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Abstract. This paper is concerned with the following nonlocal problem with combined
critical nonlinearities

(−∆)su = −α|u|q−2u + βu + γ|u|2∗s −2u in Ω, u = 0 in RN\Ω,

where s ∈ (0, 1), N > 2s, Ω ⊂ RN is a bounded C1,1 domain with Lipschitz boundary, α
is a positive parameter, q ∈ (1, 2), β and γ are positive constants, and 2∗s = 2N/(N − 2s)
is the fractional critical exponent. For γ > 0, if N ⩾ 4s and 0 < β < λ1,s, or N > 2s
and β ⩾ λ1,s, we show that the problem possesses a ground state solution when α is
sufficiently small.
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1 Introduction

In this paper, we study ground state solution for the following fractional equation{
(−∆)su = −α|u|q−2u + βu + γ|u|2∗s −2u in Ω,

u = 0 in RN\Ω,
(1.1)

where s ∈ (0, 1), N > 2s, Ω ⊂ RN is a bounded C1,1 domain with Lipschitz boundary, α > 0 is
a parameter, q ∈ (1, 2), β and γ are positive constants, and 2∗s = 2N/(N − 2s) is the fractional
critical exponent. The equation (1.1) is driven by the fractional Laplacian (−∆)s and exhibits
combined nonlinearities and linear perturbation. (−∆)s is the nonlocal operator defined as
follows

(−∆)su(x) := 2 lim
ε→0+

∫
RN\Bε(x)

u(x)− u(y)
|x − y|N+2s dy, x ∈ RN ,

where Bε(x) denotes the open ball centered at x and of radius ε > 0. The operator (−∆)s arises
in physics, biology, chemistry and finance and can be seen as the infinitesimal generators of
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Lévy stable diffusion process [3,4]. And,
(
−∆ + m2) 1

2 appears naturally in quantum mechan-
ics, where m is the mass of the particle under consideration [35]. The study of nonlinear
equations involving a fractional Laplacian has attracted much attention from many mathe-
maticians working in different fields. We refer to [5, 9, 12, 14–17, 19, 23–25, 27–33, 36, 38–43] for
more details on the fractional operator and applications.

From [42] we get that the spectrum of (−∆)s on Xs
0(Ω) consists of a sequence of eigenval-

ues
{

λj,s
}

satisfying

0 < λ1,s < λ2,s ⩽ λ3,s ⩽ . . . ⩽ λj,s ⩽ λj+1,s ⩽ . . . , λj,s → ∞ as j → ∞,

where the space Xs
0(Ω) is given in [40].

For the problem (1.1), when α = 0 and γ = 1, the equation is a fractional critical problem
with linear perturbation term. For the critical problem, due to a lack of compactness occurs,
there are serious difficulties when we try to find critical points by variational methods. Moti-
vated by the pioneering work of Brezis and Nirenberg [8], the nonlocal fractional counterpart
of the Laplacian equations involving critical nonlinearity were studied in [38–43], their model
is the equation {

(−∆)su = βu + |u|2∗s −2u in Ω,

u = 0 in RN\Ω.
(1.2)

Servadei and Valdinoci have showed that problem (1.2) admits a nontrivial solution in the
following case:

(i) N > 4s and β > 0;

(ii) N = 4s and β ̸= λk,s, k = 1, 2, . . . ;

(iii) 2s < N < 4s and β is sufficiently large.

Moreover, the multiplicity result of (1.2) was proved by Fiscella et al. [24], where it was
shown the number of solutions is at least twice the multiplicity of the λk,s, provided that β

lies in a suitable neighborhood of λk,s, the authors also gave an estimate of the length of this
neighborhood. Figueiredo et al. [23] proved the problem (1.2) has at least catΩ(Ω) nontrivial
solutions if N ⩾ 4s and β is sufficiently small. For interesting results on the fractional Brezis–
Nirenberg problem, we refer to [12, 27] and the references therein.

For the problem (1.1), when α < 0, β = 0 and γ = 1, the equation contains a sublinear
term |u|q−2u and a critical superlinear term |u|2∗s −2u, it belongs to the class of problems with
competing nonlinearities, for instance sublinear-superlinear. An early example in this direc-
tion was given in [26] for the p-Laplacian operator. Other results for the classical Laplacian
operator can be found in [1, 6, 13]. More generally, the problem with completely nonlinear
operators has been studied in [10]. And we observed that Barrios et al. [5] have studied the
critical fractional problem with concave-convex power nonlinearities, where they considered
the following problem {

(−∆)su = −αuq−1 + u2∗s −1, u > 0 in Ω,

u = 0 in RN\Ω.
(1.3)

Main results show the existence and multiplicity of solutions to problem (1.3) for different
values of α. To be more precise, assume that N > 2s, then there is α3 < 0, such that problem
(1.3):
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(i) has no solution for α < α3;

(ii) if α = α3 there exists at least one solution;

(iii) for α3 < α < 0, there are at least two solutions, one of them is a minimal solution.

We refer to [15, 16, 21, 30] and references therein for more fractional problem with competing
nonlinearities.

For the problem (1.1), if u in the critical term is the positive part of u, the problem becomes
a nonlocal Dirichlet problem with asymmetric nonlinearities, that is{

(−∆)su = −α|u|q−2u + βu + γ(u+)2∗s −1 in Ω,

u = 0 in RN\Ω.
(1.4)

Miyagaki et al. [36] studied the existence of at least three nontrivial solutions for problem
(1.4). The corresponding local problem was studied by de Paiva and Presoto [37]. The study of
equations with critical exponent and asymmetric nonlinearities was initiated by De Figueiredo
and Yang [18] to investigate Ambrosetti–Prodi type problems involving critical growth. The
Ambrosetti–Prodi type problems have a strong physical meaning because it appears in quan-
tum mechanics models with asymmetric nonlinearities, see for instance [9, 11, 20, 28] and ref-
erences therein. It can be seen from [36, Theorem 6], the two constant sign solutions of (1.4)
are solutions for two corresponding auxiliary problems which are similar to problem (1.1). So
solution of the problem (1.1) is valuable to study the Ambrosetti–Prodi type problem.

Motivated by the above works, in this paper, we consider the existence of ground state
solutions of (1.1) which is affected by combined nonlinearities and linear perturbation. Our
first main result can be stated as follows.

Theorem 1.1. Let γ > 0, then there exists α1 > 0, such that for any α ∈ (0, α1), problem (1.1) has a
ground state solution umα , provided that

• N ⩾ 4s and 0 < β < λ1,s or

• N > 2s and β ⩾ λ1,s.

It is well known that ground state solutions have important applications. For instance,
to obtain the optimal constant in the Sobolev inequality and the interpolation estimates of
the Gagliardo–Nirenberg inequality. To possess a global solution of nonlinear Schrödinger
equation when L2-norm of the initial value is sufficiently small. To overcome the loss of com-
pactness when we consider some Schrödinger equation with potential and so on. There are
several ways to get the ground state solution. The one in Theorem 1.1 is found by looking for
the point at which infimum of the functional on Nehari manifold is attainable. Furthermore,
under the same assumptions, we show that the functional possesses mountain pass geometry.
By estimate of the minimax level, we have the following theorem.

Theorem 1.2. Assume that the hypotheses of Theorem 1.1 are satisfied, problem (1.1) has a mountain
pass ground state solution ucα .

It is observed that there are some differences between the cases α = 0 and α > 0. Indeed,
assume that 2s < N < 4s. In case of α = 0, the problem (1.1) translates into problem
(1.2). Servadei et al. [39] have showed that problem (1.2) has a nontrivial solution when β is
sufficiently large. If α > 0 is small enough, owing to influence of sublinear term, Theorem 1.1
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and Theorem 1.2 state that the problem (1.1) has solutions as long as β ⩾ λ1,s holds. Suppose
that N = 4s, the problem (1.1) has solutions for any β > 0, which is also different from
β ̸= λk,s, k = 1, 2, . . . when α = 0.

There are some similarities between the cases α < 0 and α > 0. Note that α < 0 in problem
(1.3), Barrios et al. [5] indicate that problem (1.3) has solutions when α is close to zero. For
problem (1.1), if α < 0 and β ⩾ λ1,s, then it is easy to verify that it has no nontrivial solution
since the corresponding Nehari manifold is empty, and it is unknown whether the Nehari
manifold is nonempty in the case 0 < β < λ1,s. Thus in the present paper we study the case
of α > 0. Even though the sign of sublinearity in problem (1.1) is opposite to that of problem
(1.3), Theorem 1.1 and 1.2 show that the problem (1.1) has ground state solution when α is
small enough.

It can be seen from the comparison above, Theorem 1.1 and 1.2 are not only effective sup-
plement to the main results of Barrios et al. [5], but also have some differences with Servadei
et al. [39]. To the best of our knowledge, these results are novel and meaningful.

Since the problem (1.1) is affected by sublinearity, linearity and critical superlinearity at
the same time, we have a different situation from (1.2) or (1.3). The minimax principle used
by Servadei et al. in [38–43] and the method of obtaining the minimal solution in [5] cannot
be applied directly to problem (1.1). Some other techniques and methods are used. In the
proof of Theorem 1.1, an abstract result for existence of constrained extrema is used. So it is
necessary to obtain that the infimum of the functional on the Nehari manifold is strictly less
than admissible threshold for the (PS) condition. To confirm this result, a crucial point is to
show a sufficiently small upper bound for the quotient

∥uε∥2 − β ∥uε∥2
2

∥uε∥2
2∗s

(1.5)

when ε > 0 is sufficiently small, and uε is given in [43]. The estimation of (1.5) in Lemma 3.1
is meticulous. In the proof of Theorem 1.2, due to influence of the sublinear term, it seems
impossible to prove that the functional has mountain pass geometry directly according to the
structures of the functional and the properties of Xs

0(Ω). We prove that 0 is the local minimum
point of the functional in a special subspace of Xs

0(Ω).
The organization of this paper is as follows: In Section 2, we introduce some notations and

preliminary lemmas which are needed later. Section 3 and Section 4 are devoted to the proof
of Theorems 1.1–1.2, respectively.

2 Preliminaries

In this section, we recall a few notions and results that will be used later on. Throughout the
paper, |A| denotes the N-dimensional Lebesgue measure of a measurable set A ⊂ RN , Lr(Ω)

is usual Lebesgue space endowed with the norm ∥ · ∥r for 1 ≤ r < ∞. We recall that the
Gagliardo seminorm of a measurable function u : RN → R is defined by

[u]s :=
(∫

R2N

|u(x)− u(y)|2
|x − y|N+2s dxdy

)1/2

provided the integral is finite. The fractional Sobolev space Hs (RN) is introduced in [19] as

Hs
(

RN
)

:=
{

u ∈ L2
(

RN
)

: [u]s < ∞
}
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endowed with the norm ∥u∥Hs =
(
∥u∥2

2 + [u]2s
)1/2 making it a Hilbert space. The relevant

space to problem (1.1) is the closed subspace of Hs(RN) given by

Xs
0(Ω) :=

{
u ∈ Hs(RN) : u = 0 a.e. in RN\Ω

}
,

this Hilbert space was introduced in [40] with the scalar product

⟨u, v⟩Xs
0(Ω) =

∫
R2N

(u(x)− u(y))(v(x)− v(y))
|x − y|N+2s dxdy

inducing the equivalent norm ∥ · ∥ = [·]s.
It is known from [19], the following embedding results hold true:

Xs
0(Ω) ↪→ Lv (Ω) compactly for any v ∈ [1, 2∗s ) ,

Xs
0(Ω) ↪→ L2∗s (Ω) continuously.

(2.1)

And the constant

Ss = inf
u∈Hs(RN)\{0}

∫
R2N

|u(x)−u(y)|2
|x−y|N+2s dxdy(∫

RN |u(x)|2∗s dx
)2/2∗s

(2.2)

is finite, by [14, Theorem 1.1] we know that Ss is attained by the function (1/∥ũ∥2∗s )ũ with
ũ(x) = (1 + |x|2)− N−2s

2 , x ∈ RN . For every ε > 0, we shall use the family of functions {Uε}
introduced in [43] as

Uε(x) = ε−
N−2s

2
1

∥ũ∥2∗s
ũ

(
x

εS1/(2s)
s

)
, x ∈ RN ,

which is a solution of problem (−∆)su = |u|2∗s −2u, in RN . Without loss of generality, we
suppose that 0 ∈ Ω, let us fix δ > 0 such that B4δ ⊂ Ω, and let η ∈ C∞(RN) be such that
0 ⩽ η ⩽ 1 in RN , η ≡ 1 in Bδ and η ≡ 0 in RN\B2δ, where Bδ = B(0, δ). We denote by uε the
following function

uε(x) = η(x)Uε(x). (2.3)

It is obvious that uε ∈ Xs
0(Ω), and the following estimates on the function uε were proved in

[43, Proposition 21 and 22],

∥uε∥2 ⩽ S
N
2s
s + O

(
εN−2s

)
, (2.4)

∥uε∥2∗s
2∗s

= S
N
2s
s + O

(
εN
)

, (2.5)

∥uε∥2
2 ⩾

{
Csε

2s + O
(
εN−2s) if N > 4s,

Csε
2s| log ε|+ O

(
ε2s) if N = 4s,

(2.6)

as ε → 0, for some positive constant Cs depending on s.
The Euler functional Iα : Xs

0(Ω) → R corresponding to problem (1.1) is given by

Iα(u) =
1
2

∫
R2N

(u(x)− u(y))2

|x − y|N+2s dxdy +
α

q

∫
Ω
|u|qdx − β

2

∫
Ω

u2dx − γ

2∗s

∫
Ω
|u|2∗s dx. (2.7)

It is easy to verify that Iα ∈ C1(Xs
0(Ω)) with〈

I ′
α(u), v

〉
= ⟨u, v⟩Xs

0(Ω) + α
∫

Ω
|u|q−2uvdx − β

∫
Ω

uvdx − γ
∫

Ω
|u|2∗s −2uvdx, (2.8)
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for v ∈ Xs
0(Ω). A direct computation shows that weak solution of (1.1) is critical point of Iα.

We say that the functional Iα satisfies the Palais–Smale ((PS) for short) condition at level
c ∈ R if any sequence {uj} ⊂ Xs

0(Ω) such that

Iα

(
uj
)
→ c (2.9)

and
sup

{∣∣〈I ′
α

(
uj
)

, φ
〉∣∣ : φ ∈ Xs

0(Ω), ∥φ∥ = 1
}
→ 0 as j → ∞ (2.10)

admits a subsequence which is convergent in Xs
0(Ω).

Now, we are ready to prove that the functional Iα satisfies the (PS) condition in a suitable
energy range involving the best fractional critical Sobolev constant Ss given in (2.2).

Lemma 2.1. Assume that 1 < q < 2, β and γ are positive constants, and α > 0. Then the functional
Iα satisfies the (PS) condition at any level c < s

N (Ss)
N
2s γ

2s−N
2s .

Proof. Let {uj} ⊂ Xs
0(Ω) be a (PS) sequence for Iα, first of all, we show the {uj} is bounded

in Xs
0(Ω). In fact, by (2.9) and (2.10), there is κ > 0 such that

∣∣Iα

(
uj
)∣∣ ≤ κ,

∣∣〈Iα
′ (uj

)
, uj
〉∣∣ ≤

κ
∥∥uj
∥∥. Taking into account that 1 < q < 2 < 2∗s , we have

κ
(
1 +

∥∥uj
∥∥) ⩾ Iα

(
uj
)
− 1

2
〈
I ′

α

(
uj
)

, uj
〉

= α

(
1
q
− 1

2

) ∫
Ω

∣∣uj(x)
∣∣q dx + γ

(
1
2
− 1

2∗s

) ∫
Ω

∣∣uj(x)
∣∣2∗s dx

⩾
γs
N
∥uj∥2∗s

2∗s
.

For κ := Nκ
γs > 0, hence,

∥uj∥2∗s
2∗s
⩽ κ

(
1 +

∥∥uj
∥∥) for j ∈ N. (2.11)

Thus, by the Hölder inequality and (2.11), we get∥∥uj
∥∥2

2 ⩽ |Ω| 2s
N
∥∥uj
∥∥2

2∗s
⩽ κ

2
2∗s |Ω| 2s

N
(
1 +

∥∥uj
∥∥) 2

2∗s ⩽ κ̂
(
1 +

∥∥uj
∥∥) (2.12)

with κ̂ := κ
2

2∗s |Ω| 2s
N . Thus, by (2.11) and (2.12) we conclude that

κ ⩾ Iα

(
uj
)
=

1
2
∥uj∥2 +

α

q

∫
Ω
|uj|qdx − β

2

∫
Ω

u2
j dx − γ

2∗s

∫
Ω
|uj|2

∗
s dx

⩾
1
2
∥uj∥2 − β

2

∫
Ω

u2
j dx − γ

2∗s

∫
Ω
|uj|2

∗
s dx

⩾
1
2
∥uj∥2 − (

β

2
κ̂ +

γ

2∗s
κ)
(
1 +

∥∥uj
∥∥) .

Hence, {uj} is bounded in Xs
0(Ω).

Consequently, passing to a subsequence if necessary, we may assume that

uj ⇀ u∞ in Xs
0(Ω), uj → u∞ in L2(Ω),

uj → u∞ in Lq(Ω) and uj → u∞ for a.e. x ∈ Ω with some u∞ ∈ Xs
0(Ω).

(2.13)

Next, we show that u∞ is a solution of (1.1) and Iα(u∞) ⩾ 0. Indeed, for any φ ∈ Xs
0(Ω), by

(2.1) and (2.13), we have that∫
Ω

∣∣uj(x)
∣∣2∗s −2 uj(x)φ(x)dx →

∫
Ω
|u∞(x)|2

∗
s −2 u∞(x)φ(x)dx, (2.14)
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and ∫
Ω

∣∣uj(x)
∣∣q−2 uj(x)φ(x)dx →

∫
Ω
|u∞(x)|q−2 u∞(x)φ(x)dx,∫

Ω
uj(x)φ(x)dx →

∫
Ω

u∞(x)φ(x)dx.
(2.15)

Thus, by (2.13), (2.14) and (2.15), we conclude that

⟨I ′
α

(
uj
)

, φ⟩ → ⟨I ′
α (u∞) , φ⟩.

In view of (2.10), we get
⟨I ′

α (u∞) , φ⟩ = 0, (2.16)

namely, u∞ is a solution of (1.1). Taking φ = u∞ as a test function in (2.16), we get

∥u∞∥2 = −α
∫

Ω
|u∞|qdx + β

∫
Ω

u2
∞dx + γ

∫
Ω
|u∞|2

∗
s dx,

then 1 < q < 2 < 2∗s implies that

Iα (u∞) = α

(
1
q
− 1

2

) ∫
Ω
|u∞(x)|q dx + γ

(
1
2
− 1

2∗s

) ∫
Ω
|u∞(x)|2

∗
s dx ⩾ 0. (2.17)

Finally, we show that {uj} converges to u∞ in Xs
0(Ω). Note that {uj} is bounded in Xs

0(Ω),
by (2.13), (2.1) and Brezis–Lieb lemma [7, Theorem 1], for p ∈ (1, 2∗s ], we have∫

Ω
|uj|pdx −

∫
Ω
|uj − u∞|pdx =

∫
Ω
|u∞|pdx + o(1) (2.18)

The boundedness of {uj} in Xs
0(Ω), (2.1), (2.10), (2.13), (2.16) and (2.18) imply that

o(1) = ⟨I ′
α

(
uj
)
− I ′

α (u∞) , uj − u∞⟩

= ∥uj − u∞∥2 + α
∫

Ω
(|uj|q−2uj − |u∞|q−2u∞)(uj − u∞)dx − β

∫
Ω
|uj − u∞|2dx

− γ
∫

Ω
(|uj|2

∗
s −2uj − |u∞|2

∗
s −2u∞)(uj − u∞)dx

= ∥uj − u∞∥2 + α
∫

Ω
|uj − u∞|qdx − β

∫
Ω
|uj − u∞|2dx − γ

∫
Ω
|uj − u∞|2

∗
s dx + o(1),

thus, by (2.13), we deduce that

∥uj − u∞∥2 − γ
∫

Ω
|uj − u∞|2

∗
s dx = o(1). (2.19)

Since the sequence {
∥∥uj
∥∥} is bounded, we may assume that

∥∥uj − u∞
∥∥2 → L as j → +∞, in

view of (2.19),
∫

Ω

∣∣uj(x)− u∞(x)
∣∣2∗s dx → L

γ as j → +∞. So taking into account (2.2), we get( L
γ

) 2
2∗s Ss ⩽ L, then L = 0 or L ⩾ (Ss)

N
2s γ

2s−N
2s . Assume that L ⩾ (Ss)

N
2s γ

2s−N
2s . Since uj ⇀ u∞, we

have
∥uj − u∞∥2 = ∥uj∥2 − ∥u∞∥2 + o(1). (2.20)

So (2.13), (2.20) and (2.18) yield

Iα(uj) =
1
2
∥uj∥2 +

α

q

∫
Ω
|uj|qdx − β

2

∫
Ω

u2
j dx − γ

2∗s

∫
Ω
|uj|2

∗
s dx

= Iα(u∞) +
1
2
∥uj − u∞∥2 − γ

2∗s

∫
Ω
|uj − u∞|2

∗
s dx + o(1).

(2.21)
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By (2.21), (2.19) and (2.17), we obtain

c = lim
j→∞

Iα

(
uj
)
= Iα (u∞) +

1
2

L − γ

2∗s

L
γ
⩾

s
N

L ⩾
s
N
(Ss)

N
2s γ

2s−N
2s

which contradicts the condition c < s
N (Ss)

N
2s γ

2s−N
2s . Thus L = 0, and so

∥∥uj − u∞
∥∥ → 0 as

j → +∞.

The manifold we are interested in this paper is the Nehari manifold associated with Iα(u),
given by

Nα :=
{

u ∈ Xs
0(Ω)\{0} :

〈
I ′

α(u), u
〉
= 0

}
.

First of all, we point out that Nα is not empty.

Lemma 2.2. Nα ̸= ∅. Precisely, for every u ∈ Xs
0(Ω)\{0}, then there exists a unique tu ∈ (0,+∞),

such that tuu ∈ Nα.

Proof. Fix u ∈ Xs
0(Ω)\{0}, we consider the function φ : [0,+∞) → R

φ(t) :=
〈
I ′

α(tu), tu
〉
= t2∥u∥2 + αtq

∫
Ω
|u|qdx − βt2

∫
Ω

u2dx − γt2∗s
∫

Ω
|u|2∗s dx = tqϕ(t),

where
ϕ(t) = α

∫
Ω
|u|qdx + t2−q(∥u∥2 − β

∫
Ω

u2dx)− γt2∗s −q
∫

Ω
|u|2∗s dx.

We have that ϕ ∈ C1([0,+∞)) with ϕ(0) = α
∫

Ω |u|qdx > 0 and limt→+∞ ϕ(t) = −∞. In the
case of 0 < β < λ1,s, we have ∥u∥2 − β

∫
Ω u2dx > 0, ϕ has a unique maximum point

t0 =

(
(2 − q)(∥u∥2 − β

∫
Ω u2dx)

(2∗s − q)γ
∫

Ω |u|2∗s dx

) 1
2∗s −2

,

ϕ increases on [0, t0) and decreases on (t0,+∞). In the case of β ⩾ λ1,s, we can get that
∥u∥2 − β

∫
Ω u2dx ⩽ 0 and ϕ decreases on [0,+∞). Thus there is only one zero point in

(0,+∞) to ϕ, namely, there exists a unique tu ∈ (0,+∞), such that tuu ∈ Nα.

The Nα is a natural constraint for the functional Iα, since every constrained critical point
of Iα on Nα is indeed a critical point of Iα. Precisely, the following result holds true.

Lemma 2.3. Iα is bounded from below on Nα. And u is a critical point of Iα constrained to Nα if and
only if u is a nontrivial critical point of Iα.

Proof. Notice that on Nα the functional Iα reads as follows

Iα(u) = α

(
1
q
− 1

2

) ∫
Ω
|u|qdx + γ

(
1
2
− 1

2∗s

) ∫
Ω
|u|2∗s dx,

thank to 1 < q < 2 < 2∗s , so that infu∈Nα
Iα(u) ⩾ 0.

It is obvious that every nontrivial critical point of Iα belongs to Nα. Let us show the
converse. In the sequel we will denote by Gα : Xs

0(Ω) → R, the functional given by

Gα(u) :=
〈
I ′

α(u), u
〉
= ∥u∥2 + α

∫
Ω
|u|qdx − β

∫
Ω

u2dx − γ
∫

Ω
|u|2∗s dx.
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It is easy to verify that Gα ∈ C1 (Xs
0(Ω)) and

〈
G′

α(u), u
〉
= 2∥u∥2 + qα

∫
Ω
|u|qdx − 2β

∫
Ω

u2dx − γ2∗s
∫

Ω
|u|2∗s dx,

so that, taking into account the definition of Nα, we have〈
G′

α(u), u
〉
= α(q − 2)

∫
Ω
|u|qdx + γ(2 − 2∗s )

∫
Ω
|u|2∗s dx < 0 for u ∈ Nα. (2.22)

Let u be a constrained critical point of Iα on Nα, namely u ∈ Nα and

I ′
α(u) = ηG′

α(u) (2.23)

for some η ∈ R. Note that (2.23) yields〈
I ′

α(u), u
〉
= η

〈
G′

α(u), u
〉

. (2.24)

Taking into account the fact that u ∈ Nα and (2.22), by (2.24) we deduce that η = 0. Hence,
again by (2.23), we get I ′

α(u) = 0.

We say that the functional Iα constrained on Nα satisfies the (PS) condition at level c ∈ R

if any sequence
{

uj
}
⊂ Nα such that (2.9) holds and there exists

{
ηj
}
⊂ R with

sup
{∣∣〈I ′

α

(
uj
)
− ηjG′

α

(
uj
)

, φ
〉∣∣ : φ ∈ Xs

0(Ω), ∥φ∥ = 1
}
→ 0 (2.25)

as j → +∞ admits a subsequence which is convergent in Xs
0(Ω).

By Lemma 2.1 we know that the functional Iα satisfies the (PS) condition at level c <
s
N (Ss)

N
2s γ

2s−N
2s . Now, we are ready to show that the functional Iα constrained on Nα satisfies

the (PS) condition at the same level.

Lemma 2.4. Assume that 1 < q < 2, β and γ are positive constants, and α > 0. Then the functional
Iα constrained on Nα satisfies the (PS) condition at any level c < s

N (Ss)
N
2s γ

2s−N
2s .

Proof. Let
{

uj
}
⊂ Nα be a sequence such that (2.9) holds and there exists

{
ηj
}
⊂ R for which

(2.25) is satisfied. First of all, we claim that
{

uj
}

is bounded in Lq(Ω) and L2∗s (Ω). Indeed, by
(2.9) there exists a positive constant M such that∣∣Iα

(
uj
)∣∣ ⩽ M, (2.26)

for any j ∈ N. By (2.26) and the fact that uj ∈ Nα, we obtain that

M ⩾ Iα

(
uj
)

= Iα

(
uj
)
− 1

2
〈
I ′

α

(
uj
)

, uj
〉

= α

(
1
q
− 1

2

) ∫
Ω
|uj|qdx + γ

(
1
2
− 1

2∗s

) ∫
Ω
|uj|2

∗
s dx,

thus {uj} is bounded in Lq(Ω) and L2∗s (Ω). Hence, taking into account (2.22), we conclude that
{
〈

G′
α

(
uj
)

, uj
〉
} is bounded in R and there exists θ ∈ (−∞, 0] such that, up to a subsequence〈

G′
α

(
uj
)

, uj
〉
→ θ, as j → ∞. (2.27)
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Now, suppose that θ < 0. Then, by (2.25), the fact that uj ∈ Nα and (2.27) we deduce that
ηj → 0 as j → ∞. Hence, again by (2.25) we obtain that (2.10) holds. So, {uj} ⊂ Nα is a PS
sequence for the functional Iα, the assertion of Lemma 2.4 follows from Lemma 2.1.

Finally, suppose that θ = 0. By (2.22) and (2.27) we get that∫
Ω
|uj|qdx → 0 and

∫
Ω
|uj|2

∗
s dx → 0, as j → ∞,

since uj ∈ Nα, we get that ∥uj∥ → 0 as j → ∞. Thus, uj → 0 in Xs
0(Ω) as j → ∞.

In order to obtain a ground state solution of (1.1), here we will use a theory which is
introduced by Ambrosetti and Malchiodi in [2, Theorem 7.12].

Lemma 2.5. Let E be a Banach space and J ∈ C1,1(E, R). If there exist G ∈ C1,1(E, R) such that
M = G−1(0) with G′(u) ̸= 0 for any u ∈ M. Moreover, suppose that J is bounded from below on M
and satisfies (PS)m condition, where

m := inf
u∈M

J(u) > −∞.

Then the infimum m is achieved. Precisely, there is z ∈ M such that J(z) = m and ∇M J(z) = 0.

3 Proof of Theorem 1.1

In order to show that the equation (1.1) has a ground state solution, it suffices to verify that
the infimum of Iα on Nα is attainable, in which the estimation of the energy of Iα on Nα is
essential. Now, we have the following result.

Lemma 3.1. Suppose that γ > 0, Then there exists α1 > 0, such that for any α ∈ (0, α1), there holds
the estimate

inf
u∈Nα

Iα(u) <
s
N

(Ss)
N
2s γ

2s−N
2s , (3.1)

provided that

• N ⩾ 4s and 0 < β < λ1,s, or

• N > 2s and β ⩾ λ1,s.

Proof. In order to prove (3.1) it is enough to show that there exists u0 ∈ Nα such that

Iα(u0) <
s
N

(Ss)
N
2s γ

2s−N
2s . (3.2)

Firstly, let us consider the case 0 < β < λ1,s. Let ε > 0 and uε be as in (2.3). By Lemma 2.2
there exists tε > 0 such that tεuε ∈ Nα, namely, that is

〈
I ′

α (tεuε) , tεuε

〉
= αtq

ε

∫
Ω
|uε|qdx + t2

ε

(
∥uε∥2 − β

∫
Ω

u2
ε dx
)
− γt2∗s

ε

∫
Ω
|uε|2

∗
s dx = 0. (3.3)

Then, in view of 0 < β < λ1,s and (2.4), we obtain that

0 < ∥uε∥2 − β
∫

Ω
u2

ε dx ⩽ ∥uε∥2 ⩽ S
N
2s
s + O(εN−2s). (3.4)
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It follows from Hölder’s inequality and (2.5) that

0 <
∫

Ω
|uε|qdx ⩽ |Ω|

2∗s −q
2∗s ∥uε∥q

2∗s
⩽ |Ω|

2∗s −q
2∗s

(
S

N
2s
s + O

(
εN
)) q

2∗s
. (3.5)

So (3.4) and (3.5) imply that there exists K > 0 and ε0 > 0 such that

sup
ε∈(0,ε0)

max
{∫

Ω
|uε|qdx, ∥uε∥2 − β

∫
Ω

u2
ε dx,

∫
Ω
|uε|2

∗
s dx
}
⩽ K. (3.6)

Thank to 1 < q < 2 < 2∗s , by (3.3) and (3.6) we conclude that there exists t0 > 0 such that

tε ∈ (0, t0) for ε ∈ (0, ε0). (3.7)

Let the function f : [0,+∞) → R given by

f (t) :=
1
2

t2
(
∥uε∥2 − β

∫
Ω

u2
ε dx
)
− γ

2∗s
t2∗s
∫

Ω
|uε|2

∗
s dx,

then f admits the maximum point

tmax =

(
∥uε∥2 − β

∫
Ω u2

ε dx
γ
∫

Ω |uε|2∗s dx

) 1
2∗s −2

with the maximum value

f (tmax) =
s
N

γ
2s−N

2s

(
∥uε∥2 − β∥uε∥2

2

∥uε∥2
2∗s

) N
2s

. (3.8)

We note that

Iα(tεuε) =
α

q
tq
ε

∫
Ω
|uε|qdx +

1
2

t2
ε

(
∥uε∥2 − β

∫
Ω

u2
ε dx
)
− γ

2∗s
t2∗s
ε

∫
Ω
|uε|2

∗
s dx. (3.9)

From (3.9) and (3.8) it turns out

Iα(tεuε) ⩽
α

q
tq
ε

∫
Ω
|uε|qdx +

s
N

γ
2s−N

2s

(
∥uε∥2 − β∥uε∥2

2

∥uε∥2
2∗s

) N
2s

. (3.10)

Suppose that N > 4s, in view of (2.4)–(2.6), and by using the mean value theorem for the
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function (1 + t)
N−2s

N , we find that

∥uε∥2 − β ∥uε∥2
2

∥uε∥2
2∗s

⩽

(
S

N
2s
s + O

(
εN−2s))− β

(
Csε

2s + O
(
εN−2s))

(
S

N
2s
s + O (εN)

) N−2s
N

= Ss +

S
N
2s
s

(
1 −

(
1 + S− N

2s
s O

(
εN)) N−2s

N
)
+ O

(
εN−2s)

(
S

N
2s
s + O (εN)

) N−2s
N

− ε2s β
(
Cs + O

(
εN−4s))(

S
N
2s
s + O (εN)

) N−2s
N

= Ss +
O
(
εN)+ O

(
εN−2s)(

S
N
2s
s + O (εN)

) N−2s
N

− ε2s β
(
Cs + O

(
εN−4s))(

S
N
2s
s + O (εN)

) N−2s
N

< Ss

(3.11)

with ε > 0 sufficiently small. Now assume that N = 4s, in this case, by (2.4)–(2.6), we get

∥uε∥2 − β ∥uε∥2
2

∥uε∥2
2∗s

⩽

(
S2

s + O
(
ε2s))− β

(
Csε

2s| log ε|+ O
(
ε2s))

(S2
s + O (ε4s))

1
2

= Ss + ε2s
(
O
(
ε2s)+ O(1)

)
− β (Cs| log ε|+ O(1))

(S2
s + O (ε4s))

1
2

< Ss

(3.12)

when ε > 0 is small enough, since | log ε| → +∞ as ε → 0.
So we can choose ε > 0 sufficiently small such that (3.11), (3.12) and ε < ε0 hold. For this

ε, let N ⩾ 4s, u0 = tεuε. By (3.6), (3.7) and (3.10), then there is α4 > 0, if 0 < α < α4, such that
(3.2) holds.

Secondly, in the case of β ⩾ λ1,s. Fix u ∈ Xs
0(Ω)\{0}, by Lemma 2.2, there exists a unique

tu ∈ (0,+∞), such that 〈
I ′

α (tuu) , tuu
〉
= 0, (3.13)

Hölder inequality and (3.13) imply that

γt2∗s
u

∫
Ω
|u|2∗s dx ⩽ αtq

u

∫
Ω
|u|qdx ⩽ α|Ω|

2∗s −q
2∗s tq

u∥u∥q
2∗s

,

thus

tu ⩽
(

α

γ

) 1
2∗s −q |Ω|

1
2∗s

∥u∥2∗s
. (3.14)

Hence, by the fact that β ⩾ λ1,s, (3.14) and Hölder’s inequality we conclude that

Iα(tuu) ⩽
α

q
tq
u

∫
Ω
|u|qdx ⩽

α

q

(
α

γ

) q
2∗s −q |Ω|

q
2∗s

∥u∥q
2∗s

|Ω|
2∗s −q

2∗s ∥u∥q
2∗s

=
α

2∗s
2∗s −q

qγ
q

2∗s −q
|Ω|
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So we choose u0 = tuu, there exists α5 > 0 such that (3.2) holds provided that 0 < α < α5.
Let α1 = min{α4, α5}, Assume N ⩾ 4s and 0 < β < λ1,s, or N > 2s and β ⩾ λ1,s. Then

there exists u0 ∈ Nα, if α ∈ (0, α1), such that (3.2) holds.

Finally we are ready to apply the above lemmas to prove the first main result.

Proof of Theorem 1.1. Taking into account the definitions of Iα and Nα, it is easy to verify
that Iα, Gα ∈ C1,1(Xs

0(Ω)), whose proof is similar to that of [22, 8.5.2 Theorem 3]. Lemma 2.3
imply that

Nα = G−1
α (0),

〈
G′

α(u), u
〉
< 0 for u ∈ Nα and inf

u∈Nα

Iα(u) ⩾ 0.

By Lemma 3.1, we know that there exists α1 > 0 such that

mα := inf
u∈Nα

Iα(u) <
s
N

(Ss)
N
2s γ

2s−N
2s

for α ∈ (0, α1) provided that N ⩾ 4s and 0 < β < λ1,s, or N > 2s and β ⩾ λ1,s. In view of
Lemma 2.4, we deduce that the functional Iα constrained on Nα satisfies the (PS)mα condition.
According to Lemma 2.5, let E and M be Xs

0(Ω) and Nα respectively, then there exists umα ∈
Nα such that

Iα(umα) = mα and I ′
α|Nα

(umα) = 0.

Moreover, Lemma 2.3 implies that I ′
α(umα) = 0, thus umα is a ground state solution of problem

(1.1).

4 Proof of Theorem 1.2

Proof. We first prove that the functional Iα has mountain pass geometry when the conditions
of Theorem 1.1 are satisfied. Let α1 > 0 be given in Theorem 1.1, it suffices to show that the
following assertions hold provided that 0 < α < α1.

(i) there are ρ, r > 0 such that for u ∈ Xs
0(Ω) with ∥u∥ = ρ, we have Iα(u) ⩾ r.

(ii) there exists e ∈ Xs
0(Ω) such that ∥e∥ > ρ and Iα(e) < 0.

We claim that u ≡ 0 is a strict local minimizer of the functional Iα. In virtue of [31,
Theorem 1.1], it suffices to prove this claim in the space C0

s (Ω̄) ∩ Xs
0(Ω), where

C0
s (Ω̄) =

{
w ∈ C0(Ω̄) : ∥w∥C0

s
:=
∥∥∥w

δs

∥∥∥
L∞

< ∞
}

with δ(x) := dist(x, ∂Ω). Notice that supx∈Ω δ(x) ⩽ diam(Ω), then for any u ∈ C0
s (Ω̄)∩Xs

0(Ω)

we have that ∫
Ω

u2dx =
∫

Ω

(
|u|
δs

)2−q

(δs)2−q |u|qdx ≤ C1∥u∥2−q
C0

s

∫
Ω
|u|qdx (4.1)

and ∫
Ω
|u|2∗s dx =

∫
Ω

(
|u|
δs

)2∗s −q

(δs)2∗s −q |u|qdx ≤ C2∥u∥2∗s −q
C0

s

∫
Ω
|u|qdx (4.2)

with positive constants C1 and C2. From (4.1) and (4.2) we obtain

Iα(u) ≥
1
2
∥u∥2 +

(
α

q
− βC1

2
∥u∥2−q

C0
s

− γC2

2∗s
∥u∥2∗s −q

C0
s

) ∫
Ω
|u|qdx. (4.3)
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Since β and γ are positive constants and 1 < q < 2 < 2∗s , by (4.3) we deduce that u ≡ 0 is a
strict local minimizer of Iα in C0

s (Ω̄) ∩ Xs
0(Ω) for any α > 0. Thus the assertion (i) holds.

Next, we show that the assertion (ii) is true. Let umα be the ground state solution obtained
in Theorem 1.1. For t > 0, we have

Iα(tumα) =
t2

2
(∥umα∥2 − β

∫
Ω

u2
mα

dx) +
α

q
tq
∫

Ω
|umα |qdx − γ

2∗s
t2∗s
∫

Ω
|umα |2

∗
s dx. (4.4)

For any α ∈ (0, α1), thanks to 1 < q < 2 < 2∗s and (4.4), there is t0 ∈ (0,+∞) sufficiently
large such that ∥t0umα∥ > ρ and Iα(t0umα) < 0. So we complete the proof of (ii) by choosing
e = t0umα .

Set the minimax value
cα := inf

h∈Γ
max
t∈[0,1]

Iα(h(t)),

where
Γ = {h ∈ C ([0, 1], Xs

0(Ω)) : h(0) = 0 and h(1) = e}

where e = t0umα is given in (ii). By Lemma 2.2 and Lemma 3.1, we have that

cα ⩽ max
t∈[0,t0]

Iα (tumα) = Iα (umα) <
s
N

(Ss)
N
2s γ

2s−N
2s .

So, the functional Iα possesses mountain path geometry, by Lemma 2.1, the functional Iα

satisfies the (PS) condition at the level cα. Therefore, in view of the Mountain Pass theorem,
we conclude that cα is a critical value of Iα. According to (i), we have cα ⩾ r > 0, even
it is obvious that cα = Iα (umα). Hence problem (1.1) has a ground state solution ucα with
Iα(ucα) = cα.
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