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Abstract. In this paper, we consider the following concave-convex semilinear elliptic
system with double critical exponents:

—Au = |u* “2u+ £u|*2olfu+ Alul12u, inQ,
—Av = |v|2*‘2v+zﬁ*|u\“|v|ﬂ‘2v+;¢|v\q‘zv, in Q,
u, v>0, in Q,
u=0v=20, on 0(),

where QO ¢ RN (N > 3) is a bounded domain with smooth boundary, A, ¢ >0, 1 <

g<2a>18>1 a+p=2"= % By the Nehari manifold method and

variational method, we obtain two positive solutions which improves the recent results
in the literature.

Keywords: semilinear elliptic system, double critical exponents, positive solutions,
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1 Introduction and main result

In this paper, we mainly study the following concave-convex semilinear elliptic system with
double critical exponents

—Au = |u]® 2u+ £ ul*?|ofu+ AulT2u, inQ,
A0 = 0P 20+ £ |ul*[olf 20 + plo12, inQ,
u, v>0, in O,
u=v=0, on o),

(1.1)
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where QO C RN(N > 3) is a bounded domain with smooth boundary, A, u >0, 1 < g <
2, a>1,B>1 a+p =2 = 2% System (1.1) is abstracted from some physical phe-
nomenon, especially some description in nonlinear optics. As we all known, it is also a model
in Hartree-Fock theory for a double condensate, i.e., a binary mixture of Bose-Finstein con-
densates in two different hyperfine states |1) and |2), which was first discovered and proposed
by B.D. Esry et al in 1997. There is a lot of literatures about the origin and physical background
of system (1.1), and we refer the readers to see [5,7,11,26].

It is well known that many results have been obtained in these years on critical semilinear
elliptic equation and system. For example, in 1983, Brézis and Nirenberg in reference [3]
studied the case of positive solutions of semilinear elliptic equations with critical exponent in
different dimensions and got many important results. In 1994, Ambrosetti et al in [2] showed
that some problems of critical elliptic equation with concave-convex nonlineraities. With the
development of variational methods, people gradually shifted their focus from equation to
system. In 2000, Alves et al first studied elliptic system involving subcritical or critical Sobolev
exponent in [1] as following

—Au = au +bv + -2ulu|*2|v|f, inQ,

a+p
—Av:bu+cv+%|u\“v|v|5*2, in Q,
u,o > 0/ in Q,
u=0v=0, on d(),

where Q € RN(N > 3) with smooth boundary, and 4, b, c € R, «, B > 1, a + B = 2*. They
obtained some existence results and nonexistence results for the corresponding elliptic system
with different dimensions and in different domain’s shapes. In 2009, Hsu and Lin in [19]
studied the following critical elliptic system

—Au :A]u\q_2u+f%ﬁ|u]“_2u|v|ﬁ, in O,
—Av:y\v\‘kzv—i—%\u\“!v]ﬁ*%, in Q,
u=ov=20, on d(),

where 0 € Q) is a bounded domain in RN with N > 3, and A, u>0a p>1, a+p =2" For

1 < g < 2, they got two positive solutions when 0 < AT + ,uﬁ < A, where A is a positive
constant. What’s more, there are some other references on semilinear elliptic system with
critical exponent, such as [5,6,8,9,12,13,16-18,20-22,24-26]. However, among the references
mentioned above, the elliptic system involving double critical exponential terms with one
strongly coupled and the other weakly coupled was studied only in [9] and [8]. Recently,
Duan, Wei and Yang in [9], on an incompressible bounded domain, studied the following
nonhomogeneous semilinear elliptic system with double critical exponents

—Au = |u]®> 2u+ Lul*2ulv|f +¢f, inQ,
—80 = [0 20+ Llul*lo/ 20 +eg, inQ,

u=ov=20, on 0Q),

where o, > 1, a + = 2%, € > 0, for non-homogeneous terms f, g, which satisfy 0 <
f(x), g(x) € L*(Q)), f, § # 0, and for the incompressible bounded domains with smooth
boundary () satisfies the following condition:
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(V) O C RN(N > 3), and there exist two positive constants 0 < R; < Ry < oo such that

{xeRV:R < [x[ <R} CQ  {xeRV:|x|<Ri}Z Q.

If condition (V) holds, by splitting Nehari manifold and the knowledge of topology, they got
that there isa ¢’ > 0, for any 0 < ¢ < ¢, such that the above system has at least three solutions
in the incompressible domain (2, one of which is a positive ground state solution. Further-
more, if Ry in condition (V) is small enough, then there is a ¢’ such that for any 0 < ¢ < ¢”
there are at least four solutions on the incompressible domain ().

Inspired by [9], we replace the abstract inhomogeneous terms with the concave-convex
terms. In order to get a more general result, we extend the constraints of the “incompressible”
domain to the general bounded domain. So, we study system (1.1).

We denote the norm |[ul| = ([, |Vu[*dx)? of H}(Q); and E = H}(Q) x H}(Q) with the
norm:

[(w,v)||le = UQ(|Vu|2+|vU\2)dx "

Then, we use |- |, to denote the L7 (())-norm, and denote S as the Sobolev optimal embedding
constant, where S is defined as follows:

Vu|*d Vul*d
S—  inf S [VH T~ it fﬂ‘—”’xz > 0. (1.2)
ueHY(RN)\ {0} (f]RN |u|2*dx)27 ueH}(Q)\{0} (fQ |u Z*dx)T*
From reference [27], we know that S is achieved by the function:
N-2
N(N-2)] %
uE = EED e Ry (13)
(T4 [x2) =
which is also a solution of the following equation:
—Au = 2*71, IRN,
u=1u X € (1.4)
u>0, x € RN,
with [AUJ2 = |UJ2. = S7. Let
/ (|Vul + | Vo|?)dx
Sep = inf = + = f(Tuin)S. (1.5)

(u0)€E\{(0,0)} ) . >
0 ol + il

According to [9, Lemma 1], we know that S, g = f(Tuin)S, where

1+ 12
(1472 +1P)%

f(r) =

and f(Tyin) € [2’%*,1] for any T > 0.
Based on (1.1), we know that the corresponding energy functional as follows:

1 1 . . . 1
I (,0) = 5l (0,0)|2 = 5 /Q (" + fo -+ ful*ol?)ax — /Q Al + ulo])dx  (16)
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and (u,v) is a weak solution of system (1.1) if for any (1, 2) € E it satisfies

<I;L,‘Ll(u’ U), (gll ‘:2)>
— / (VuVE + VoVéy)dx — / (|u|2*_2u§1 + |v|2*_2v§2) dx
0 o)

o _ B _ _ _
— /Q <2*\u|"‘ 2|v|Pué; + 2—*]u\“|v\ﬁ 27)@) dx — /Q (Alul® 2u&) 4 ulol? 21)62) dx = 0.
When (&1,¢2) = (u,v), we can get:
e, 0)IE = [ (1l + o +[uolf)dx — [ (Alul? +pplhax=0. (1)
Define Nehari manifold as follows:
My ={(u,0) €E: (ij(u,v), (u,v)) = 0}. (1.8)

Set z = (u,0), |zlle = [|(w0)||g = (||Ju]]*+ ||ZJH2)%. Define the function ¥(z) = (I} ,(z),z),
such that

(¥'(@),2) =2zl ~2" [ (u
= @=)lzlE— @ —q) [l + Pl + [ul*lol)ax (1.9

=(2-2)zlz - (9 -27) /()(MMI‘7 + ulo]T)dx

2*4—‘7)

® - ul*folf)dx —q [ (Alul? + plo]")dx

for any z = (u,v) € A4} ,. To obtain the two positive solutions, we now split .43 , into three
parts as follows:
Mr =z € My (Y(2),2) >0},
M ={z € My (¥(2),2) =0}, (1.10)
Ny =1z € Myt (Y'(z),z) <0},

where .43, = JVA*;I u ‘/K\?V U A}, In addition, we will prove e/i/f; # @ and ,/I{\(’)y = {(0,0)}

for 0 < /\ZZT‘? + W%‘? < T, where

2
2_g\ T2 /25 2\ s g 22y
r=(5=0) " (5oy) wwtestan (1.11)

in Section 2.
Here is our main result.

Theorem 1.1. Assume that 1 < q < 2 and QO C RN(N > 3) is a bounded domain with smooth
boundary, A, u >0, a >1, >1, a+ = % Then,

(i) for any AT yzzﬂ € (0,T), system (1.1) has a positive ground state solution;

(ii) for any AT 4 pﬂ%q € (0,(3) 7 T), system (1.1) has two positive solutions, one of which is the
positive ground state solution.
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Remark 1.2. To the best of our knowledge, our result is up to date. On the one hand, we
generalize [9] to system (1.1) on general bound domain and obtain two positive solutions. On
the other hand, noting that [9, Claim 2], that is,

4&”+W?F:”{—Uﬁﬁy—fﬁt%ﬁwaO@%ﬂ

and

N-2
From [9] we know that [15, (4.7)] is used in the proof of Claim 2. However, [15, (4.7)] has a
restriction of 4 > 3 on the exponential 4. For 2* = % > 3, it implies that N < 6. Thus,
when N > 6 the inequality in [9, Claim 2] may not hold, which may have some influence on
the estimation of corresponding energy functional. So, for N > 3, we revalued [9, Claim 2],
which is important for estimating the value of corresponding energy functional I, .

/ (01 + to5")* — o2 — (toi")? — 2702 i Pdx > O(6
0

The content structure of this paper is organized as the following way. In Section 2, we will
give some important lemmas for preparation to prove our main result. In Section 3, we will
give the proof of the existence of positive ground state solutions for system (1.1). Finally, we
will prove the existence of two positive solutions in Section 4.

2 Some preliminary results
In this section, we first give some important lemmas which are valuable preparation for the
proof of our main result.

Lemma 2.1. Assume that z = (u,v) € E\{(0,0)} with [,(|u|* + |[o]* + |u|*|0|F)dx > 0, then:

2 2
(i) there exist unique t*, t~ with 0 < t7 < tyee < t~ when AZ7 + 27 € (0,T), such that
ttz e C/VAZ, t z € ’/VA_y and

L(tTz) = inf I ,(tz), I (t"z) = sup Iy,(tz); (2.1)

0<F<tmax bax <t
(ii) for AT 4 ;42%‘7 €(0,7), JK\E)V ={(0,0)} and A} is a closed set.
Proof. (i) Fort >0, z = (u,v) € E such that [,(|u[> + |[0[* + |u|*[v|P)dx > 0, we have
(I (t2),12) = 2zl = £ [ (|u
' 0
Then, set y1, y2 : RT — R,

ni(t) = £zl =29 [ (u

2 1 fof? + |ul*o)f)dx — 9 /Q(A|u|" + o] ) dx.

2*4—‘0

® e ulolf)dx— [ Aulf +uleldx,  @2)

T 4 o 4 |ul¥v|P)dx. (2.3)

va(t) = £zl =27 [ (ju

Obviously, y1(t) = ya(t) — [o (Au|7 + p|v|7) dx. We now proceed with the analysis of y»(t),
Bt = 2=tz — @ =) [ (u

=1 =)zl - @ =2 [ (u

Pt ol + Jul*fol)dx

1ol + ul¥o)Pydx | .
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It is easy to figure out that i (ty.) = 0 with

i (2—g)lIz[1Z
(25 = q) Jo([u* + [0l + [ul*|o|P)dx

Moreover, y5(t) > 0 for all 0 < t < tyay, and y5(t) < O for all > tye,. Through a simple
analysis, we can get that

2,

2—q)lzl% F2r -2
t =maxyy(t) = i .
yz( mux) yZ() [(2*_q) fQ(’u’2*+’U|2*+‘u’“’0"8>dx 2% H HE
ccording to the definition of S, 3, Holder’s inequality an .2), one has
A ding he definiti f Su,p, Holder’s inequality and (1.2) h
yl(tmax) :yZ(tmax) _/Q()‘|u|q+.”|v|q) dx
2,
— (2_‘7)HZH% 2* ZH H
(2 —q) Jo([ul* + [o[* + [u|*[v]F)dx 2 —q'F
—/Q<A|u|q+y|v|‘f>dx
2-q
~\2"—gq 2 E Ja(ul* +[v[* + [ul*]o|P)dx
2—q g
= (Alul|?+ pllof|) | 7572
2—¢
2—q\7 2" - 12| o
> (- —n 12 o
2 —q 2 2 o]+ ful|o]P)dx
L 22 2 _1
— (A7) T (2 + o)) o) s
2—¢
fry Z_q 2* Li 2 2|| || ||ZH% v
2% —g 2 E 2 4 o|% + |ul¥|v|P)dx
2 2\ 57 -1
- () el
_ 2-q
> <2_q>22*_‘722 H ||2< HZH% )2*2
S\ <saﬁ>*%uz||%*
2 2 24
- (AT 4 pm )2 lzlZ0f =" s
_ o T 2%(2-q) 29 -
>0, (2.4)

2 2
forall Az 4+ u>7 € (0,T), where T is defined by (1.11). Because y; (f) is a continuous function,
according to inequality preserving for continuous functions and (2.4), there exist unique *, -
with 0 < t* <ty < t~, which makes

(") =y (t) =0.
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So, for t7 <ty < t, since y4(tT) > 0 and y5(t7) < 0, we have 7z € JVAJ;, t7z € Afy
Moreover, one has
Dou(t7z) > u(tz) > 1 (7 2),

foreach t € [t*,t7], and I, ,,(t*z) < I, ,(tz) for each t € [0,+"). Thus, one obtains

Ly(ttz) = ogilgfm Inu(tz), Lyt z) = tsugt Iy (tz).

(if) Set zo = (uo,v0) # (0,0) € A7, from (1.9) and (1.10), we know

2% -2
g ol = [ Aol + pelool?), @3
22 )z = [ Juol? + Jool? + [mol® ool 2.6)
2 g ol = /"o 0 ol [Yo|"ax. .
We can deduce from (2.4), (2.5) and (2.6) that
2-q
0< 2 = )l S
(2* = q) [ [uol* + Jvo|*" 4 |uo|*[vo|Pdx 2% —q
— [ Vol + ool ax
2-q
2 -2 * *
P N R B
@ — g7 Llzl2| 274 2 —q
2F -2 2F -2
= 3ol =5 ol
=0,

which is a contradiction for all )\ﬁ + ],12%7 € (0,T). So, for /\2%‘1 + pﬂ%q € (0,T), we obtain
2 2

C/V)Sy = {(0,0)}. Then, we will prove AN is a closed set when A7 + p2-i € (0,T). Assume

{zn} C ,/1{\;, zy — z, z € E, and now we prove z € ,/VA’H From (1.10), we have

2—q)lzallE — (2" —9q) /Q |l * + 02> + [t4a]* [ou]Pdx < O, (2.7)
According to z, — z, z € E and (2.7), one has

24 |ul®|olf)dx < 0. (2.8)

=)l - @ —q) [ (uf +lo

From (2.8), we can get z € J’C\?}l UA, - We already know from the above proof that JVA% =

{(0,0)} when AT 4 y"‘%ﬂ €(0,T).So,ifz € ,/V)Sy, then z = (0,0). According to (1.5) and (2.7),
we obtain

ol = {((22*—_2)) (S"‘fﬁ)ﬂ )

which implies a contradiction with z = (0,0). Thus, z € .4}, for AT 4 ,uzz‘l € (0,T). So, we
can prove that .#)" is a closed set. The proof of Lemma 2.1 is complete. O
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Lemma 2.2. The energy functional I, is coercive and bounded from below on A} .

Proof. Assume that z = (u,v) € .43 ,. By the Holder inequality, (1.2) and (1.7), one has

(oo (oL 7 7
) = (3= 3¢ ) 121 = (5 = 57 ) [ Alul+ ulofas

= = (5 = 57 ) [ Al -+ o

> el = (5 = 3 )l + ol |0l 55 @9
2wttt = (5= ) (A ) T (i + ol s

= melz= (- ) (47 ) 7 el =,

Because 1 < g < 2 < 2%, from (2.9) we know that I , is coercive and bounded from below on
3,u- The proof of Lemma 2.2 is completed. O

According to Lemma 2.1 and Lemma 2.2, we set A4} , = JI/AJ;l U JI{\?V U JVA_}I And we define

m= inf I, ,(z), mT = inf I, ,(z), m- = inf I, ,(z). 2.10
zEM /\’V( ) zef/if\; A'”( ) zEN, A,y( ) ( )

Lemma 2.3.
(i) We have m < m* <0, for AT 4 ]/12%7 € (0,T);

(ii) there exists a positive constant mq depending on A, u,S, N, such that m~ > mqy > 0 for all
AT+ uz € (0,(1)=9T).

Proof. (i) Assume thatz = (u,v) € ‘/V)fﬂ’ by (1.7), (1.9) and (1.10), we can get

2_ * * o
Ll > [ (0 + ol + ul*[o]f)ax. 211)
2*—q 0

Then, by (2.11) we have

(Y e (LN [ o el
) = (3 =3 ) I+ (G = 50 ) [+ lof -+ ¥l
1 1 2 1 1 2—9q 2
<(5-7) 1+ (G-5) (3=5) =1t

_q=2,
S L

SO, m = infze(/;/&y I/\/P‘(Z) S m+ = infze%; I/\/P’(Z) S IA,y(z) < 0.
(ii) For z = (u,0) € A, we can deduce that

2—¢q
2* —gq

* * _2 *
IzI1E < /Q(Iul2 +[of* + Jul*olf)dx < S, ;7 lz]1F -
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Consequently, from (1.5), (1.9) and (1.10), one has

1

2 g\ iy
lzlle > (2* _qq> s (2.12)

By (2.9) and (2.12), for all AT 4 ]/t% € (0, (%)ZLT) we will get

1 1 2 = 5
) (4 0) T peliof s

5~

IArV (Z)

vV
7N
|

o R
*
~_
o
o
|
Y
| =
|
N~

_ l_l ()\z%ur zf»;)zymyz;qs—i
9 2 g

1 1 2 — q 22*7_112 5*2(’% g) (213)
>IzlIE| {5 — 5 Sup
2 2% 2% _ q o,p
1 1\ /2, 2\72 1o
— - — 2— 2— k3 )
(5-5) (7 +u5) T 0P's ]
= My
>0,
where mg is a positive constant. So, m~ = inf, A In,(z) > mg > 0. Then, the proof of
Lemma 2.3 is complete. ]

Lemma 2.4. Suppose zo € E is a local minimizer of I, , on A} ,, then we have I}w (z0) =0in E~L.

Proof. Set zg = (uo, vo) € E is a local minimizer of I, , on A} ;.. Then, Iy ,(z0) = minze s , [ 4 (2)-
According to the Lagrange multiplier theorem, there is a 6 € R such that I}  (z0) = 6%'(z0),
where ¥(z) = (I} ,(z),z). Due to zg € .4}, we have

0= <I;L,]/{(ZO)’ZO> = 9<‘Y’(ZO),20>.

L
2—

By Lemma 2.3, if zg ¢ A, /\;u we can get (¥(z9),z0) # 0 for = uz1 € (0,T). Thus, 6 =
0, I}\,y(zg) = 0. The Lemma 2.4 is proved. O

3 The positive ground state solution

Lemma 3.1. For any AT 4 ‘uﬁ € (0,T), then there exists a (PS),-sequence {z,} = {(un,vn)} C
M for 1y, and T is defined as (1.11).

O

Proof. The proof process is the same as [28, Proposition 9], which is omitted here.
2
Lemma 3.2. The energy functional Iy, has a minimizer z. = (U, vx) € JVJF for ATT 4+ 7

(0, T). What's more z, is a positive ground state solution of system (1.1), which makes Ihu(ze) =m =
mt < 0.

m
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Proof. According to Lemma 3.1, there is a (PS),,-sequence, which is recorded as {z,} =
{(un,v4)} C A2y Then, we have

I/\’y(Zn) =m + On(].), I;\,]/I(Zn) - 011(1), (3.1)
where 0,,(1) — 0 as n — co. Combining with (2.9) and (3.1), we can get

m+0n(1) = I u(zn)
1 1 1 2 2! P g
> gl = (5= ) (A5 +455) T fmiiofss

Thus, {z,} is bounded in E. Then, {z,} has a subsequence (still denoted by {z,}) which
weakly converges to z, = (us,v.) € E, and

Uy — Uy, Uy — Vs, in Hé(Q),
Uy — U, Uy — Vs, in L5(Q)(1 <s < 2%), (3.2)
Up(x) = up(x), v,(x) = vi(x), ae. in Q.

According to (3.1), we have (I /’W (zn), &) — 0asn — oo for any ¢ € E. What's more, combining
with (3.2), we have
(Ipu(z4),§) =0, forall €E,

which implies that z. is a solution of system (1.1) and z. € A4} .
Then, we will prove z, — z.. By using the Lebesgue dominated convergence theorem, we
can get

fim [ (A7 4+ plon| ) = /Q(/\|u*|q+y|v*|‘7)dx. (3.3)

n—00

Since z. € A4} ,, by Fatou’s Lemma and (3.3), one has
m S IA,y (Z*)

1 1 1 1
(55 ) It = (G = 57 ) [l + oI

1 2% —
= qilleslE = T el 4 gl 1)

o 1 2" -

:m,

which implies I, ,(z.) = m, ||z4||3 — ||z«]|2. By combining with (3.2), we can derive z, — z.
in E. Thus, z, is a solution of system (1.1) that means z. € .4} ,. Moreover, we are going to
prove z, € C/VAJ; Since z, € .4}, from (1.6) and (1.7), we have

q nae— 927 =2), 0 27
Jo Ml 4 o )dx = TSzl = 5o m
_ 2 (3.4)
Z "
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Then, z, # (0,0), which implies z, € &/IC\J; or z, € Q/V)\_y If z, € Ny by Lemma 2.1 there are
unique ¢, ¢~ with t <t~ = 1 such that t "z, € C/VA;, t=z, € f/l/)fy From (1.10) we know that

d 4 d? i
EIA"“(t Z*) = 0, EI/\,V(t Z*) > O
Moreover, according to Lemma 2.1, for any ¢ with t* < t <t~ =1, one gets

m* < Dy (Fza) < Dy(tze) < Dyt z.) = Ly(ze) = m,

which implies a contradiction. Thus, z, € JI/)\J; and m = m*, and according to Lemma 2.3 (i),
we have m™ = I ,(z.) < 0.

Finally, we are going to prove z, is a positive solution. We have z, # (0,0) from (3.4). Then,
the main purpose now is to exclude semi-trivial solutions. Assume that u, # 0,v, = 0, then
uy is a nontrivial solution to the following equation:

—Au = [ul? “2u+ AMul7%u, inQ,
u>0, in ), (3.5)
u=0. on 0Q).

Because (u4,0) is a solution of equation (3.5), we have
(11, 0)I|Z = W (1., 0) > 0,

where W, (u1,0) = [, [u«|* dx + [ Auldx. And similarly, we could take ¢ € H}(Q)\{0} such
that

10,¢) 12 = W.(0,9) > 0.

Now,
W.(tts, @) = || (14, ) |IF = Wic(11,0) + Wi (0, ).

According to Lemma 2.1, there exists a unique 0 < " <ty such that (t7u,, tT¢) € ,/VAJ;,
where

>1

brnax =

e = (5=3)"

and

o gt —
Lyt us, tTg) =, nf Iy (tus, t).

Then, we can deduce the following result:
m® < Dy (T ua, t7¢) < Iy (e, @) < Iy y(us,0) = m™.
It is impossible. Finally, we can know that u,, v, > 0 in Q) by using the strong maximum

principle, and z. = (u,v,) is a positive solution of system (1.1). The proof of Theorem 1.1 (i)
is complete. O
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4 Proof of Theorem 1.1

In this part, we will prove Theorem 1.1 (ii), and obtain the second positive solution of system
(1.1). Before that, due to lacking of compactness condition for I, ,,, we first give the local (PS).
condition which is satisfied for the corresponding energy function.

Lemma 4.1. Let {z, = (uy,v,)} be a (PS). sequence of I, with

1 S%
C < m + N D(,IB’
we can get that Iy ,, satisfies the (PS). condition in E.

Proof. Let {z,} = {(un,vy)} be a (PS),-sequence for I, , such that
Lo(za) = c+oa(1), I, (zu) = 0a(1). (4.1)
Combining with (2.9), we have

c+o,(1) = IM,(zn)

1 11\ (2 27 ¥y
> Ll = (3 - 5 ) (475 4077) T o=

Since 1 < q < 2, we know that {z,} is bounded in E. Passing to a subsequence (still denoted
by {z,}), there exists z = (#,v) € E such that z, — z in E, and we have

Uy — U, Uy — 0, in H}(Q)),
Up = U, Uy =7, in L°(0)(1 <s < 2%, 4.2)
un(x) = u(x), vy,(x) = v(x), ae. inQ.

Similar to [9, Proposition 1], as n — oo, from (4.1) and (4.2), one has
Tim (1, (20),8) = (I,(2),€)
_ / (VUVE + VoVe)dx
Ja
_ 22 22
/Q (\u! uéy + || v@z) dx
X _
= [ (et 2ot + But ol 2022 ax
— [ty + pfoli20t2) d
=0,
for any ¢ = (§1,82) € E. Particularly, choosing { = z, one obtains (I}\/H(z),z>=0 and z =
(u,v) € i

Set {(1n, un)} = {(up —u,v, —v)} in E, then, (44, n) — (0,0) in E. And next, we give the
following version of Brézis-Lieb Lemma from [14, Lemma 3.4]

Il onlax = [ (gl pal® + [l [01)dx + 04 (1), @3)
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and the Brézis-Lieb Lemma for the other terms,

/Q]Vun|2dx:/Q(|V17n|2+\Vu]2)dx+on(l), (4.4)

S = [ (Il 0 )+ 0,(1), (4.5)
where (4.4) and (4.5) are equally applicable to v,. Moreover, according to the Lebesgue domi-

nated convergence theorem, we have

n—o0

lim [ (Alun| + pt|on|7)dx = / (Aful? + u]o]7)dx. (4.6)
(@) (@)
Then from (4.3)-(4.5), we have

on(1) = <I§L,]/l (1n, 0n), (tn, On))

* . . 4.7)
= ||(77n,un)||%—/Q(|17n|2 + 1 pal* |17l [ P)dx + 04 (1)

Assume that there exists a constant /, which makes ||(17,, 1, )||2 — I. Then, from (4.7) we can
get / (|7a)* + [pal* + |90|%|pn|P)dx — 1. According to (1.5), one obtains
Q

2
%

* * o 2
Sug | [ (7 + 0P+ [uf'ol?)az] * < [ (Vu -+ Vo)

N
Then, [ > Salﬁlz%, which implies that lN: OQorl>S 042 g On the one hand, if I = 0, the proof is
complete. On the other hand, if / > SZ,/S' according to the definition of m and (u,v) € ./, it
follows from (4.3)—(4.7) that

1 1 * .
c= IA,y(ufv)+§|\(77n/#n)!!2—g/ﬂ(\ﬂn\z + pnl* -l 10 ]P)dx + 04 (1)

=m+ 11 [
N 2 2%

>4 ~g?
= m + N “,‘BI
N
which is contrary to the given condition of ¢ < m + %S . 5 So, 1 =0, ie. (Uy,vy) = (4,0) in
E. The proof of Lemma 4.1 is complete. O

Set i € Cf° and satisfies 0 < 1 <1, |Vip| < C. The definition of ¢ as follows:
Po
1, |x| < =—
N ERLE
0/ |x| Z p()/

ue(x) = ¥(x)Ue(x) € H (QY), Ue(x) = Tin (x)Ue(x) € H(Q). 4.8)

where € € (0,1). Moreover, setting

Then, we will have the following estimates.
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2
27

Lemma 4.2. Under the assumptions of Theorem 1.1 (ii), for any A% pﬂi € (0,(1)=7T), there
exist g > 0 for any € € (0,¢&p) such that
1 2
52121%3 Iy i (s 4 tue, vs + toe) < m+ NS"‘ 5
Proof. From [3], we can obtain the following classical conclusion:
[uel3. = [Uef3. +O(e™); (4.9)
el |* = [[Ue ][ + O(eN~2). (4.10)

Then, we have

1
Iy (s + tute, 4 + toe) = EH(M* + e, 4 + o) ||%
- = /Q(u* + tue)? + (04 + t0e)? + (s + tue)*(vs + toe)Pdx

4 / Ay + tue) T+ (v, + toe)1dx
0

1 1
= Sl )3 + E||<tus, il

+t/ 21y St Py A tudx

+ t‘/Q Vs o + Zﬁ*ui‘vfflvg + yvzflvgdx

1 * *
~ % /Q(u* + tue)? A+ (0s + 10:)? + (1 + tue)* (s + toe)Pdx

- ; / Ay + tug) + p(vy + toe)Tdx.
0

According to [23, (4.11)]:
(a+b)7>a"+qa"'b, a,b>0,1<q<2 (4.11)
Then, we have

*_ b4 _ -1
t/Qu,% 1u8+2—ui‘ YoPue + At uedx

_ 1
+ t/ 21y, + —u vf Ve + ;wi 1vgdx — 6 /QA(u* + tue) T+ pu(vy + tve)Tdx
* * — 1
<t ui Ty 4+ vi o, + iu‘jﬁ_lvlfue + Eui‘vf 1vgdx - = (/\uz + yvi)dx.
O 2% 2% q.Jao
Thus,

1 1
I/\,H(“* + tue, vy + tve) = EH(“*/UQH% + EH(”‘S/ tUS)H%

. « _
4 t/ u? Tty + Eui"lvljug + Aul 1ugdx

+t/ 21y, + —u v{f vg—l—yvz_lvgdx
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1 * *

~ > /Q(M* + )2 4 (04 + t0)% + (1, + tug)* (v, + tve)Pdx
1

ar /Q Ay + tue)T + p(vs + tog)7dx

1 , 1 ,

< Sl 0 IE + 5 1 (bue, toe) ||

2 2
1 . .

o /Q(u* + tue)® 4 (v + t0e)% + (e + tue)* (v + tvg)Pdx

+/ (12t + 02 o + ;ui‘ ! ﬂtuﬁ%uivﬁ’ltvs)dx
Q

- (17 /Q(Aui + uol)dx

1
= 1A,y(”*r”*) + EH (tue, tUS)H%

—217 /Q (1) + (tve)® + (tue)* (to,)Pdx
o [ () 20
o [ )T 0 (1) 20 Mo
- 217 /Q(u* + ) (vs + tve)P — uof — (tug)* (tve)P
—aut ! oPru, — /Sui‘vlf_ltvgdx. (4.12)

Let @, (t) = D 1(t) + DPeo(t) + Pes(t) + Dea(t), where

1 1 . .
D1 (t) = §||(tu£,tvg)||,25— 2—*/0(tu8)2 + (tve)* + (tue)"(tve)Pdx, (4.13)
1 * * *
Do(t) = > / (s + tue)* —u? — (tue)* —2*u® tu.dx, (4.14)
1 * * * *
D.5(t) = 2—*/ (0x + t0e)? — 02 — (tve)? —2°0% to.dx, (4.15)
0

1
Pat) = o / (it + te)* (01 + t0e)P — uSoP — (tue)* (toe)P

au®1 ﬁtug ,Bu’jfvf_ltvgdx. (4.16)

Notice that @,(0) = 0, lim o De(t) = —o0, and lim; o+ D¢(f) = 0 uniformly for all e&. On
the one hand, when infsup,., D, (t) <0, one has Iy, (s + tite, vy + tve) < Iy (s, 0:) = m <
m-+ 5 S wp Conclusion naturally holds in this case. On the other hand, when inf sup, , P(t) >
0, then sup;o Pe(t) > 0 and it attains for some t, > 0, that is, sup;.( Pe(t) = Pe(f;). Accord-
ing to the monotonicity of @, near t = 0, we can find two positive constants To, To, such
that

|Pe(To)| = |De(Tp) — Pe(0)| <G =

D, (t,)
TR

Similarly, we can obtain t, < To. So, To <te < Ty is bounded. Now, we evaluate the four parts
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separately. Let us evaluate (4.13) first, from (4.8) we can get:

2 t2 . .
De1(te) = iII(ue,ve)H%—%/ (luel® + [vel* + [ue] “|0e|P)dx
2 2% Jo
t2 ) t2 2 2
=5 ), Vel + Vel )dx—g/(luel +[0e? 4 [ue|*[oe|P)dx

t2
1+ Tmm) /Q |vu€‘2dx - 7(1 + Tmzn + Trézzn) /Q

= 2(

Then, define
t2 .

Jh =75 {1—|—Tmm /. |Vug|2dx} - [(1+rmm ) [ Il dx]

Obviously, J'(#,,,) = 0 with

1
(1 + Tmm fQ |Vu£’2dx o >0
(1 +T2* +Tmm fQ u2*|dx

min

By simple analysis, we get that J(t) attains maximum at #;,,.. Next, by using (1.5), (4.9), (4.10)

we have the following result:
2
(1+72) fQ |Vue|?dx |77 ) )
1 2% 2+ [(1 +Tmin) /Q |vu€’ dx]
( +Tmm+Tmm f0|u | x

(1+ 72 f \Vue|?dx  |*7
- min/ JQO - (] + T mzn =+ Tn‘Bﬂn) / ’Mg
(1 + Tmm mm fQ ‘u dx =

1
](tinax) = 2

*

_ l Z*dx}

iz

1 (1+72.) fQ |Vue|*dx
N
[(

2
5%

122, 4 ) fo 2 d]

1 _

Then, we can get
(4.17)

q)€1(t€) < ]( mux) stxzﬁ + O(€N72>'

Next, let us analyze (4.14). According to [23, (4.12)]:

0<a<Mb>1,M>0,v>2  (418)

(a+Db)7 > a” + b7 +4a" b+ Crab" !,

Then, according to (1.5) we can find a positive constant C; > 1, where C; satisfies

N 1
52 = —=85,
<f(Tmzn) /ﬁ) (4.19)
< CQS a5

iz
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Moreover, by the standard elliptic estimates, we know that u,,v, € C()). Assume that

1 .
teue > 1 for all ¢, > ToNT by using (4.18), we get

min)

]. * * * *_
Do (te) = > /Q[(u* +teue)? —u? — (teue)® — 2% u® tou,)dx
. 2% Q[“ﬂzs* + (teue)z* + 2*”3_1%”8
— 1% — (teue)* —2°u% teue + Crunt? "' "dx (4.20)
tz*—l o1
82* /chu*l/lg “dx
>0(e' 7).

By using the same method as (4.20) to (4.15), we can get
N-2
Dea(t) > O(e'T), (4.21)

At last, let’s evaluate (4.16). First of all, we define a new function f(x,y) : [0, +o0) X [0, +00) —
R, and

flxy) = 1+x)"(1+y)P —x"yP —ax— py—1.

Since
afg;;,y) =a(1+x)" 11 +y)P —ax*1yf —a
>a(1+x0)* 11 +vyP) —ax*1yf —a
=a(l14+x)" P —a4a(l+x)* 1y —ax* 1P
> 0.
We can also get aﬂax'w > 0 in the same way. Obviously, f(0,0) = 0, so for any x > 0,y > 0,

we have f(x,y) > 0. Because of u,, v, > 0, we have

1
q)£,4(ts) = P /Q(u* + tsus)a(v* + tevs)ﬁ - ”ivé - (tsus)a(tsvs)ﬁ
- wui‘_lvftgug - ﬁu‘i‘vf—ltgvgdx (4.22)
> 0.
Therefore, for + = t, > ——L— we know that there exists a ¢; > 0 such for any
CoN(1+72,)
e € (0,€7) that
L5 N-2 N2
Dy (s 4 tue, v +to) <m+ =52, +0(e" 7)) —O0(e 7))
’ N zx,ﬁ
1 n (4.23)
L c2
<m+ NSW

by (4.17), (4.20), (4.21) and (4.22).
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When 0 < t < m, according to (4.8)—(4.11) and (4.19), there is a &2 > 0, when

min

e € (0,€2) we have the following estimates:
1 2 1 2
Do (1t + buie, 04+ t0e) = S| (s, 02) [E + 5 || (e, toe) ||

* b4 _
—I—t/Q(ui ’1u£+2*u"‘ 1vfug+/\uz 1ug)dx

+ t/ﬂ(vi**lvg + ;%ui‘vfflvg + yviflvg)dx

——AWwwaHm+mF+w+mym+mﬂm

— 6 /Q[)x(wk + tue)T 4+ p(vs + toe)]dx
2

t
= Iy (s, 0s) + EH(Ms/vs)H%
+21*/(u + 02+ 2%u? lu, + 2702 to.)dx
1 «
~ 5 / [(us + tug) + (vs + t‘vg)2 |dx
+ 21*/ (u”‘vf —|—ucu’fk"1vftu€ —|—,Bu‘j§vffltvg)dx
1
o / [(uy + tue)® (v*—i—tvg)ﬁ]dx
—1—7/ M + ol dx
qQ( Jos)
1
- /Q[A(u* + tue)T + (v, + toe)]dx

q
2

t
< i+ | (e 00 12

# 2 2
=m+§/\v%yﬂvmmw
= 2 (1+72) / | Ve |*dx
=t 1+ [ + 02|

2
<m+t*(1+12

min

)s?

<m+t(1+ ’L’mm)CQS

ap

<m+N5ﬁ (4.24)

Therefore, choosing ¢y = min{ey, €2}, for any 0 < ¢ < €9, we can draw a conclusion

1
sup I ; (s + tue, Uy + tve) < m+ _s2

>0 IR
from (4.23) and (4.24). The proof of Lemma 4.2 is finished. O
Lemma 4.3. There is a t; (1g) > 0 such that (u* +te U, Vs + 1, 0g) € AN, when R ;ﬂi
2 1
(O,(%)ZE“?T) What is more, 0 < m~ <m+NS“ﬁ
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Proof. According to Lemma 2.1, there is a t(z) > 0 for any z = (u,v) € E\{(0,0)} such that
t~(z)z € Ny Let
_( z
E1:{ZEE:u:00erH<t < )},
[ElF:

Ezz{zeE:HzH>t_ (HZZHE)}

Then, we have ‘/V{H ={zeE:|z|| = t*(m)} So, E = E{UE, Uz/VA; We have JVfH C
Ey, since tT < t~. Now, there is a positive constant M; such that 0 < t~(z) < M; for ||z|g = 1.

1
2
M) ]

When tg = T + 1, we claim that

We = (u* + tole, Vs + t(ﬂ)s) € b,
for € > 0 small enough. By (4.10), we can deduce that

(10 + totte, v + tove) 1 = [ (11, 02) 1 + || (Fote, tove ) I
. ® _
+2tp /Q(Mi Ty + Eu‘jﬁ’lvfug + Al
+ 2to /Q(Uitlvg + gui‘vﬁflvg + ol og)dx

> || (e, 0) | + 85l (e, 06) [ + 0n (1)

> M?

> [ ()]

We denote 1 : [0,1] — E by h(t) = u, + ttove, then there exists 0 < (f;)~ < tp, which makes
(U + (te) Ue, v + (te) " 0e) € A} u- Moreover, from Lemma 4.2 and Lemma 2.3 (ii), one has

ug)dx

1 N
0 <m™ < Iy (us+ (te) e, vs + (te) ve) < sup Iy (s + te, Vs + toe) < m + NS"‘ZJS'
£>0

Thus, the proof of Lemma 4.3 is complete. O
Next, for z = (u,v), ¢ = (¢1, ¢2) € E, we define
z—¢=(u—¢1,0—¢2),
(z,9) = /Q VuV e + VoV eodx,

Guuz ) = [ (Mlul~2ugs + ulol"20g2) d,

_ 252 252 X a=2,.1B B p-2
HGz,g) = [ (10 2ugr+ o 2og) dx [ (Gelul 2iolPugr + £ lultlol Zoga ) d.
Then, we have the following conclusion.

Lemma 4.4. When AZ7 + yﬁ € (0, (%)ﬁT), there exist y > 0 and a differentiable function
¢ :By(0) C E— RY, forz = (u,v) € Ny such that £(0) = 1, L()(z — @) € Ay, for any
¢ = (91, 92) € By(0), and
2(z,¢) —2"H(z,¢) — 4Gru(2,¢)
(£'(0),9) = T o Y
2=9)lzlz - (2" —q)H(z 2)

forall ¢ = (¢1,¢2) € E.
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Proof. For z € f/VA_y' we define a function F, : R x E — R and

E(5¢) = (1@ — )2z —¢))
=z = ¢llE —FHE—9,2—¢) = T'Gau(z— 92— ¢).

Then, we have F,(1,0) = (I}W (z),z) = 0, moreover, from (1.8) and (1.9) we have

d

d—gFZ(l,O) = 2||z||% —2"H(z,z) — qGM(z,z)

(2 9)llz|E — (2" — q)H(z,2)

According to the implicit function theorem, there is a # > 0 and a differential function ¢ :
B,(0) C E — R, which makes {(0) = 1, then, F,(£(0),0) = F,(1,0) = 0, one has

2<Z, (P> - Z*H(Z, 4)) - qG/\,y (Z, (P)
@-allzl - @ - 9)H(z2)

('(0),¢) =

and
E.({(¢),¢) =0, forall ¢ € B,(0)

which is equivalent to

(11,(6(@)z—9)),2(p)z— @) ) =0, forall g € B,(0).

This means that for all ¢ € B;(0), we have {(¢)(z — ¢) € 43 ,. The proof of Lemma 4.4 is
complete. O

4.1 The proof of Theorem 1.1

Proof. For AT 4 U2 g € (0, (%)ZZTLYT), there exists a z € 4], such that m~ = infI) ,(z) > 0, by
Lemma 2.3. Setting {(u4,v,)} C E, which is a minimizing sequence of I, , at m~. Now, we are
going to prove that {(u,,v,)} is a (PS),,--sequence of I, ,. According to Ekeland’s variational
principle (see [10]), there exists a sequence (we still denote it as {(u,, v,)}) that satisfies

. _ 1
@) IA,;t(un/ Un) <m + E}

(11) IA,y(“n/vn> < I)\,y(wllw2) + H(wllw2) ;l (ui’l/vn)HEl (w1/w2) c </V)\;1

So, we only need to prove Ia,ﬂ(un,vn) — 0asn — oo in E~! to get that {(uy,v,)} is a (PS),,--
sequence of I, ,. According to Lemma 4.4, there exist a 7, > 0 and differentiable function
Cn : B((0,0);1,) C E — R" such that {,(0,0) =1, (w1, w2)((ttn, vy) — (w1, w2)) € Ny for

any (w1, wz) € B((0,0);7,). Let (¢1,92) € E, ||(¢1,92)][e = 1, and 0 < 0 < 7,. Then we
choose (w1, wp) = o(¢1,¢2), which makes (w1, wy) = (@1, ¢2) € B((0,0);7,) and wypn =

Cn(o (@1, 92))((un,0n) — 0(P1,92)) € A, for 0 < o < 1. From (ii) and the mean value
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theorem, let ¢ — 01, we have

Hwa,n - (un/ vn) HE
n

> Iy (v, 0n) = I u(won)
= (Bptot,00) + (1= to) i), (4 0) = o)
= (1,00, 00, (1, 0) = @ ) + (1| 110, 0) = W)
= 00u(0(91,92)) (I (100, 0), (91, 92))
(1= a1, 92))) (L (10, 00), (100, 00) ) + 0| (10, 00) = o)
= (0 (@1, 92)) (1 (0, 20), (91, 92) ) + (1| (4, 0) = worn )

where ty € (0,1). Next, let c — 07, we have

(13, (100, 00), (91, 92) )
| = (n, o) [ £(2 + 0(1))
o10a (o (1, 92)))]
< a0, 9) (G091, 92)) = £1(0,0)) — (@1, 92)Zu( (@1, 92)) [[£ (5 + (1))
- o|Cn(c (@1, @2))|
(1, 0) |12 (0 (@1, 92)) — 2a(0,0)] + 0| (@1, @2) | (e (91, 92))]
< o1Ta(o (g1 92))] ( *”(”>

C+ 120,001 (5 + lot1)).

Due to {(uy,v,)} and Z},(0,0) are bounded, we could learn that I}L,H(un,vn) — 0in E~! as
n — oo. Thus, {(un,vy)} is a (PS),,--sequence of I .

In accordance with Lemma 4.1, Lemma 4.2 and Lemma 4.3, there is a list of convergent sub-
sequences {(uy,vy,)}, such that (u,,v,) — (Uss, Vss ), Where (Ui, Vss) € ‘/VA_V What’s more,

when A77 + ‘uﬁ € (0,(%

Iy ([thss], [04x]) and (thir, Ds4) € A}, o We can deduce that

2
)ZTqT), we can get Iy, (Usx, Vsx) = m~ > 0. Since Iy, (Usx, Vsx) =

* * 2
P o o P >

e (O R] (425)
from (1.9) and (1.10). So, (U, V4x) # 0. Applying the strong maximum principle, we could
get that (u.,v.i) is a positive solution of system (1.1). Finally, due to E/V);l N, =9,
which implies that (u.,v.) and (u.., v ) are entirely different. The proof of Theorem 1.1 is
complete. O
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