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Abstract. In this paper, we offer new technique for investigation of the even order linear
differential equations of the form

y(n)(t) = p(t)y(τ(t)). (E)

We establish new criteria for bounded and unbounded oscillation of (E) which improve
a number of related ones in the literature. Our approach essentially involves estab-
lishing stronger monotonicities for the positive solutions of (E) than those presented
in known works. We illustrate the improvement over known results by applying and
comparing our technique with the other known methods on the particular examples.
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1 Introduction

We consider the general higher order differential equation with deviating argument

y(n)(t) = p(t)y(τ(t)). (E)

Throughout the paper, it is assumed that n is even and the following conditions hold

(H1) p(t) ∈ C1([t0, ∞)), p(t) > 0,

(H2) τ(t) ∈ C1([t0, ∞)), τ′(t) > 0, limt→∞ τ(t) = ∞.

By a proper solution of Eq. (E) we mean a function y : [Ty, ∞) → R which satisfies (E)
for all sufficiently large t and sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty. We make the standing
hypothesis that (E) does possess proper solutions.
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As is customary, a proper solution y(t) of (E) is said to be oscillatory if it has arbitrarily
large zeros. Otherwise, it is said to be nonoscillatory. The equation itself is termed oscillatory
if all its proper solutions oscillate.

Oscillation phenomena appear in different models from real world applications; see, for
instance, the papers [15–17] for models from mathematical biology where oscillation and/or
delay actions may be formulated by means of cross-diffusion terms. The problem of estab-
lishing oscillation criteria for differential equations with deviating arguments has been a very
active research area over the past decades (see [1]–[18]) and several references and reviews of
known results can be found in the monographs by Agarwal et al. [1], Došlý and Rehák [5]
and Ladde et al. [18].

It is known that the set N of all nonoscillatory solutions of (E) has the following decom-
position

N = N0 ∪N2 ∪ · · · ∪ Nn,

where y(t) ∈ Nℓ means that there exists t0 ≥ Ty such that

y(t)y(i)(t) > 0 on [t0, ∞) for 0 ≤ i ≤ ℓ,

(−1)iy(t)y(i)(t) > 0 on [t0, ∞) for ℓ ≤ i ≤ n.
(1.1)

Such a y(t) is said to be a solution of degree ℓ.
Following Kiguradze [7], we say that equation (E) enjoys property (B) if N = N0 ∪Nn. The

reason for such definition is the observation that (E) with τ(t) ≡ t always possesses solutions
of degrees 0 and n, that is N0 ̸= ∅ and Nn ̸= ∅. The situation when τ(t) ̸≡ t is different. In
fact, it may happen that N0 = ∅ or Nn = ∅ when the deviation |t − τ(t)| is sufficiently large.
This remarkable fact was first observed by Ladas et al. [18]. Later Koplatadze and Chanturia
[11] have shown that (E) does not allow solutions of degree 0 if τ(t) ≤ t and

lim sup
t→∞

∫ t

τ(t)
(s − τ(t))n−1 p(s)ds > (n − 1)! (1.2)

and (E) does not allow solutions of degree n provided that τ(t) ≥ t and

lim sup
t→∞

∫ τ(t)

t
(τ(t)− s)n−1 p(s)ds > (n − 1)!. (1.3)

On the other hand, Koplatadze et al. [12] proved that (E) enjoys property (B) if τ(t) ≤ t and

lim sup
t→∞

{
τ(t)

∫ ∞

t
sn−3τ(s)p(s)ds +

∫ t

τ(t)
s(τ(s))n−2 p(s)ds

+
1

τ(t)

∫ τ(t)

0
s2(τ(s))n−2 p(s)ds

}
> 2(n − 2)! (1.4)

or τ(t) ≥ t and

lim sup
t→∞

{
τ(t)

∫ ∞

t
sn−3τ(s)p(s)ds +

∫ τ(t)

t
sn−2τ(s)p(s)ds

+
1

τ(t)

∫ t

0
sn−2(τ(s))2 p(s)ds

}
> 2(n − 2)!. (1.5)

Therefore conditions (1.2)–(1.5) yield stronger asymptotic behavior than property (B) claims,
namely (1.3) together with (1.5) guarantees that N = N0 for (E) with τ(t) ≥ t, i.e., every
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unbounded solution is oscillatory, while (1.2) together with (1.4) are sufficient for N = Nn for
(E) with τ(t) ≤ t, i.e., roughly speaking every bounded solution is oscillatory.

In this paper, we establish new technique that essentially improves (1.2) and (1.3), which
leads to qualitative better criteria for bounded or unbounded oscillation of (E). Our approach
essentially involves establishing stronger monotonicities for the positive solutions of (E) than
those presented in known works.

2 Main results

Now we are introduce new monotonicity for nonoscillatory solution y(t) ∈ N0 of (E).

Lemma 2.1. Assume that y(t) ∈ N0 and∫ ∞

t0

p(s)sn−1 ds = ∞. (2.1)

Then limt→∞ y(t) = 0.

Proof. Assume on the contrary that y(t) is an eventually positive solution of (E) such that
y(t) ∈ N0, and limt→∞ y(t) = ℓ > 0. Then y(τ(t)) > ℓ, eventually, let us say for t ≥ t1. An
integration of (E) from t to ∞ yields

−y(n−1)(t) ≥
∫ ∞

t
p(s)y(τ(s))ds ≥ ℓ

∫ ∞

t
p(s)ds.

Integrating again from t to ∞ and changing the order of integration, we have

y(n−2)(t) ≥ ℓ
∫ ∞

t

∫ ∞

u
p(s)ds du = ℓ

∫ ∞

t
p(s)(s − t)ds.

Repeating this procedure, we are led to

y(t1) ≥ ℓ
∫ ∞

t1

p(s)(s − t1)
n−1

(n − 1)!
ds, (2.2)

where the last integration was from t1 to ∞. Condition (2.2) contradicts (2.1) and we conclude
that y(t) → 0 as t → ∞.

Corollary 2.2. For y(t) ∈ N0, it follows from y(t) → 0 as t → ∞ that y′(t) → 0, y′′(t) →
0, . . . , y(n−1)(t) → 0 as t → ∞.

To simplify our notation we introduce the following couple of functions

α0(t) = − p′(t)
p(t)

+ τ′(t)
∫ t

τ(t)
p(s)

(s − τ(t))n−2

(n − 2)!
ds,

β′
0(t) = α0(t).

Theorem 2.3. Let y(t) ∈ N0, τ(t) ≤ t and (2.1) hold. Then

|y(τ(t))|p(t)eβ0(t) is decreasing.
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Proof. Assume that y(t) ∈ N0 is an eventually positive solution of (E). It follows from (E) that

y(n+1)(t) = p′(t)y(τ(t)) + p(t)y′(τ(t))τ′(t). (2.3)

In view of Corollary 2.2, an integration of (E) from t to ∞ yields

−y(n−1)(t) =
∫ ∞

t
p(s)y(τ(s))ds.

Integrating again from t to ∞ and changing the order of integration, we have

y(n−2)(t) =
∫ ∞

t

∫ ∞

u
p(s)y(τ(s))ds ds =

∫ ∞

t
p(s)y(τ(s))(s − t)ds.

Repeated reusing of this procedure yields

−y′(t) =
∫ ∞

t
p(s)y(τ(s))

(s − t)n−2

(n − 2)!
ds.

Since y(τ(t)) is decreasing, this implies

−y′(τ(t)) =
∫ ∞

τ(t)
p(s)y(τ(s))

(s − τ(t))n−2

(n − 2)!
ds

≥
∫ t

τ(t)
p(s)y(τ(s))

(s − τ(t))n−2

(n − 2)!
ds

≥ y(τ(t))
∫ t

τ(t)
p(s)

(s − τ(t))n−2

(n − 2)!
ds.

(2.4)

Setting (2.4) into (2.3) and taking (E) into account, one gets

y(n+1)(t) ≤ y(τ(t))
[

p′(t)− p(t)τ′(t)
∫ t

τ(t)
p(s)

(s − τ(t))n−2

(n − 2)!
ds

]
= y(n)(t)

[
p′(t)
p(t)

− τ′(t)
∫ t

τ(t)
p(s)

(s − τ(t))n−2

(n − 2)!
ds

]
.

Therefore
y(n+1)(t) + α0(t)y(n)(t) ≤ 0

which means that (
eβ0(t)y(n)(t)

)′
≤ 0

and we conclude that eβ0(t)y(n)(t) is decreasing, which is, in view of (E), equivalent to the fact
that p(t)y(τ(t))eβ0(t) is decreasing.

Employing the above-mentioned monotonicity we are prepared to present criterion for
bounded oscillation of (E).

Theorem 2.4. Assume that (2.1) holds, τ(t) ≤ t, and

lim sup
t→∞

p(t)eβ0(t)
∫ t

τ(t)
e−β0(s)(s − τ(t))n−1 ds > (n − 1)!. (2.5)

Then N0 = ∅. If in addition (1.4) holds, then all nonoscillatory solutions of (E) are of degree n, i.e.,
N = Nn.
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Proof. We argue by contradiction. Assume that (E) possesses an eventually positive solution
y(t) ∈ N0. Integrating (E) from u to t (u ≤ t) and using the monotonicity of p(t)y(τ(t))eβ0(t),
we have

−y(n−1)(u) ≥
∫ t

u
p(s)y(τ(s))ds ≥ y(τ(t))p(t)eβ0(t)

∫ t

u
e−β0(s) ds.

Integrating the above inequality from u to t and changing the order of integration leads to

y(n−2)(u) ≥ y(τ(t))p(t)eβ0(t)
∫ t

u

∫ t

x
e−β0(s) ds dx

= y(τ(t))p(t)eβ0(t)
∫ t

u
e−β0(s)(s − u)ds.

(2.6)

Proceeding in the same way (n − 2)-times, we finally get

y(u) ≥ y(τ(t))p(t)eβ0(t)
∫ t

u
e−β0(s) (s − u)n−1

(n − 1)!
ds.

Setting u = τ(t), we obtain

y(τ(t)) ≥ y(τ(t))p(t)eβ0(t)
∫ t

τ(t)
e−β0(s) (s − τ(t))n−1

(n − 1)!
ds

which is contraction with (2.5) and we conclude, that class N0 is empty. Moreover, thanks to
(1.4) every nonoscillatory solution of (E) is of degree n.

Example 2.5. Consider the delay differential equation

y(n)(t) = p0y(t − τ), p0 > 0, τ > 0. (Ex1)

It is easy to see that (1.4) holds true. Since α0(t) =
p0

(n−1)! τ
n−1 = ω and β0(t) = ωt, condition

(2.5) takes the form

lim
t→∞

p0eωt
∫ t

t−τ
e−ωs (s − t + τ)n−1

(n − 1)!
ds > 1 (2.7)

which after substitution s − t + τ = x reduces to
p0

(n − 1)!
eωτ

∫ τ

0
e−ωxxn−1 ds > 1.

Let us denote
I(n) = eωτ

∫ τ

0
e−ωxxn−1 ds.

Then

I(n) = −τn−1

ω
+

n − 1
ω

I(n − 1), I(1) = − 1
ω

+
eωτ

ω
which implies

I(n) =
(n − 1)!eωτ

ωn − τn−1

ω
− (n − 1)τn−2

ω2 − · · · − (n − 1)!
ωn .

Therefore, (2.7) is equivalent to

p0

(n − 1)!

[
(n − 1)!eωτ

ωn − τn−1

ω
− (n − 1)τn−2

ω2 − · · · − (n − 1)!
ωn

]
> 1. (2.8)

By Theorem 2.4 condition (2.8) guarantees that every nonoscillatory solution of (E) is of degree

n or in other words, every bounded solution of (E) is oscillatory. If p0 =
(π(4k+1−(−1)n/2)

2τ

)n

where k is a positive integer such that (2.8) holds, then a bounded oscillatory solution of (E)
is y(t) = sin( n

√
p0)t.
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Example 2.6. We consider the delayed Euler differential equation

y(n)(t) =
p0

tn y(λt), p0 > 0, λ ∈ (0, 1). (Ex2)

It is easy to see that (1.4) reduces to

p0
(
λ2 − λn−2 ln λ + λn−3) > 2(n − 2)!. (2.9)

On the other hand,

α0(t) =
1
t

[
p0(1 − λ)n−1

(n − 1)!
+ n

]
.

Using notation
p0(1 − λ)n−1

(n − 1)!
+ n = δ0,

we obtain
β0(t) = δ0 ln t.

Therefore (2.5) is equivalent to

lim sup
t→∞

p0tδ0−n

(n − 1)!

∫ t

λt

(s − λt)n−1

sδ0
ds > 1.

Since ∫ t

λt

(s − λt)n−1

sδ0
ds =

n−1

∑
i=0

(n − 1)!(−λt)isn−δ0−i

(n − 1 − i)! i! (n − δ0 − i)

∣∣∣∣∣
t

λt

,

condition (2.5) takes the form

p0

n−1

∑
i=0

(−1)i λi − λn−δ0

(n − 1 − i)! i! (n − δ0 − i)
> 1 (2.10)

which guarantees that N0 = ∅ for (Ex2). If in addition (2.9) holds, then every nonoscillatory
solution of (Ex2) is of degree n.

For n = 2 (n = 4) and λ = 0.5 condition (2.10) is satisfied when

p0 > 3.3198 (p0 > 135.77)

while (1.2) requires p0 > 5.1774 (p0 > 226.58). So our progress is significant.

Now we turn our attention to bounded oscillation of (E). We set

αn(t) =
p′(t)
p(t)

+ τ′(t)
∫ τ(t)

t
p(s)

(τ(t)− s)n−2

(n − 2)!
ds,

β′
n(t) = αn(t).

Theorem 2.7. Let y(t) ∈ Nn, τ(t) ≥ t. Then

|y(τ(t))|p(t)e−βn(t) is increasing.
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Proof. Assume that y(t) ∈ Nn is an eventually positive solution of (E). An integration of (E)
from t1 to t yields

y(n−1)(t) ≥
∫ t

t1

p(s)y(τ(s))ds.

Integrating the last inequality from t1 to t and and changing the order of integration, we
obtain

y(n−2)(t) ≥
∫ t

t1

∫ u

t1

p(s)y(τ(s))ds du =
∫ t

t1

p(s)y(τ(s))(t − s)ds.

Repeating this procedure, we have

y′(t) ≥
∫ t

t1

p(s)y(τ(s))
(t − s)n−2

(n − 2)!
ds.

Consequently,

y′(τ(t)) ≥
∫ τ(t)

t
p(s)y(τ(s))

(τ(t)− s)n−2

(n − 2)!
ds

≥ y(τ(t))
∫ τ(t)

t
p(s)

(τ(t)− s)n−2

(n − 2)!
ds,

(2.11)

where we have used that y(τ(t)) is increasing. By combining inequalities (2.3) and (2.11), we
conclude that

y(n+1)(t) ≥ y(τ(t))
[

p′(t) + p(t)τ′(t)
∫ τ(t)

t
p(s)

(τ(t)− s)n−2

(n − 2)!
ds

]
which in view of (E) implies

y(n+1)(t) ≥ y(n)(t)
[

p′(t)
p(t)

+ τ′(t)
∫ τ(t)

t
p(s)

(τ(t)− s)n−2

(n − 2)!
ds

]
,

that is
y(n+1)(t)− αn(t)y(n)(t) ≥ 0.

Consequently, (
e−βn(t)y(n)(t)

)′
≥ 0

and we conclude that e−βn(t)y(n)(t) is increasing, which is in view of (E) means that
p(t)y(τ(t))e−βn(t) is increasing function. The proof is completed.

We use the above-mentioned monotonicity to establish criterion for unbounded oscillation
of (E).

Theorem 2.8. Let τ(t) ≥ t and

lim sup
t→∞

p(t)e−βn(t)
∫ τ(t)

t
eβn(s)(τ(t)− s)n−1 ds > (n − 1)!, (2.12)

then Nn = ∅. If in addition (1.5) holds, then all nonoscillatory solutions of (E) are of degree 0, i.e.,
N = N0.
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Proof. Assume on the contrary that (E) possesses an eventually positive solution y(t) ∈ Nn.
Integrating (E) from t to u (t ≤ u) and using the monotonicity of p(t)y(τ(t))e−βn(t), we have

y(n−1)(u) ≥ y(τ(t))p(t)e−βn(t)
∫ u

t
eβn(s) ds.

Integrating again from t to u and changing order of integration, we get

y(n−2)(u) ≥ y(τ(t))p(t)e−βn(t)
∫ u

t

∫ x

t
eβn(s) ds dx

= y(τ(t))p(t)e−βn(t)
∫ u

t
eβn(s)(u − s)ds.

(2.13)

Proceeding in the same way (n − 2)-times, we finally obtain

y(u) ≥ y(τ(t))p(t)e−βn(t)
∫ u

t
eβn(s) (u − s)n−1

(n − 1)!
ds.

Setting u = τ(t), we have

y(τ(t)) ≥ y(τ(t))p(t)e−βn(t)
∫ τ(t)

t
eβn(s) (τ(t)− s)n−1

(n − 1)!
ds.

This contradiction establishes the desired result and the proof is completed.

Example 2.9. Consider the advanced differential equation

y(n)(t) = p0y(t + τ), p0 > 0, τ > 0. (Ex3)

It is easy to see that (1.5) holds, αn(t) = p0
(n−1)! τ

n−1 = ω and βn(t) = ωt. Condition (2.12)
yields

lim
t→∞

p0e−ωt
∫ t+τ

t
eωs (t + τ − s)n−1

(n − 1)!
ds > 1. (2.14)

Employing substitution t + τ − s = x, one gets

p0

(n − 1)!
eωτ

∫ τ

0
e−ωxxn−1 ds > 1.

Proceeding exactly as in Example 2.5 we are led to (2.8) which by Theorem 2.8 ensures that
every nonoscillatory solution of (Ex3) is of degree 0 or in other words, every unbounded
solution (if exists) of (Ex3) is oscillatory.

Example 2.10. We consider the advanced Euler differential equation

y(n)(t) =
p0

tn y(λt), p0 > 0, λ > 1. (Ex4)

Simple calculation shows that (1.5) reduces to

p0λ (2 + ln λ) > 2(n − 2)! (2.15)

and

αn(t) =
1
t

[
p0(λ − 1)n−1

(n − 1)!
− n

]
.
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Les us denote
p0(λ − 1)n−1

(n − 1)!
− n = δn > 0,

Then
βn = δn ln t.

Therefore (2.12) is equivalent to

lim sup
t→∞

p0t−δn−n

(n − 1)!

∫ λt

t
sδn(λt − s)n−1 ds > 1.

On the other hand, as

∫ λt

t

(λt − s)n−1

s−δn
ds = −

n−1

∑
i=0

(n − 1)!(−λt)isn+δn−i

(n − 1 − i) !i !(n + δn − 1)

∣∣∣∣∣
λt

t

condition (2.12), which guaranties Nn = ∅ for equation (Ex4), takes the form

p0

n−1

∑
i=0

(−1)i+1 λn+δn − λi

(n − 1 − i)! i! (n + δn − 1)
> 1. (2.16)

Moreover, if (2.15) holds, then every nonoscillatory solution of (Ex2) is of degree 0. To see the
progress which our criteria brings, let us consider n = 2 (n = 4) and λ = 1.5. The condition
(2.16) is satisfied when

p0 > 6.56 (p0 > 304.48)

while (1.3) requires p0 > 10.58 (p0 > 535.64).

Remark 2.11. In this paper, we have introduce new technique for investigation of monotonic-
ity for nonoscillatory solutions of higher order differential equations. The monotonicities
obtained have been applied to establish new criteria for all solutions to be of degree 0 or to be
of degree n.
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