak sin
(2k − 1)ωt

p
, ak ∈ RN ,

which implies x∗1 = 0. It contradicts that x∗1 has minimal period pT
2 . So we get q1 ≥ sp and

x∗1 =
+∞

∑
k=1

a∗k sin
kq1ωt

p
, a∗k ∈ RN . (2.17)

It can be deduced from Parseval’s equality and (2.17) that

∥ẋ∗1∥L2 ≥ q1ω

p
∥x∗1∥L2 . (2.18)

Now, from (H2), (H4), (2.14) and (2.18), we have

φ(x∗1) =
1
2

∫ pT

0
|ẋ∗1 |2dt −

∫ pT

0
V(t, x∗1)dt −

pl

∑
j=1

N

∑
i=1

∫ (x∗1)
i(tj)

0
Iij(s)ds

≥ 1
2
∥ẋ∗1∥2

L2 −
∫ pT

0
[V(t, x∗1)− (∇V(t, 0), x∗1)]dt −

∫ pT

0
(∇V(t, 0), x∗1)dt

− ρ

T
∥x∗1∥2

L2 − ρp2T∥ẋ∗1∥2
L2

≥
(

1
2
− ρp2T

)
∥ẋ∗1∥2

L2 −
(

A
2
+

ρ

T

)
∥x∗1∥2

L2 − ∥∇V(t, 0)∥L2 ∥x∗1∥L2

≥
(

ω2q2
1

2p2 − ρTω2q2
1 −

A
2
− ρ

T

)
∥x∗1∥2

L2 − ∥∇V(t, 0)∥L2 ∥x∗1∥L2 .

(2.19)

It follows from (H4) and q1 ≥ sp that

ω2q2
1

2p2 − ρTω2q2
1 −

A
2
− ρ

T
> 0,

which combined with (2.19) yields to

φ(x∗1) ≥ −1
4

(
ω2q2

1
2p2 − ρTω2q2

1 −
A
2
− ρ

T

)−1

∥∇V(t, 0)∥2
L2 . (2.20)

Choosing x̄1(t) = (δ sin ωt
p , 0, . . . , 0) ∈ X1, where δ defined in (H2), the minimal period of

x̄1(t) is pT. According to mean value theorem, the Cauchy–Schwarz inequality and (H3), we
have

pl

∑
j=1

N

∑
i=1

∫ (x̄1)
i(tj)

0
Iij(s)ds ≤

pl

∑
j=1

N

∑
i=1

dij|θ|
∣∣∣∣δ sin

ωtj

p

∣∣∣∣ ≤ pδ2
l

∑
j=1

(
N

∑
i=1

d2
ij

) 1
2

, (2.21)
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where θ ∈
(
0, δ sin ωtj

p

)
. In view of (2.21) and (H2), we get

φ(x̄1) =
1
2

∫ pT

0
| ˙̄x1|2dt −

∫ pT

0
V(t, x̄1)dt +

pl

∑
j=1

N

∑
i=1

∫ (x̄1)
i(tj)

0
Iij(s)ds

≤ 1
2

∫ pT

0
δ2 ω2

p2 cos2 ωt
p

dt −
∫ pT

0
V
(

t, δ sin
ωt
p

)
dt + pδ2

l

∑
j=1

(
N

∑
i=1

d2
ij

) 1
2

≤ 1
4

δ2 ω2

p
T −

∫ pT

0

Ā
2

δ2 sin2 ωt
p

dt + pδ2
l

∑
j=1

(
N

∑
i=1

d2
ij

) 1
2

=
1
4

δ2 ω2

p
T − Ā

4
δ2 pT + pδ2

l

∑
j=1

(
N

∑
j=1

d2
ij

) 1
2

= −1
4

δ2 pT
(

Ā − ω2

p2

)
− 4pδ2

l

∑
j=1

(
N

∑
i=1

dij
2

) 1
2
 .

(2.22)

By (H4), (H5), (2.16), (2.20) and (2.22), we find

inf
x∈X1

φ(x) = φ(x∗1) > φ(x̄1).

That is a contradiction. Hence, there exists a critical point x∗1 ∈ X1 of φ with minimal period
pT.

Similarly, we can find x∗2 ∈ X2 such that ⟨φ′(x∗2), y⟩ = 0, for every y ∈ H1
pT. If the minimal

period of x∗2 is not equal to pT
2 , then there exists q2 > 1 such that x∗2 has minimal period pT

2q2
.

Lemma 2.3 implies that q2 ≥ sp. Additionally, we have

x∗2 =
+∞

∑
k=1

b∗k sin
2kq2ωt

p
, b∗k ∈ RN

and
∥ẋ∗2∥L2 ≥ 2q2ω

p
∥x∗2∥L2 . (2.23)

It follows from (H2), (H4), (2.14) and (2.23) that

φ (x∗2) =
1
2

∫ pT

0
|ẋ∗2 |2dt −

∫ pT

0
V(t, x∗2)dt −

pl

∑
j=1

N

∑
i=1

∫ (x∗2)
i(tj)

0
Iij(s)ds

≥ −1
4

(
2ω2q2

p2 − 4ρTω2q2 − A
2
− ρ

T

)−1

∥∇V (t, 0) ∥2
L2 .

(2.24)

Let x̄2(t) =
(
δ sin 2ωt

p , 0, . . . , 0
)
∈ X2, then x̄2(t) has minimal period pT

2 . After a computation
like (2.22), we get

φ(x̄2) ≤ −1
4

δ2 pT
(

Ā − 4ω2

p2

)
− 4pδ2

l

∑
j=1

(
N

∑
i=1

dij
2

) 1
2
 . (2.25)

Taking (H4), (H5), (2.24) and (2.25) into consideration, we obtain

inf
x∈X2

φ(x) = φ(x∗2) > φ(x̄2).
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This contradiction leads to the fact that the minimal period of x∗2 is pT
2 .

Using a similar argument, a critical points y∗1 of φ with minimal period pT can be found
on Y1. It is clear that x∗1 , x∗2 and y∗1 are nonzero, which combines with H1

pT = X1 ⊕ X2 ⊕Y1 ⊕Y2

to give that three points are different.

3 Example

To show how our theorem applies in practice, we give the following example.

Example 3.1. Consider the impulsive system (1.1) with T = 1, N = l = p = 3,

Iij(s) =
|s|

3240
, i, j ∈ {1, 2, 3},

and

V(t, x) =



7−cos 4πt
18 ω2|x|2, |x| ≤ 1,(

68π2−1
162 − 7−cos 4πt

18 ω2 − 1
2

)
|x|2

+
(

7−cos 4πt
9 ω2 − 68π2−1

162 + 1
2

)
(2|x| − 1), 1 < |x| ≤ 2,

68π2−1
324 |x|2 − ln |x|2 + 7−cos 4πt

9 ω2 − 68π2−1
162 + 2 ln 2 − 1

2 , |x| > 2.

We can take

ω = 2π, ρ =
1

4p2s2
p
=

1
324

,

then (
1 − 2ρp2T

) ω2

2p2 − ρ

T
=

68π2 − 1
324

.

It is easy to verify that V(t, x) satisfies (H1). Let

dij =
ρ

9
, i, j ∈ {1, 2, 3},

and
A =

8
9

ω2, Ā =
2
3

ω2, δ = 1,

then D = ρ
3 . One can easily check that (H3) is true and V(t, x) satisfies (H2), (H4) and (H5).

By Theorem 1.1, Example 3.1 possesses at least three periodic solutions. Two of them have
minimal period 3 and the other one has minimal period 1.5.
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