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Abstract

For strongly singular higher-order differential equations with deviating argu-

ments, under two-point conjugated and right-focal boundary conditions, Agarwal-

Kiguradze type theorems are established, which guarantee the presence of Fred-

holm’s property for the above mentioned problems. Also we provide easily verifi-

able best possible conditions that guarantee the existence of a unique solution of

the studied problems.
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1 Statement of the main results

1.1. Statement of the problems and the basic notations. Consider the differential
equations with deviating arguments

u(n)(t) =
m∑

j=1

pj(t)u
(j−1)(τj(t)) + q(t) for a < t < b, (1.1)

with the two-point boundary conditions

u(i−1)(a) = 0 (i = 1, · · · , m), u(j−1)(b) = 0 (j = 1, · · · , n − m), (1.2)

u(i−1)(a) = 0 (i = 1, · · · , m), u(j−1)(b) = 0 (j = m + 1, · · · , n). (1.3)

Here n ≥ 2, m is the integer part of n/2, −∞ < a < b < +∞, pj, q ∈ Lloc(]a, b[) (j =
1, · · · , m), and τj :]a, b[→]a, b[ are measurable functions. By u(j−1)(a) (u(j−1)(b)) we
denote the right (the left) limit of the function u(j−1) at the point a (b). Problems (1.1),
(1.2), and (1.1), (1.3) are said to be singular if some or all the coefficients of (1.1) are
non-integrable on [a, b], having singularities at the end-points of this segment.
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The linear ordinary differential equations and differential equations with deviating
arguments with boundary conditions (1.2) and (1.3), and with the conditions

b∫

a

(s − a)n−1(b − s)2m−1[(−1)n−mp1(s)]+ds < +∞,

b∫

a

(s − a)n−j(b − s)2m−j |pj(s)|ds < +∞ (j = 2, · · · , m),

b∫

a

(s − a)n−m−1/2(b − s)m−1/2|q(s)|ds < +∞,

(1.4)

and
b∫

a

(s − a)n−1[(−1)n−mp1(s)]+ds < +∞,

b∫

a

(s − a)n−j|pj(s)|ds < +∞ (j = 2, · · · , m),

b∫

a

(s − a)n−m−1/2|q(s)|ds < +∞,

(1.5)

respectively, were studied by I. Kiguradze, R. P. Agarwal and some other authors (see [1],
[2], [4] - [22]).

The first step in studying the linear ordinary differential equations under conditions
(1.2) or (1.3), in the case when the functions pj and q have strong singularities at the
points a and b, i.e. when conditions (1.4) and (1.5) are not fulfilled, was made by R. P.
Agarwal and I. Kiguradze in the article [3].

In this paper the Agarwal-Kiguradze type theorems are proved which guarantee Fred-
holm’s property for problems (1.1), (1.2), and (1.1), (1.3) (see Definition 1.1). Moreover,
we establish optimal, in some sense, sufficient conditions for the solvability of problems
(1.1), (1.2), and (1.1), (1.3).

Throughout the paper we use the following notation.
R+ = [0, +∞[;

[x]+ is the positive part of number x, that is [x]+ = x+|x|
2

;
Lloc(]a, b[) (Lloc(]a, b])) is the space of functions y :]a, b[→ R, which are integrable on

[a + ε, b − ε]; ([a + ε, b]) for arbitrary small ε > 0;
Lα,β(]a, b[) (L2

α,β(]a, b[)) is the space of integrable (square integrable) with the weight

(t − a)α(b − t)β functions y :]a, b[→ R, with the norm

||y||Lα,β
=

b∫

a

(s − a)α(b − s)β|y(s)|ds
(
||y||L2

α,β
=

( b∫

a

(s − a)α(b − s)βy2(s)ds
)1/2)

;

L([a, b]) = L0,0(]a, b[), L2([a, b]) = L2
0,0(]a, b[);
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M(]a, b[) is the set of measurable functions τ :]a, b[→]a, b[;

L̃2
α,β(]a, b[) (L̃2

α(]a, b]) is the Banach space of functions y ∈ Lloc(]a, b[) (Lloc(]a, b])),
satisfying

µ1 ≡ max
{[ t∫

a

(s − a)α
( t∫

s

y(ξ)dξ
)2

ds
]1/2

: a ≤ t ≤ a + b

2

}
+

+ max
{[ b∫

t

(b − s)β
( s∫

t

y(ξ)dξ
)2

ds
]1/2

:
a + b

2
≤ t ≤ b

}
< +∞,

µ2 ≡ max
{[ t∫

a

(s − a)α
( t∫

s

y(ξ)dξ
)2

ds
]1/2

: a ≤ t ≤ b
}

< +∞.

The norm in this space is defined by the equality || · ||
eL2

α,β
= µ1 (|| · ||

eL2
α

= µ2).

C̃n−1, m(]a, b[) (C̃n−1, m(]a, b])) is the space of functions y ∈ C̃n−1
loc (]a, b[)

(y ∈ C̃n−1
loc (]a, b])), satisfying

b∫

a

|y(m)(s)|2ds < +∞. (1.6)

When problem (1.1), (1.2) is discussed, we assume that for n = 2m, the conditions

pj ∈ Lloc(]a, b[) (j = 1, · · · , m) (1.7)

are fulfilled, and for n = 2m + 1, along with (1.7), the conditions

lim sup
t→b

∣∣∣(b − t)2m−1

t∫

t1

p1(s)ds
∣∣∣ < +∞ (t1 =

a + b

2
) (1.8)

are fulfilled. Problem (1.1), (1.3) is discussed under the assumptions

pj ∈ Lloc(]a, b]) (j = 1, · · · , m). (1.9)

A solution of problem (1.1), (1.2) ((1.1), (1.3)) is sought in the space C̃n−1, m(]a, b[)

(C̃n−1, m(]a, b])).
By hj :]a, b[×]a, b[→ R+ and fj : R × M(]a, b[) → Cloc(]a, b[×]a, b[) (j = 1, . . . , m) we

denote the functions and the operators, respectively, defined by the equalities

h1(t, s) =
∣∣∣

t∫

s

(ξ − a)n−2m[(−1)n−mp1(ξ)]+dξ
∣∣∣,

hj(t, s) =
∣∣∣

t∫

s

(ξ − a)n−2mpj(ξ)dξ
∣∣∣ (j = 2, · · · , m),

(1.10)
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and,

fj(c, τj)(t, s)=
∣∣∣

t∫

s

(ξ−a)n−2m|pj(ξ)|
∣∣∣

τj(ξ)∫

ξ

(ξ1−c)2(m−j)dξ1

∣∣∣
1/2

dξ
∣∣∣ (j = 1, · · · , m). (1.11)

Let, moreover,

m!! =

{
1 for m ≤ 0

1 · 3 · 5 · · ·m for m ≥ 1
,

if m = 2k + 1.

1.2. Fredholm type theorems.

Along with (1.1), we consider the homogeneous equation

v(n)(t) =

m∑

j=1

pj(t)v
(j−1)(τj(t)) for a < t < b. (1.10)

In the case where conditions (1.4) and (1.5) are violated, the question on the presence
of the Fredholm’s property for problem (1.1), (1.2) ((1.1), (1.3)) in some subspace of the

space C̃n−1,m
loc (]a, b[) (C̃n−1,m

loc (]a, b])) remains so far open. This question is answered in
Theorem 1.1 (Theorem 1.2 ) formulated below which contains optimal in a certain sense
conditions guaranteeing the Fredholm’s property for problem (1.1), (1.2) ((1.1), (1.3)) in

the space C̃n−1, m(]a, b[) (C̃n−1, m(]a, b])).

Definition 1.1. We will say that problem (1.1), (1.2) ((1.1), (1.3)) has the Fredholm’s

property in the space C̃n−1,m(]a, b[) (C̃n−1,m(]a, b])), if the unique solvability of the cor-
responding homogeneous problem (1.10), (1.2) ((1.10), (1.3)) in that space implies the

unique solvability of problem (1.1), (1.2) ((1.1), (1.3)) for every q ∈ L̃2
2n−2m−2, 2m−2(]a, b[)

(q ∈ L̃2
2n−2m−2(]a, b])).

Theorem 1.1. Let there exist a0 ∈]a, b[, b0 ∈]a0, b[, numbers lkj > 0, γkj > 0, and
functions τj ∈ M(]a, b[) (k = 0, 1, j = 1, . . . , m) such that

(t − a)2m−jhj(t, s) ≤ l0j for a < t ≤ s ≤ a0,

lim sup
t→a

(t − a)m− 1

2
−γ0jfj(a, τj)(t, s) < +∞,

(1.12)

(b − t)2m−jhj(t, s) ≤ l1j for b0 ≤ s ≤ t < b,

lim sup
t→b

(b − t)m− 1

2
−γ1jfj(b, τj)(t, s) < +∞,

(1.13)

and
m∑

j=1

(2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
lkj < 1 (k = 0, 1). (1.14)

EJQTDE, 2012 No. 38, p. 4



Let, moreover, (1.10), (1.2) have only the trivial solution in the space C̃n−1,m(]a, b[). Then

problem (1.1), (1.2) has the unique solution u for every q ∈ L̃2
2n−2m−2, 2m−2(]a, b[), and

there exists a constant r, independent of q, such that

||u(m)||L2 ≤ r||q||
eL2

2n−2m−2, 2m−2

. (1.15)

Corollary 1.1. Let numbers κkj, νkj ∈ R+ be such that

νk1 > 2n + 2 − 2k(2m − n), νkj > 2 (k = 0, 1; j = 2, . . . , m), (1.16)

lim sup
t→a

|τj(t) − t|
(t − a)ν0j

< +∞, lim sup
t→b

|τj(t) − t|
(b − t)ν1j

< +∞, (1.17)

and
m∑

j=1

22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
κkj < 1 (k = 0, 1). (1.18)

Moreover, let κ ∈ R+, p0j ∈ Ln−j, 2m−j(]a, b[; R+), and

− κ

[(t − a)(b − t)]2n
− p01(t) ≤ (−1)n−mp1(t) ≤

≤ κ01

(t − a)n
+

κ11

(t − a)n−2m(b − t)2m
+ p01(t),

(1.19)

|pj(t)| ≤
κ0j

(t − a)n−j+1
+

κ1j

(t − a)n−2m(b − t)2m−j+1
+ p0j(t) (j = 2, . . . , m). (1.20)

Let, moreover, (1.10), (1.2) have only the trivial solution in the space C̃n−1,m(]a, b[). Then

problem (1.1), (1.2) has the unique solution u for every q ∈ L̃2
2n−2m−2, 2m−2(]a, b[), and

there exists a constant r, independent of q, such that (1.15) holds.

Theorem 1.2. Let there exist a0 ∈]a, b[, numbers l0j > 0, γ0j > 0, and functions τj ∈
M(]a, b[) such that condition (1.12) is fulfilled and

m∑

j=1

(2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
l0j < 1. (1.21)

Let, moreover, problem (1.10), (1.3) have only the trivial solution in the space C̃n−1,m(]a, b]).

Then problem (1.1), (1.3) has the unique solution u for every q ∈ L̃2
2n−2m−2(]a, b]), and

there exists a constant r, independent of q, such that

||u(m)||L2 ≤ r||q||
eL2

2n−2m−2

. (1.22)

Corollary 1.2. Let numbers κ0j , ν0j ∈ R+ be such that

ν01 > 2n + 2, ν0j ≥ 2 (j = 2, . . . , m), (1.23)

lim sup
t→a

|τj(t) − t|
(t − a)ν0j

< +∞, (1.24)
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and
m∑

j=1

22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
κ0j < 1. (1.25)

Let, moreover, κ ∈ R+, p0j ∈ Ln−j, 0(]a, b]; R+), and

− κ

(t − a)2n
− p01(t) ≤ (−1)n−mp1(t) ≤

κ01

(t − a)n
+ p01(t), (1.26)

|pj(t)| ≤
κ0j

(t − a)n−j+1
+ p0j(t) (j = 2, . . . , m). (1.27)

Let, moreover, problem (1.10), (1.3) have only the trivial solution in the space C̃n−1,m(]a, b]).

Then problem (1.1), (1.3) has the unique solution u for every q ∈ L̃2
2n−2m−2(]a, b]), and

there exists a constant r, independent of q, such that (1.22) holds.

Theorem 1.3. Let c1 = a, c2 = b,

ess sup
a<t<b

1

|t − ci|m+1−j

∣∣∣
τj(t)∫

t

|ξ − ci|m−j−1dξ
∣∣∣ < +∞ (j = 1, . . . , m) (1.28)

if i = 1, 2 (if i = 1),

pj ∈ Ln−j, 2m−j(]a, b[)
(
pj ∈ Ln−j, 0(]a, b])

)
(j = 1, . . . , m), (1.29)

and let problem (1.1), (1.2) ((1.1), (1.3)) be uniquely solvable in the space C̃n−1, m(]a, b[)

(in the space C̃n−1, m(]a, b]). Then this problem is uniquely solvable in the space C̃n−1(]a, b[)

(in the space C̃n−1(]a, b]) as well.

Remark 1.1. In [3], an example is constructed which demonstrates that if condition
(1.29) is violated, then problem (1.1), (1.2) (problem (1.1), (1.3)) with τj(t) ≡ t (j =

1, . . . , m) may be uniquely solvable in the space C̃n−1,m(]a, b[) (in the space C̃n−1,m(]a, b]))

and this problem may have infinite set of solutions in the space C̃ loc(]a, b[) (in the space

C̃ loc(]a, b])).
Also, in [3] it is demonstrated that strict inequalities (1.14), (1.21), (1.18), (1.25) are

sharp because they cannot be replaced by nonstrict ones.

1.2. Existence and uniqueness theorems.

Theorem 1.4. Let there exist numbers t∗ ∈]a, b[, ℓkj > 0, lkj ≥ 0, and γkj > 0 (k =
0, 1; j = 1, . . . , m) such that along with

m∑

j=1

( (2m − j)22m−j+1 l0j

(2m − 1)!!(2m − 2j + 1)!!
+

22m−j−1(t∗ − a)γ0j l0j

(2m − 2j − 1)!!(2m − 3)!!
√

2γ0j

)
<

1

2
, (1.30)

m∑

j=1

( (2m − j)22m−j+1 l1j

(2m − 1)!!(2m − 2j + 1)!!
+

22m−j−1(b − t∗)γ0j l1j

(2m − 2j − 1)!!(2m − 3)!!
√

2γ1j

)
<

1

2
, (1.31)
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the conditions

(t−a)2m−jhj(t, s) ≤ l0j , (t−a)m−γ0j−1/2fj(a, τj)(t, s) ≤ l0j for a<t≤s≤t∗, (1.32)

(b−t)2m−jhj(t, s) ≤ l1j, (b−t)m−γ1j−1/2fj(b, τj)(t, s) ≤ l1j for t∗≤s≤t<b (1.33)

hold. Then for every q ∈ L̃2
2n−2m−2, 2m−2(]a, b[) problem (1.1), (1.2) is uniquely solvable in

the space C̃n−1, m(]a, b[).

To illustrate this theorem, we consider the second order differential equation with a
deviating argument

u′′(t) = p(t)u(τ(t)) + q(t), (1.34)

under the boundary conditions

u(a) = 0, u(b) = 0. (1.35)

From Theorem 1.4, with n = 2, m = 1, t∗ = (a + b)/2, γ01 = γ11 = 1/2, l01 = l11 =
κ0, l01 = l11 =

√
2κ1/

√
b − a, we get

Corollary 1.3. Let function τ ∈ M(]a, b[) be such that

0 ≤ τ(t) − t ≤ 26

(b − a)6
(t − a)7 for a < t ≤ a + b

2
,

− 26

(b − a)6
(b − t)7 ≤ t − τ(t) ≤ 0 for

a + b

2
≤ t < b.

(1.36)

Moreover, let function p :]a, b[→ R and constants κ0, κ1 be such that

− 2−2(b − a)2κ0

[(b − t)(t − a)]2
≤ p1(t) ≤

2−7(b − a)6κ1

[(b − t)(t − a)]4
for a < t ≤ b (1.37)

and

4κ0 + κ1 <
1

2
. (1.38)

Then for every q ∈ L̃2
0, 0(]a, b[) problem (1.34), (1.35) is uniquely solvable in the space

C̃1, 1(]a, b[).

Theorem 1.5. Let there exist numbers t∗ ∈]a, b[, ℓ0j > 0, ℓ0j ≥ 0, and γ0j > 0 (j =
1, . . . , m) such that conditions

(t−a)2m−jhj(t, s) ≤ l0j , (t−a)m−γ0j−1/2fj(a, τj)(t, s) ≤ l0j for a<t≤s≤b, (1.39)

and

m∑

j=1

( (2m − j)22m−j+1 l0j

(2m − 1)!!(2m − 2j + 1)!!
+

22m−j−1(t∗ − a)γ0j l0j

(2m − 2j − 1)!!(2m − 3)!!
√

2γ0j

)
< 1 (1.40)

hold. Then for every q ∈ L̃2
2n−2m−2(]a, b]) problem (1.1), (1.3) is uniquely solvable in the

space C̃n−1, m(]a, b]).
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Theorem 1.6. Let there exist numbers t∗ ∈]a, b[, ℓkj > 0, lkj ≥ 0, and γkj > 0 (k =
0, 1; j = 1, . . . , m) such that along with (1.40) and

m∑

j=1

( (2m − j)22m−j+1 l1j

(2m − 1)!!(2m − 2j + 1)!!
+

22m−j−1(b − t∗)γ0j l1j

(2m − 2j − 1)!!(2m − 3)!!
√

2γ1j

)
< 1, (1.41)

conditions (1.32), (1.33) hold. Moreover, let τj ∈ M(]a, b[) (j = 1, . . . , n) and

sign[(τj(t) − t∗)(t − t∗)] ≥ 0 for a < t < b. (1.42)

Then for every q ∈ L̃2
2n−2m−2, 2m−2(]a, b[) problem (1.1), (1.2) is uniquely solvable in the

space C̃n−1, m(]a, b[).

Also, from Theorem 1.6, with n = 2, m = 1, t∗ = (a + b)/2, γ01 = γ11 = 1/2, l01 =
l11 = κ0, l01 = l11 =

√
2κ1/

√
b − a, we get

Corollary 1.4. Let functions p :]a, b[→ R, τ ∈ M(]a, b[) and constants κ0 > 0, κ1 > 0 be
such that along with (1.36) and (1.37) the inequalities

sign[(τ(t) − a + b

2
)(t − a + b

2
)] ≥ 0 for a < t < b (1.43)

and
4κ0 + κ1 < 1 (1.44)

hold. Then for every q ∈ L̃2
0, 0(]a, b[) problem (1.34), (1.35) is uniquely solvable in the

space C̃1, 1(]a, b[).

2 Auxiliary propositions

2.1. Lemmas on integral inequalities. Now we formulate two lemmas which are
proved in [3].

Lemma 2.1. Let ∈ C̃m−1
loc (]t0, t1[) and

u(j−1)(t0) = 0 (j = 1, . . . , m),

t1∫

t0

|u(m)(s)|2ds < +∞. (2.1)

Then

t∫

t0

(u(j−1)(s))2

(s − t0)2m−2j+2
ds ≤

( 2m−j+1

(2m − 2j + 1)!!

)2
t∫

t0

|u(m)(s)|2ds for t0 ≤ t ≤ t1. (2.2)
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Lemma 2.2. Let u ∈ C̃m−1
loc (]t0, t1[), and

u(j−1)(t1) = 0 (j = 1, . . . , m),

t1∫

t0

|u(m)(s)|2ds < +∞. (2.3)

Then
t1∫

t

(u(j−1)(s))2

(t1 − s)2m−2j+2
ds ≤

( 2m−j+1

(2m − 2j + 1)!!

)2
t1∫

t

|u(m)(s)|2ds for t0 ≤ t ≤ t1. (2.4)

Let t0, t1 ∈]a, b[, u ∈ C̃m−1
loc (]t0, t1[) and τj ∈ M(]a, b[) (j = 1, . . . , m). Then we define

the functions µj : [a, (a + b)/2] × [(a + b)/2, b] × [a, b] → [a, b], ρk : [t0, t1] → R+ (k =
0, 1), λj : [a, b]×]a, (a + b)/2] × [(a + b)/2, b[×]a, b[→ R+, by the equalities

µj(t0, t1, t) =





τj(t) for τj(t) ∈ [t0, t1]

t0 for τj(t) < t0

t1 for τj(t) > t1

,

ρk(t) =
∣∣∣

tk∫

t

|u(m)(s)|2ds
∣∣∣, λj(c, t0, t1, t) =

∣∣∣
µj(t0,t1,t)∫

t

(s − c)2(m−j)ds
∣∣∣
1/2

.

(2.5)

Let also functions αj : R3
+ × [0, 1[→ R+ and βj ∈ R+ × [0, 1[→ R+ (j = 1, · · · , m) be

defined by the equalities

αj(x, y, z, γ) = x +
2m−j y zγ

(2m − 2j − 1)!!
, βj(y, γ) =

22m−j−1

(2m − 2j − 1)!!(2m − 3)!!

yγ

√
2γ

. (2.6)

Lemma 2.3. Let a0 ∈]a, b[, t0 ∈]a, a0[, t1 ∈]a0, b[, and the function u ∈ C̃m−1
loc (]t0, t1[)

be such that conditions (2.1) hold. Moreover, let constants l0 j > 0, l0 j ≥ 0, γ0j > 0, and
functions pj ∈ Lloc(]t0, t1[), τj ∈ M(]a, b[) be such that the inequalities

(t − t0)
2m−1

a0∫

t

[p1(s)]+ds ≤ l0 1, (2.7)

(t − t0)
2m−j

∣∣∣
a0∫

t

pj(s)ds
∣∣∣ ≤ l0 j (j = 2, . . . , m), (2.8)

(t − t0)
m− 1

2
−γ0j

∣∣∣
a0∫

t

pj(s)λj(t0, t0, t1, s)ds
∣∣∣ ≤ l0 j (j = 1, . . . , m) (2.9)

hold for t0 < t ≤ a0. Then
a0∫

t

pj(s)u(s)u(j−1)(µj(t0, t1, s))ds ≤

≤ αj(l0j , l0j , a0 − a, γ0j)ρ
1/2
0 (τ ∗)ρ

1/2
0 (t) + l0jβj(a0 − a, γ0j)ρ

1/2
0 (τ ∗)ρ

1/2
0 (a0)+

+l0j
(2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
ρ0(a0) for t0 < t ≤ a0,

(2.10)
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where τ ∗ = sup{µj(t0, t1, t) : t0 ≤ t ≤ a0, j = 1, . . . , m} ≤ t1.

Proof. In view of the formula of integration by parts, for t ∈ [t0, a0] we have

a0∫

t

pj(s)u(s)u(j−1)(µj(t0, t1, s))ds =

a0∫

t

pj(s)u(s)u(j−1)(s)ds +

+

a0∫

t

pj(s)u(s)
( µj(t0,t1,s)∫

s

u(j)(ξ)dξ
)
ds = u(t)u(j−1)(t)

a0∫

t

pj(s)ds+

+
1∑

k=0

a0∫

t

( a0∫

s

pj(ξ)dξ
)
u(k)(s)u(j−k)(s)ds +

a0∫

t

pj(s)u(s)
( µj(t0,t1,s)∫

s

u(j)(ξ)dξ
)
ds

(2.11)

(j = 2, . . . , m), and

a0∫

t

p1(s)u(s)u(µ1(t0, t1, s))ds ≤
a0∫

t

[p1(s)]+u2(s)ds+

+

a0∫

t

|p1(s)u(s)|
∣∣∣

µ1(t0,t1,s)∫

s

u
′

(ξ)dξ
∣∣∣ds ≤ u2(t)

a0∫

t

[p1(s)]+ds+

+2

a0∫

t

( a0∫

s

[p1(ξ)]+dξ
)
|u(s)u′(s)|ds +

a0∫

t

|p1(s)u(s)|
∣∣∣

µ1(t0,t1,s)∫

s

u
′

(ξ)dξ
∣∣∣ds.

(2.12)

On the other hand, by conditions (2.1), the Schwartz inequality and Lemma 2.1, we
deduce that

|u(j−1)(t)| =
1

(m − j)!

∣∣∣
t∫

t0

(t − s)m−ju(m)(s)ds
∣∣∣ ≤ (t − t0)

m−j+1/2 ρ
1/2
0 (t) (2.13)

for t0 ≤ t ≤ a0 (j = 1, . . . , m). If along with this, in the case j > 1, we take into account
inequality (2.8), and lemma 2.1, for t ∈ [t0, a0], we obtain the estimates

∣∣∣u(t)u(j−1)(t)

a0∫

t

pj(s)ds
∣∣∣ ≤ (t − t0)

2m−j
∣∣∣

a0∫

t

pj(s)ds
∣∣∣ρ0(t) ≤ l0jρ0(t), (2.14)

and

1∑

k=0

a0∫

t

( a0∫

s

pj(ξ)dξ
)
u(k)(s)u(j−k)(s)ds ≤ l0j

1∑

k=0

a0∫

t

|u(k)(s)u(j−k)(s)|
(s − t0)2m−j

ds ≤

≤ l0j

1∑

k=0

( a0∫

t

|u(k)(s)|2ds

(s − t0)2m−2k

)1/2( a0∫

t

|u(j−k)(s)|2ds

(s − t0)2m+2k−2j

)1/2

≤

≤ l0jρ0(a0)
1∑

k=0

22m−j

(2m − 2k − 1)!!(2m + 2k − 2j − 1)!!
.

(2.15)
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Analogously, if j = 1, by (2.7) we obtain

u2(t)

a0∫

t

[p1(s)]+ds ≤ l01ρ0(t),

2

a0∫

t

( a0∫

s

[p1(ξ)]+dξ
)
|u(s)u′(s)|ds ≤ l01ρ0(a0)

(2m − 1)22m

[(2m − 1)!!]2

(2.16)

for t0 < t ≤ a0.
By the Schwartz inequality, Lemma 2.1, and the fact that ρ0 is nondecreasing function,

we get

∣∣∣
µj(t0,t1,s)∫

s

u(j)(ξ)dξ
∣∣∣ ≤ 2m−j

(2m − 2j − 1)!!
λj(t0, t0, t1, s) ρ

1/2
0 (τ ∗) (2.17)

for t0 < s ≤ a0. Also, due to (2.2), (2.9) and (2.13), we have

|u(t)|
a0∫

t

|pj(s)|λj(t0, t0, t1, s)ds = (t − t0)
m−1/2ρ

1/2
0 (t)

a0∫

t

|pj(s)|λj(t0, t0, t1, s)ds ≤

≤ l0j (t − t0)
γ0j ρ

1/2
0 (t),

a0∫

t

|u′(s)|
( a0∫

s

|pj(ξ)|λj(t0, t0, t1, ξ)dξ
)
ds ≤ l0j

a0∫

t

|u′(s)|
(s − t0)

m− 1

2
−γ0j

ds ≤

≤ l0j
2m−1(a0 − a)γ0j

(2m − 3)!!
√

2γ0j

ρ
1/2
0 (a0)

for t0 < t ≤ a0. From the last three inequalities it is clear that

∣∣∣
(2m − 2j − 1)!!

2m−jρ
1/2
0 (τ ∗)

a0∫

t

pj(s)u(s)
( µj(t0,t1,s)∫

s

u(j)(ξ)dξ
)
ds

∣∣∣ ≤
a0∫

t

|pj(s)u(s)|λj(t0, t0, t1, s)ds ≤

≤ |u(t)|
a0∫

t

|pj(s)|λj(t0, t0, t1, s)ds +

a0∫

t

|u′(s)|
( a0∫

s

|pj(ξ)|λj(t0, t0, t1, ξ)dξ
)
ds ≤

≤ l0j (t − t0)
γ0j ρ

1/2
0 (t) + l0j

2m−1(a0 − a)γ0j

(2m − 3)!!
√

2γ0j

ρ
1/2
0 (a0)

(2.18)

for t0 < t ≤ a0. Now, note that from (2.11) and (2.12) by (2.14)-(2.16) and (2.18), it
immediately follows inequality (2.10).

The following lemma can be proved similarly to Lemma 2.3.
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Lemma 2.4. Let b0 ∈]a, b[, t1 ∈]b0, b[, t0 ∈]a, b0[, and the function u ∈ C̃m−1
loc (]t0, t1[) be

such that conditions (2.3) hold. Moreover, let constants l1 j > 0, l1 j ≥ 0, γ1j > 0, and
functions pj ∈ Lloc(]t0, t1[), τj ∈ M(]a, b[) be such that the inequalities

(t1 − t)2m−1

t∫

b0

[p1(s)]+ds ≤ l1 1, (2.19)

(t1 − t)2m−j
∣∣∣

t∫

b0

pj(s)ds
∣∣∣ ≤ l1 j (j = 2, . . . , m), (2.20)

(t1 − t)m− 1

2
−γ1j

∣∣∣
t∫

b0

pj(s)λj(t1, t0, t1, s)ds
∣∣∣ ≤ l1 j (j = 1, . . . , m) (2.21)

hold for b0 < t ≤ t1. Then

t∫

b0

pj(s)u(s)u(j−1)(µj(t0, t1, s))ds ≤

≤ αj(l1j , l1j, b − b0, γ1j)ρ
1/2
1 (τ∗)ρ

1/2
1 (t) + l1jβj(b − b0, γ1j)ρ

1/2
1 (τ∗)ρ

1/2
1 (b0)+

+l1j
(2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
ρ1(b0) for b0 ≤ t < t1,

(2.22)

where τ∗ = inf{µj(t0, t1, t) : b0 ≤ t ≤ t1, j = 1, . . . , m} ≥ t0.

2.2. Lemma on the property of functions from the space C̃n−1,m(]a, b[).

Lemma 2.5. Let

w(t) =

n−m∑

i=1

n−m∑

k=i

cik(t)u
(n−k)(t)u(i−1)(t),

where C̃n−1,m(]a, b[), and each cik : [a, b] → R is an (n − k − i + 1) -times continuously
differentiable function. Moreover, if

u(i−1)(a) = 0 (i = 1, . . . , m), lim sup
t→a

|cii(t)|
(t − a)n−2m

< +∞ (i = 1, . . . , n − m),

then
lim inf

t→a
|w(t)| = 0,

and if u(i−1)(b) = 0 (i = 1, . . . , n − m), then

lim inf
t→b

|w(t)| = 0.
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The proof of this lemma is given in [9].

2.3. Lemmas on the sequences of solutions of auxiliary problems.

Now for every natural k we consider the auxiliary boundary problems

u(n)(t) =

m∑

j=1

pj(t)u
(j−1)(µj(t0k, t1k, t)) + qk(t) for t0k ≤ t ≤ t1k, (2.23)

u(i−1)(t0k) = 0 (i = 1, . . . , m), u(j−1)(t1k) = 0 (j = 1, . . . , n − m), (2.24)

where
a < t0k < t1k < b (k ∈ N), lim

k→+∞
t0k = a, lim

k→+∞
t1k = b, (2.25)

and

u(n)(t) =
m∑

j=1

pj(t)u
(j−1)(µj(t0k, b, t)) + qk(t) for t0k ≤ t ≤ b, (2.26)

u(i−1)(t0k) = 0 (i = 1, . . . , m), u(j−1)(b) = 0 (j = 1, . . . , n − m), (2.27)

where
a < t0k < b (k ∈ N), lim

k→+∞
t0k = a. (2.28)

Throughout this section, when problems (1.1), (1.2) and (2.23), (2.24) are discussed we
assume that

pj ∈ Lloc(]a, b[) (j = 1, ..., m), q, qk ∈ L̃2
2n−2m−2, 2m−2(]a, b[), (2.29)

and for an arbitrary (m − 1)-times continuously differentiable function x :]a, b[→ R, we
set

Λk(x)(t) =

m∑

j=1

pj(t)x
(j−1)(µj(t0k, t1k, t)), Λ(x)(t) =

m∑

j=1

pj(t)x
(j−1)(τj(t)). (2.30)

Problems (1.1), (1.3) and (2.26), (2.27) are considered in the case

pj ∈ Lloc(]a, b]) (j = 1, ..., m), q, qk ∈ L̃2
2n−2m−2, 0(]a, b[), (2.31)

and for an arbitrary (m − 1)-times continuously differentiable function x :]a, b] → R, we
set

Λk(x)(t) =

m∑

j=1

pj(t)x
(j−1)(µj(t0k, b, t)), Λ(x)(t) =

m∑

j=1

pj(t)x
(j−1)(τj(t)). (2.32)

Remark 2.1. From the definition of the functions µj (j = 1, . . . , m), the estimate

|µj(t0k, t1k, t) − τj(t)| ≤
{

0 for τj(t) ∈]t0k, t1k[

max{b − t1k, t0k − a} for τj(t) 6∈]t0k, t1k[

follows. Thus, if conditions (2.25) hold, then

lim
k→+∞

µj(t0k, t1k, t) = τj(t) (j = 1, . . . , m) uniformly in ]a, b[. (2.33)
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Lemma 2.6. Let conditions (2.25) hold and the sequence of the (m−1)-times continuously
differentiable functions xk :]t0k, t1k[→ R, and functions x(j−1) ∈ C([a, b]) (j = 1, . . . , m)
be such that

lim
k→+∞

x
(j−1)
k (t) = x(j−1)(t) (j = 1, . . . , m) uniformly in ]a, b[ (]a, b]). (2.34)

Then for any nonnegative function w ∈ C([a, b]) and t∗ ∈]a, b[,

lim
k→+∞

t∫

t∗

w(s)Λk(xk)(s)ds =

t∫

t∗

w(s)Λ(x)(s)ds (2.35)

uniformly in ]a, b[, where Λk and Λ are defined by equalities (2.30).

Proof. We have to prove that for any δ ∈]0, min{b− t∗, t∗ − a}[, and ε > 0, there exists
a constant n0 ∈ N such that

∣∣∣
t∫

t∗

w(s)(Λk(xk)(s) − Λ(x)(s))ds
∣∣∣ ≤ ε for t ∈ [a + δ, b − δ], k > n0. (2.36)

Let, now w(t∗) = max
a≤t≤b

w(t), and ε1 = ε
(
2w(t∗)

m∑
j=1

∫ b−δ

a+δ
|pj(s)|ds

)−1

. Then from the

inclusions x
(j−1)
k ∈ C([a + δ, b − δ]), x(j−1) ∈ C([a, b]) (j = 1, . . . , m), conditions (2.33)

and (2.34), it follows the existence of such constant n0 ∈ N that

|x(j−1)
k (µj(t0k, t1k, s))−x(j−1)(µj(t0k, t1k, s))| ≤ ε1, |x(j−1)(µj(t0k, t1k, s))−x(j−1)(τj(s))| ≤ ε1

for t ∈ [a + δ, b − δ], k > n0, j = 1, . . . , m. Thus from the inequality

|Λk(xk)(s) − Λ(x)(s)| ≤ |Λk(xk)(s) − Λk(x)(s)| + |Λk(x)(s) − Λ(x)(s)| ≤ 2ε1

m∑

j=1

|pj(t)|,

we have (2.36).

The proof of the following lemma is analogous to that of Lemma 2.6.

Lemma 2.7. Let conditions (2.28) hold and the sequence of the (m−1)-times continuously
differentiable functions xk :]t0k, b] → R, and functions x(j−1) ∈ C([a, b]) (j = 1, . . . , m)

be such that lim
l→+∞

x
(j−1)
k (t) = x(j−1)(t) (j = 1, . . . , m) uniformly in ]a, b]. Then for

any nonnegative function w ∈ C([a, b]), and t∗ ∈]a, b], condition (2.35) holds uniformly in
]a, b], where Λk and Λ are defined by equalities (2.32).

Lemma 2.8. Let condition (2.25) hold, and for every natural k, problem (2.23), (2.24)

have a solution uk ∈ C̃n−1
loc (]a, b[), and there exist a constant r0 > 0 such that

t1k∫

t0k

|u(m)
k (s)|ds ≤ r2

0 (k ∈ N) (2.37)
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holds, and if n = 2m + 1, let there exist constants ρj ≥ 0, ρj ≥ 0, γ1j > 0 such that

ρj = sup
{

(b − t)2m−j
∣∣∣

t∫

t1

(s − a)pj(s)ds
∣∣∣ : t0 ≤ t < b

}
< +∞,

ρj = sup
{

(b − t)m−γ1j−1/2

t∫

t1

(s − a)
∣∣∣pj(s)

∣∣∣λj(b, t0k, t1k, s)ds : t0 ≤ t < b
}

< +∞,

(2.38)

for t1 = a+b
2

, (j = 1, ..., m). Moreover, let

lim
k→+∞

||qk − q||
eL2

2n−2m−2, 2m−2

= 0, (2.39)

and the homogeneous problem (1.10), (1.2) have only the trivial solution in the space

C̃n−1,m(]a, b[). Then nonhomogeneous problem (1.1), (1.2) has a unique solution u such
that

||u(m)||L2 ≤ r0, (2.40)

and
lim

k→+∞
u

(j−1)
k (t) = u(j−1)(t) (j = 1, . . . , n) uniformly in ]a, b[ (2.41)

(that is, uniformly on [a + δ, b − δ] for an arbitrarily small δ > 0).

Proof. Suppose t1, . . . , tn are the numbers such that

a + b

2
= t1 < · · · < tn < b, (2.42)

and gi(t) are the polynomials of (n − 1)-th degree, satisfying the conditions

gj(tj) = 1, gj(ti) = 0 (i 6= j; i, j = 1, . . . , n). (2.43)

Then for every natural k, for the solution uk of problem (2.23), (2.24) the representation

uk(t) =

n∑

j=1

(
uk(tj) −

1

(n − 1)!

tj∫

t1

(tj − s)n−1(Λk(uk)(s) + qk(s))ds
)
gj(t)+

+
1

(n − 1)!

t∫

t1

(t − s)n−1(Λk(uk)(s) + qk(s))ds (2.44)

is valid. For an arbitrary δ ∈]0, a+b
2

[, we have

∣∣∣
t1∫

t

(s − t)n−j(qk(s) − q(s))ds
∣∣∣ = (n − j)

∣∣∣
t1∫

t

(s − t)n−j−1
( t1∫

s

(qk(ξ) − q(ξ))dξ
)
ds

∣∣∣ ≤

≤ n
( t1∫

t

(s − a)2m−2jds
)1/2( t1∫

t

(s − a)2n−2m−2
( t1∫

s

(qk(ξ) − q(ξ))dξ
)2

ds
)1/2

≤
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≤ n
∣∣∣(t1 − a)2m−2j+1 − δ2m−2j+1

∣∣∣
1/2

||qk − q||
eL2

2n−2m−2, 2m−2

for a + δ ≤ t ≤ t1,

∣∣∣
t∫

t1

(t − s)n−j(qk(s) − q(s))ds
∣∣∣ ≤ n

∣∣∣(b − t1)
2n−2m−2j+1 − δ2n−2m−2j+1

∣∣∣
1/2

×

×||qk − q||
eL2

2n−2m−2, 2m−2

for t1 ≤ t ≤ b − δ (j = 1, . . . , n − 1).

(2.45)

Hence, by condition (2.39), we find

lim
k→+∞

t1∫

t

(s − t)n−j(qk(s) − q(s))ds = 0 uniformly in ]a, b[ (j = 1, . . . , n − 1). (2.46)

Analogously one can show that if t0 ∈]a, b[, then

lim
k→+∞

t∫

t0

(s − t0)(qk(s) − q(s))ds = 0 uniformly on I(t0), (2.47)

where I(t0) = [t0, (a+ b)/2] for t0 < (a+ b)/2 and I(t0) = [(a+ b)/2, t0] for t0 > (a+ b)/2.
In view of inequalities (2.37), the identities

u
(j−1)
k (t) =

1

(m − j)!

t∫

tik

(t − s)m−ju
(m)
k (s)ds (2.48)

for i = 0, 1; j = 1, . . . , m; k ∈ N, yield

|u(j−1)
k (t)| ≤ rj [(t − a)(b − t)]m−j+1/2 (2.49)

for t0k ≤ t ≤ t1k (j = 1, . . . , m; k ∈ N), where

rj =
r0

(m − j)!
(2m − 2j + 1)−1/2

( 2

b − a

)m−j+1/2

(j = 1, . . . , m). (2.50)

By virtue of the Arzela-Ascoli lemma and conditions (2.37) and (2.49), the sequence

{uk}+∞
k=1 contains a subsequence {ukl

}+∞
l=1 such that {u(j−1)

kl
}+∞

l=1 (j = 1, . . . , m) are uni-
formly convergent in ]a, b[. Suppose

lim
l→+∞

ukl
(t) = u(t). (2.51)

Then in view of (2.49), u(j−1) ∈ C([a, b]) (j = 1, . . . , m), and

lim
l→+∞

u
(j−1)
kl

(t) = u(j−1)(t) (j = 1, . . . , m) uniformly in ]a, b[. (2.52)

If along with this we take into account conditions (2.25) and (2.46), from (2.44) by lemma
2.6 we find

u(t) =
n∑

j=1

(
u(tj) −

1

(n − 1)!

tj∫

t1

(tj − s)n−1(Λ(u)(s) + q(s))ds
)
gj(t)+

+
1

(n − 1)!

t∫

t1

(t − s)n−1(Λ(u)(s) + q(s))ds for a < t < b,

(2.53)
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|u(j−1)(t)| ≤ rj[(t − a)(b − t)]m−j+1/2 for a < t < b (j = 1, . . . , m), (2.54)

u ∈ C̃n−1
loc (]a, b[), and

lim
l→+∞

u
(j−1)
kl

(t) = u(j−1)(t) (j = 1, . . . , n − 1) uniformly in ]a, b[. (2.55)

On the other hand, for any t0 ∈]a, b[ and natural l, we have

(t − t0)u
(n−1)
kl

(t) = u
(n−2)
kl

(t) − u
(n−2)
kl

(t0) +

t∫

t0

(s − t0)(Λk(ukl
)(s) + qkl

(s))ds. (2.56)

Hence, due to (2.25), (2.47), (2.55), and Lemma 2.6 we get

lim
l→+∞

u
(n−1)
kl

(t) = u(n−1)(t) uniformly in ]a, b[. (2.57)

Now it is clear that (2.55), (2.57), and (2.37) results in (2.40) and (2.41). Therefore,

u ∈ C̃n−1, m
loc (]a, b[). On the other hand, from (2.53) it is obvious that u is a solution of

(1.1). In the case where n = 2m, from (2.54) equalities (1.2) follow, that is, u is a solution
of problem (1.1), (1.2).

Let us show that u is the solution of that problem in the case n = 2m + 1 as well.
In view of (2.54), it suffice to prove that u(m)(b) = 0. First we find an estimate for the
sequence {uk}+∞

k=1. For this, without loss of generality we assume that

t1 ≤ t1k (k ∈ N). (2.58)

From (2.44), by (2.39) and (2.49), it follows the existence of a positive constant ρ0,
independent of k, such that

|u(m+1)
k (t)| ≤

≤ ρ0 +
1

(m − 1)!

(∣∣∣
t∫

t1

(t − s)m−1Λk(uk)(s)ds
∣∣∣ +

∣∣∣
t∫

t1

(t − s)m−1qk(s)ds
∣∣∣
) (2.59)

for t1 ≤ t ≤ t1k, and
||qk||eL2

2n−2m−2, 2m−2

≤ ρ0, (2.60)

for k ∈ N. On the other hand, it is evident that

∣∣∣
t∫

t1

(t − s)m−1Λk(uk)(s)ds
∣∣∣ ≤

m∑

j=1

∣∣∣
t∫

t1

(t − s)m−1pj(s)u
(j−1)
k (s)ds

∣∣∣+

+
m∑

j=1

∣∣∣
t∫

t1

(t − s)m−1pj(s)
( µj(t0k ,t1k,s)∫

s

u
(j)
k (ξ)dξ

)
ds

∣∣∣

(2.61)

for t1 ≤ t ≤ t1k (k ∈ N).
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Let, now m > 1. From Lemma 2.2 and condition (2.37) we get the estimates

t∫

t1

|u(j)
k (s)|2

(b − s)2m−2j
ds ≤

t1k∫

t0

|u(j)
k (s)|2

(t1k − s)2m−2j
ds ≤ 22mr2

0 (2.62)

for t1 ≤ t ≤ t1k (j = 1, . . . , m). Then by conditions (2.38) we find

∣∣∣
t∫

t1

(t − s)m−1pj(s)u
(j−1)
k (s)ds

∣∣∣ =

=
∣∣∣

t∫

t1

1

(b − s)2m−j

( ∂

∂s

(t − s)m−1u
(j−1)
k (s)

s − a

)(
(b − s)2m−j

s∫

t1

(ξ − a)pj(ξ)dξ
)
ds

∣∣∣ ≤

≤ 4mρj

b − a

( t∫

t1

|u(j−1)
k (s)|

(b − s)m−j+2
ds +

t∫

t1

|u(j)
k (s)|

(b − s)m−j+1
ds

)
≤

≤ 4mρj

b − a

[( t∫

t1

(u
(j−1)
k (s))2

(b − s)2m−2j+2
ds

)1/2

+
( t∫

t1

(u
(j)
k (s))2

(b − s)2m−2j
ds

)1/2]
×

×
( t∫

t1

(b − s)−2ds
)1/2

≤ 2mmr0ρj

b − a
(b − t)−1/2

(2.63)

for t1 ≤ t ≤ t1k (j = 1, . . . , m). On the other hand, by the Schwartz inequality, the
definition of the functions µj and (2.4) it is clear that

∣∣∣
µj(t0k ,t1k ,s)∫

s

u
(j)
k (ξ)dξ

∣∣∣ ≤ 2m−j

(2m − 2j − 1)!!
λj(b, t0k, t1k, s)

( t1k∫

t0k

|u(m)
k (ξ)|2dξ

)1/2

≤

≤ 2mr0λj(b, t0k, t1k, s)

(2.64)

for t1 < s ≤ t1k (j = 1, . . . , m). Then by the integration by parts and (2.38), (2.64) we
get

∣∣∣
t∫

t1

(t − s)m−1pj(s)
( µj(t0k ,t1k,s)∫

s

u
(j)
k (ξ)dξ

)
ds

∣∣∣ ≤

≤ 2mr0

∣∣∣
t∫

t1

∣∣∣
∂

∂s

(t − s)m−1

s − a

∣∣∣
( s∫

t1

(ξ − a)|pj(ξ)|λj(b, t0k, t1k, ξ)dξ
)
ds

∣∣∣ ≤ 2mr0×

×ρj

t∫

t1

∣∣∣
∂

∂s

(t − s)m−1

s − a

∣∣∣(b − s)γ1j−m+1/2ds ≤ 2mr0ρj×

(2.65)
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×
t∫

t1

(m − 1

s − a
+

t − a

(s − a)2

)
(b − s)γ1j−3/2ds ≤

(m + 1)2m+1r0ρj(b − a)γ1j

b − a
×

×
t∫

t1

(b − s)−3/2ds ≤
(m + 1)2m+2r0(b − a)γ1j ρj

b − a
(b − t)−1/2

for t1 < s ≤ t1k (j = 1, . . . , m).
Thus from (2.61), by (2.63) and (2.65) we have

∣∣∣
t∫

t1

(t − s)m−1Λk(uk)(s)ds
∣∣∣ ≤ κ0(b − t)−1/2 (2.66)

for t1 ≤ t ≤ t1k, m > 1, where κ0 = r0(m+1)2m+2

b−a

m∑
j=1

(ρj + ρj(b − a)γ1j ).

Let, now m = 1, then due to (2.37), (2.38), and (2.64) we obtain

∣∣∣
t∫

t1

(t − s)m−1Λk(uk)(s)ds
∣∣∣ =

∣∣∣
t∫

t1

p1(s)uk(s)ds+

+

t∫

t1

p1(s)
( µ1(t01,t1k ,s)∫

s

u′
k(ξ)dξ

)
ds

∣∣∣ ≤ |uk(t)|
(t − a)

∣∣∣
t∫

t1

(s − a)p1(s)ds
∣∣∣+

+
∣∣∣

t∫

t1

( |u′
k(s)|

(s − a)(b − s)
+

|uk(s)|
(s − a)2(b − s)

)(
(b − s)

s∫

t1

(ξ − a)p1(ξ)dξ
)
ds

∣∣∣+

+
2r0

t1 − a

t∫

t1

(s − a)|p1(s)|λ1(b, t01, t1k, s)ds ≤ 2ρ1

b − a

[ |uk(t)|
b − t

+

+r0

( t∫

t1

1

(b − s)2
ds

)1/2

+
2

b − a
(t − t1)

1/2
( t∫

t1

u2
k(s)

(b − s)2
ds

)1/2]
+

+
4r0 ρ1

b − a
(b − t)γ11−1/2 for t1 ≤ t ≤ t1k.

(2.67)

On the other hand, from (2.24), (2.37), and Lemma 2.2 it follow the estimates

|uk(t)| =
∣∣∣

t1k∫

t

u′
k(s)ds

∣∣∣ ≤
(
(t1k − t)

t1k∫

t

u′2
k (s)ds

)1/2

≤ r0(b − t)1/2,

t1k∫

t

u2
k(s)

(b − s)2
ds ≤

t1k∫

t

u2
k(s)

(t1k − s)2
ds ≤ 2r0,
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for t1 ≤ t ≤ t1k. Then from (2.67) by these inequalities we get

∣∣∣
t∫

t1

(t − s)m−1Λk(uk)(s)ds
∣∣∣ ≤ 2ρ1

b − a

( 2r0

(b − t)1/2
+

4r0

(b − a)1/2

)
+

+
4r0ρ1

(b − a)
(b − t)γ11−1/2 ≤ κ1((b − t)−1/2 + (b − t)γ11−1/2) + κ2,

(2.68)

where κ1 = 4r0

b−a
(ρ1 + ρ1), κ2 = 8r0

(b−a)3/2 ρ1.

If m > 1, due to conditions (2.60) and the fact that n = 2m + 1, we have

∣∣∣
t∫

t1

(t − s)m−1qk(s)ds
∣∣∣ = (m − 1)

∣∣∣
t∫

t1

(t − s)2m−n−1
(
(t − s)n−m−1

s∫

t1

|qk(ξ)|dξ
)
ds

∣∣∣ ≤

≤ m(b − t)−1/2||qk||eL2
2n−2m−2,2m−2

≤ mρ0(b − t)−1/2 for t1 ≤ t < b, (2.69)

and if m = 1,

t∫

t1

∣∣∣
s∫

t1

qk(ξ)dξ
∣∣∣ds ≤ (b − t)1/2||qk||eL2

0,0
≤ ρ0(b − t)1/2 for t1 ≤ t < b. (2.70)

Also it is clear that

u
(m)
k (t) =

t∫

t1k

u
(m+1)
k (s)ds, (2.71)

since u
(m)
k (t1k) = 0.

Now, from (2.59), by (2.66) and (2.69) if m > 1, and by (2.68) if m = 1, we have,
respectively,

|u(m+1)(t)| ≤ ρ0 + (mρ0 + κ0)(b − t)−1/2,

|u(m+1)(t)| ≤ ρ0 + κ2 + κ1[(b − t)−1/2 + (b − t)γ11−1/2] +

t∫

t1

|qk(s)|ds,
(2.72)

for t1 ≤ t ≤ t1k. From (2.71), by (2.72), and (2.70), it follows the existence of a constant
ρ∗ > 0 such that

|u(m)
k (t)| ≤ ρ∗[(b − t)1/2 + (b − t)γ11+1/2] for t1 ≤ t < t1k, m ≥ 1,

from which, in view of (2.25), (2.55), and (2.57), it is evident that u(m)(b) = 0. Thus we
have proved that u is the solution of problem (1.1), (1.2) also in the case n = 2m + 1.

To complete the proof of the lemma, it remains to show that equality (2.41) is satisfied.

First note that in the space C̃n−1,m(]a, b[) problem (1.1), (1.2) does not have another
solution since in that space the homogeneous problem (1.10), (1.2) has only the trivial
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solution. Now assume the contrary. Then there exist δ ∈]0, b−a
2

[, ε > 0, and an increasing
sequence of natural numbers {kl}+∞

l=1 such that

max
{ n∑

j=1

|u(j−1)
kl

(t) − u(j−1)(t)| : a + δ ≤ t ≤ b − δ
}

> ε (l ∈ N). (2.73)

By virtue of the Arzela-Ascoli lemma and condition (2.37) the sequence {u(j−1)
kl

}+∞
l=1 (j =

1, . . . , m), without loss of generality, can be assumed to be uniformly converging in ]a, b[.
Then, in view of what we have shown above, conditions (2.55) and (2.57) hold. But
this contradicts condition (2.73). The obtained contradiction proves the validity of the
lemma.

Analogously we can prove the following lemma if we apply Lemma 2.7 instead of
Lemma 2.6.

Lemma 2.9. Let condition (2.28) hold, for every natural k problem (2.26), (2.27) have

a solution uk ∈ C̃n−1
loc (]a, b]), and let there exist a constant r0 > 0 such that

b∫

t0k

|u(m)
k (s)|ds ≤ r2

0 (k ∈ N), (2.74)

lim
k→+∞

||qk − q||
eL2

2n−2m−2

= 0, (2.75)

and the homogeneous problem (1.10), (1.3) has only the trivial solution in the space

C̃n−1,m(]a, b]). Then the nonhomogeneous problem (1.1), (1.3) has a unique solution u
such that inequality (2.40) holds, and

lim
k→+∞

u
(j−1)
k (t) = u(j−1)(t) (j = 1, . . . , n) uniformly in ]a, b] (2.76)

(that is, uniformly on [a + δ, b] for an arbitrarily small δ > 0).

To prove Lemma 2.11 we need the following proposition, which is a particular case of
Lemma 4.1 in [8].

Lemma 2.10. If u ∈ Cn−1
loc (]a, b[), then for any s, t ∈]a, b[ the equality

(−1)n−m

t∫

s

(ξ − a)n−2mu(n)(ξ)u(ξ)dξ = wn(t) − wn(s) + νn

t∫

s

|u(m)(ξ)|2dξ (2.77)

is valid, where ν2m = 1, ν2m+1 = 2m+1
2

, w2m(t) =
m∑

j=1

(−1)m+j−1u(2m−j)(t)u(t),

w2m+1(t) =
m∑

j=1

(−1)m+j [(t − a)u(2m+1−j)(t) − ju(2m−j)(t)]u(j−1)(t) − t − a

2
|u(m)(t)|2.
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Lemma 2.11. Let a0 ∈]a, b[, b0 ∈]a0, b[, the functions hj and the operators fj be given
by equalities (1.10) and (1.11). Let, moreover, τj ∈ M(]a, b[), and the constants lk,j >
0, γkj > 0 (k = 0, 1; j = 1, . . . , m) be such that conditions (1.12)-(1.14) are fulfilled.
Then there exist positive constants δ and r1 such that if a0 ∈]a, a + δ[, b0 ∈]b− δ, b[, t0 ∈
]a, a0[, t1 ∈]b0, b[, and q ∈ L̃2

2n−2m−2, 2m−2(]a, b[), an arbitrary solution u ∈ Cn−1
loc (]a, b[) of

the problem

u(n)(t) =

m∑

j=1

pj(t)u
(j−1)(µj(t0, t1, t)) + q(t), (2.78)

u(i−1)(t0) = 0 (i = 1, . . . , m), u(j−1)(t1) = 0 (j = 1, . . . , n − m) (2.79)

satisfies the inequality

t1∫

t0

|u(m)(s)|2ds ≤

≤ r1

(∣∣∣
m∑

j=1

b0∫

a0

(s − a)n−2mpj(s)u(s)u(j−1)(µj(t0, t1, s))ds
∣∣∣ + ||q||2

eL2
2n−2m−2, 2m−2

)
.

(2.80)

Proof. From conditions (1.12) and (1.13) it follows the existence of constants ℓkj ≥ 0 such
that

(t − a)m− 1

2
−γ0j fj(a, τj)(t, s) ≤ ℓ0j for a < t ≤ s ≤ a0,

(b − t)m− 1

2
−γ1jfj(b, τj)(t, s) ≤ ℓ1j for b0 ≤ s ≤ t < b.

Consequently, all the requirements of Lemma 2.3 with pj(t) = (t − a)n−2m(−1)n−mpj(t),
a < t0 < a0, and Lemma 2.4 with pj(t) = (b − t)n−2m(−1)n−mpj(t), b0 < t1 < b, are
fulfilled. Also from condition (1.14) and the definition of a constant νn, it follows the
existence of ν ∈]0, 1[ such that

(2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
ℓkj < νn − 2ν (k = 0, 1). (2.81)

On the other hand, without loss of generality we can assume that a0 ∈]a, a + δ[ and
b0 ∈]b − δ, b[, where δ is a constant such that

m∑

j=1

(l0jβj(δ, γ0j) + l1jβj(δ, γ1j)) < ν, (2.82)

where the functions βj are defined by (2.6). Let now q ∈ L̃2
2n−2m−2, 2m−2(]a, b[), u be a

solution of problem (2.78), (2.79), and

r1 = 22m+1(1 + b − a)2ν−2. (2.83)
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Multiplying both sides of (2.78) by (−1)n−m(t− a)n−2mu(t) and then integrating from t0
to t1, by Lemma 2.10 we obtain

(n − 2m)
t0 − a

2
|u(m)(t0)|2 + νn

t1∫

t0

|u(m)(s)|2ds =

= (−1)n−m

m∑

j=1

t1∫

t0

(s − a)n−2mpj(s)u(s)u(j−1)(µj(t0, t1, s))ds+

+(−1)n−m

t1∫

t0

(s − a)n−2mq(s)u(s)ds.

(2.84)

From Lemma 2.3 with pj(t) = (t − a)n−2m(−1)n−mpj(t), Lemma 2.4 with pj(t) = (b −
t)n−2m(−1)n−mpj(t), and the equalities ρ0(t0) = ρ1(t1) = 0, by (2.81) we get

(−1)n−m

m∑

j=1

a0∫

t0

(s − a)n−2mpj(s)u(s)u(j−1)(µj(t0, t1, s))ds ≤

≤ (2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
l0jρ0(a0) +

m∑

j=1

l0jβj(a − a0, γ0j)ρ0(τ
∗) ≤

≤ (νn − 2ν)ρ0(a0) +
m∑

j=1

l0jβj(δ, γ0j)

t1∫

t0

|u(m)(s)|2ds,

(2.85)

(−1)n−m
m∑

j=1

t1∫

b0

(s − a)n−2mpj(s)u(s)u(j−1)(µj(t0, t1, s))ds ≤

≤ (2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
l1jρ1(b0) +

m∑

j=1

l1jβj(b0 − b, γ1j)ρ1(τ∗) ≤

≤ (νn − 2ν)ρ1(b0) +

m∑

j=1

l1jβj(δ, γ1j)

t1∫

t0

|u(m)(s)|2ds.

(2.86)

If along with this we take into account inequalities (2.82) and a0 ≤ b0, we find

(−1)n−2m

m∑

j=1

t1∫

t0

(s − a)n−2mpj(s)u(s)u(j−1)(µj(t0, t1, s))ds ≤
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≤
∣∣∣

m∑

j=1

b0∫

a0

(s − a)n−2mpj(s)u(s)u(j−1)(µj(t0, t1, s))ds
∣∣∣+

+(νn − 2ν)
(
ρ0(a0) + ρ1(b0)

)
+ ν

t1∫

t0

|u(m)(s)|2ds ≤ (νn − ν)

t1∫

t0

|u(m)(s)|2ds+

+
∣∣∣

m∑

j=1

b0∫

a0

(s − a)n−2mpj(s)u(s)u(j−1)(µj(t0, t1, s))ds
∣∣∣.

(2.87)

On the other hand, if we put c = (a + b)/2, then again on the basis of Lemmas 2.1, 2.2,
and Young’s inequality we get

∣∣∣
t1∫

t0

(s − a)n−2mq(s)u(s)ds
∣∣∣ ≤

∣∣∣
c∫

t0

(s − a)n−2mq(s)u(s)ds
∣∣∣ +

∣∣∣
t1∫

c

(s − a)n−2mq(s)u(s)ds
∣∣∣ =

=
∣∣∣

c∫

t0

[(n − 2m)u(s) + (s − a)n−2mu′(s)]
( c∫

s

q(ξ)dξ
)
ds

∣∣∣+

+
∣∣∣

t1∫

c

[(n − 2m)u(s) + (s − a)n−2mu′(s)]
( s∫

c

q(ξ)dξ
)
ds

∣∣∣ ≤

≤
[
(n − 2m)

( c∫

t0

u2(s)

(s − a)2m
ds

)1/2

+
( c∫

t0

u′2(s)

(s − a)2m−2
ds

)1/2]
×

×
( c∫

t0

(s − a)2n−2m−2
( c∫

s

q(ξ)dξ
)2

ds
)1/2

+

+(1 + b − a)
[
(n − 2m)

( t1∫

c

u2(s)

(b − s)2m
ds

)1/2

+
( t1∫

c

u′2(s)

(b − s)2m−2
ds

)1/2]
×

×
( t1∫

c

(b − s)2m−2
( s∫

c

q(ξ)dξ
)2

ds
)1/2

≤ 2m+1(1 + b − a)||q||
eL2

2n−2m−2, 2m−2

×

×
[( c∫

t0

|u(m)(s)|2ds
)1/2

+
( t1∫

c

|u(m)(s)|2ds
)1/2]

≤

≤ ν

2

t1∫

t0

|u(m)(s)|2ds + 22m+3(1 + b − a)2ν−1||q||2
eL2

2n−2m−2, 2m−2

.

(2.88)

In view of inequalities (2.87), (2.88) and notation (2.83), equality (2.84) results in estimate
(2.80).
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The proof of the following lemma is analogous to that of Lemma 2.11.

Lemma 2.12. Let a0 ∈]a, b[, the functions hj and the operators fj be given by equalities
(1.10) and (1.11). Let, moreover, τj ∈ M(]a, b]), constants l0,j > 0, γ0j > 0, (j =
1, . . . , m) be such that conditions (1.12) and (1.21) are fulfilled. Then there exists a

positive constant r1 such that for any t0 ∈]a, a0[, and q ∈ L̃2
2n−2m−2(]a, b]), an arbitrary

solution u ∈ Cn−1
loc (]a, b]) of the problem

u(n)(t) =
m∑

j=1

pj(t)u
(j−1)(µj(t0, b, t)) + q(t), (2.89)

u(i−1)(t0) = 0 (i = 1, . . . , m), u(j−1)(b) = 0 (j = m + 1, . . . , n) (2.90)

satisfies the inequality

b∫

t0

|u(m)(s)|2ds ≤ r1

(∣∣∣
m∑

j=1

b∫

a0

(s − a)n−2mpj(s)u(s)u(j−1)(µj(t0, b, s))ds
∣∣∣ + ||q||2

eL2
2n−2m−2

)
.

Lemma 2.13. Let τj ∈ M(]a, b[), a0 ∈]a, b[, b0 ∈]a0, b[, conditions (1.7), (1.12)- (1.14),
hold, and let in the case when n is odd, in addition (1.8) be fulfilled, where the functions
hj , βj and the operators fj are given by equalities (1.10)-(1.11), and lkj, lkj, γkj (k =
0, 1; j = 1, . . . , m) are nonnegative numbers. Moreover, let the homogeneous problem

(1.10), (1.2) in the space C̃n−1,m(]a, b[) have only the trivial solution. Then there exist δ ∈
]0, b−a

2
[ and r > 0 such that for any t0 ∈]a, a+δ], t1 ∈]b+δ, b], and q ∈ L̃2

2n−2m−2, 2m−2(]a, b[)

problem (2.78), (2.79) is uniquely solvable in the space C̃n−1(]a, b[), and its solution admits
the estimate

( t1∫

t0

|u(m)(s)|2ds
)1/2

≤ r||q||
eL2

2n−2m−2, 2m−2

. (2.91)

Proof. First note that all the requirements of Lemma 2.11 are fulfilled, and in view of
(1.8) and (1.13), conditions (2.38) of Lemma 2.8 hold.

Let, now δ ∈]0, min{b−b0, a0−a}] be such as in Lemma 2.11 and assume that estimate
(2.91) is invalid. Then for an arbitrary natural k there exist

t0k ∈]a, a + δ/k[, t1k ∈]b − δ/k, b[, (2.92)

and a function qk ∈ L̃2
2n−2m−2, 2m−2(]a, b[) such that problem (2.23), (2.24) has a solution

uk ∈ C̃n−1(]a, b[), satisfying the inequality

( t1k∫

t0k

|u(m)
k (s)|ds

)1/2

> k||qk||eL2
2n−2m−2, 2m−2

. (2.93)

In the case when the homogeneous equation

u(n)(t) =
m∑

j=1

pj(t)u
(j−1)(µj(t0k, t1k, t)) (2.330)
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under the boundary conditions (2.24) has a nontrivial solution, in (2.23) we put that
qk(t) ≡ 0 and assume that uk is that nontrivial solution of problem (2.330), (2.24).

Let now

vk(t) =
( t1k∫

t0k

|u(m)
k (s)|ds

)−1/2

uk(t), q0k(t) =
( t1k∫

t0k

|u(m)
k (s)|ds

)−1/2

qk(t). (2.94)

Then vk is a solution of the problem

v(n)(t) =

m∑

i=1

pi(t)v
(i−1)(µi(t0k, t1k, t)) + q0k(t) for t0k ≤ t ≤ t1k,

v(i−1)(t0k) = 0 (i = 1, . . . , m), v(i−1)(t1k) = 0 (i = 1, . . . , n − m).

(2.95)

Moreover, in view of (2.93), it is clear that

t1k∫

t0k

|v(m)
k (s)|2ds = 1, ||q0k||eL2

2n−2m−2, 2m−2

<
1

k
(k ∈ N). (2.96)

On the other hand, in view of the fact that problem (1.10), (1.2) has only the trivial

solution in the space C̃n−1,m(]a, b[), by Lemmas 2.8, 2.11, and (2.96) we have

lim
t→+∞

v
(j−1)
k (t) = 0 uniformly in ]a, b[ (j = 1, . . . n),

1 < r0

(∣∣∣
b0∫

a0

(s − a)n−2mΛk(vk)(s)ds
∣∣∣ + k−2

)
(k ∈ N),

(2.97)

where r0 is a positive constant independent of k. Now, if we pass to the limit in (2.97) as
k → +∞, by Lemma 2.6 we obtain the contradiction 1 < 0. Consequently, for any solution
of problem (2.78), (2.79), with arbitrary q ∈ L̃2

2n−2m−2, 2m−2(]a, b[), estimate (2.91) holds.
Thus the homogeneous equation

v(n)(t) =

m∑

j=1

pj(t)v
(j−1)(µj(t0, t1, t)) for t0 ≤ t ≤ t1, (2.820)

under conditions (2.79), has only the trivial solution. But for arbitrarily fixed t0 ∈
]a, a + δ[, t1 ∈]b − δ, b[, and q ∈ L([t0, t1]) problem (2.78), (2.79) is regular and has the

Fredholm property in the space C̃n−1(]t0, t1[). Thus problem (2.78), (2.79) is uniquely
solvable.

Analogously we can prove the following lemma if we apply Lemmas 2.7 and 2.12
instead of Lemmas 2.6 and 2.11.

Lemma 2.14. Let τj ∈ M(]a, b[), a0 ∈]a, b[, conditions (1.9), (1.12) and (1.21) hold,
where the functions hj , βj and the operators fj are given by equalities (1.10)-(1.11), and
l0j , l0j γ0j (j = 1, . . . , m) are nonnegative numbers. Let, moreover, the homogeneous prob-

lem (1.10), (1.3) in the space C̃n−1(]a, b]) have only the trivial solution. Then there exist
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positive constants δ and r such that if a0 ∈]a, a + δ[, and q ∈ L̃2
2n−2m−2(]a, b]), problem

(2.89), (2.90) is uniquely solvable in the space C̃n−1(]a, b]), and its solution admits the

estimate
b∫

t0

|u(m)(s)|2ds ≤ r||q||
eL2

2n−2m−2

.

Lemma 2.15. Let τj ∈ M(]a, b[), α ≥ 0, β ≥ 0, and let there exist δ ∈]0, b−a[ such that

|τj(t) − t| ≤ k1(t − a)β for a < t ≤ a + δ. (2.98)

Then
∣∣∣

τ(t)∫

t

(s − a)αds
∣∣∣ ≤

{
k1[1 + k1δ

β−1]α(t − a)α+β for β ≥ 1

k1[δ
1−β + k1]

α(t − a)αβ+β for 0 ≤ β < 1
,

for a < t ≤ a + δ.

Proof. First note that

∣∣∣
τ(t)∫

t

(s − a)αds
∣∣∣ ≤ (max{τ(t), t} − a)α|τ(t) − t| for a ≤ t ≤ a + δ,

and max{τ(t), t} ≤ t + |τ(t) − t| for a ≤ t ≤ a + δ. Then in view of condition (2.98)
we get

∣∣∣
τ(t)∫

t

(s − a)αds
∣∣∣ ≤ k1[(t − a) + k1(t − a)β ]α(t − a)β for a ≤ t ≤ a + δ.

From this inequality it immediately follows the validity of the lemma.

Analogously, one can prove

Lemma 2.16. Let τj ∈ M(]a, b[), α ≥ 0, β ≥ 0 and let there exist δ ∈]0, b− a[ such that

|τj(t) − t| ≤ k1(b − t)β for b − δ ≤ t < b. (2.99)

Then
∣∣∣

τ(t)∫

t

(b − t)αds
∣∣∣ ≤

{
k1[1 + k1δ

β−1]α(b − t)α+β for β ≥ 1

k1[δ
1−β + k1]

α(b − t)αβ+β for 0 ≤ β < 1
,

for b − δ ≤ t < b.

3 Proofs

Proof of Theorem 1.1 (Theorem 1.2). Suppose problem (1.10), (1.2) (problem (1.10),
(1.3)) has only the trivial solution, and r and δ are the numbers appearing in Lemma
2.13 (Lemma 2.14). Set

t0k = a + δ/k t1k = b − δ/k (k ∈ N). (3.1)
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By Lemma 2.13 (Lemma 2.14), for every natural k, problem (2.78), (2.79) in the space

C̃n−1
loc (]a, b[) (problem (2.89), (2.90) in the space C̃n−1

loc (]a, b])) has a unique solution uk,
and

( t1k∫

t0k

|u(m)
k (s)|2ds

)1/2

≤ r||q||
eL2

2n−2m−2,2m−2

(( b∫

t0k

|u(m)
k (s)|2ds

)1/2

≤ r||q||
eL2

2n−2m−2

)
, (3.2)

where the constant r does not depend on q. From (3.2), by Lemma 2.8 with
r0 = r||q||

eL2
2n−2m−2, 2m−2

(by Lemma 2.9 with r0 = r||q||
eL2

2n−2m−2

), it follows that problem

(1.1), (1.2) (problem (1.1), (1.3)) in the space C̃n−1
loc (]a, b[) (C̃n−1

loc (]a, b])) is uniquely

solvable for an arbitrary q ∈ L̃2
2n−2m−2, 2m−2(]a, b[) (q ∈ L̃2

2n−2m−2(]a, b])). Thus that
problem has Fredholm’s property, and its solution admits estimate (1.15) (estimate
(1.22)).

Proof of Corollary 1.1. In view of conditions (1.18), there exists a number ε > 0 such
that

m∑

j=1

(2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!

( κkj

2m − j
+ ε

)
< 1 (k = 0, 1). (3.3)

On the other hand, in view of conditions (1.19) and (1.20) we have

(t − a)2m−jhj(t, s) ≤
κ0j

2m − j
+ κ1j

a0∫

a

(ξ − a)2m−j

(b − ξ)2m+1−j
dξ +

a0∫

a

(ξ − a)n−jp0j(ξ)dξ

for a < t ≤ s ≤ a0,

(b − t)2m−jhj(t, s) ≤
κ1j

2m − j
+ κ0j

b∫

b0

(b − ξ)2m−j

(ξ − a)2m−j+1
dξ+

+(b − a)n−2m

b∫

b0

(b − ξ)2m−jp0j(ξ)dξ for b0 ≤ s ≤ t < b.

(3.4)

Let δ be the constant defined in Lemmas 2.15, 2.16. From (1.19) it follows the existence
of a0 ∈]a, a + δ[ and b0 ∈]b − δ, b[ such that

|p1(t)| ≤
κ

[(t − a)(b − t)]2n
+ p01(t) for t ∈ [a, a0] ∪ [b0, b]. (3.5)

On the other hand, from lemmas 2.15, and 2.16 by the condition (1.17) it follows the
existence of a constant k0 such that

∣∣∣
τj(t)∫

t

(s − a)2(m−j)ds
∣∣∣
1/2

≤ k
1/2
0 (s − a)m−j+ν0j/2 for a ≤ t ≤ a0,

∣∣∣
τj(t)∫

t

(b − s)2(m−j)ds
∣∣∣
1/2

≤ k
1/2
0 (b − s)m−j+ν1j/2 for b0 ≤ t ≤ b.

(3.6)
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Consequently, if p01 ∈ Ln−j, 2m−j(]a, b[), then by (1.16) and (3.6), from (1.19) and (1.20)
it follows the existence of a nonnegative constant k2 such that

(t − a)m−1fj(a, τ1)(t, s) ≤ k2(a0 − a)ε0 for a ≤ t < s ≤ a0,

(b − t)m−1fj(b, τ1)(t, s) ≤ k2(b − b0)
ε0 for b0 ≤ s < t ≤ b,

(3.7)

where 0 < ε0 = min{νk1−2n−2+2k(2m−n), νkj−2 : k = 0, 1; j = 2, . . . , m}. Now, from
(3.4), and (3.7) it is clear that we can choose δ1 ≤ δ so that if max{b − b0, a0 − a} ≤ δ1,
then

(t − a)2m−jhj(t, s) ≤
κ0j

2m − j
+ ε for a < t ≤ s ≤ a0,

(b − t)2m−jhj(t, s) ≤
κ1j

2m − j
+ ε for b0 ≤ s ≤ t < b,

j ∈ {1, . . . , m}. From (3.7), the last inequalities and (3.3), it is clear that all the assump-
tions of Theorem 1.1, with ℓkj =

κkj

2m−j
+ ε, γkj = 1/2, and max{b − b0, a0 − a} ≤ δ1, are

fulfilled, and thus the corollary is valid.

Proof of Theorem 1.3. It suffice to show that if u ∈ C̃n−1
loc (]a, b[) (u ∈ C̃n−1

loc (]a, b])) is a
solution of problem (1.10), (1.2) ((1.10), (1.3)), then

b∫

a

|u(m)(s)|2ds < +∞. (3.8)

For an arbitrary t0 ∈]a, b[ we have

u(m)(t) = w(t0) +
1

(n − m − 1)!

t∫

t0

(t − s)n−m−1
( m∑

j=1

pj(s)u
(j−1)(s)

)
ds, +

+
1

(n − m − 1)!

t∫

t0

(t − s)n−m−1
( m∑

j=1

pj(s)

τj(s)∫

s

u(j)(ξ)dξ
)
ds,

(3.9)

where w(t0) =
n∑

j=m+1

(t0−a)j−m−1

(j−m−1)!
u(j−1)(t0). Now note that by the equalities

|u(i)(t)| =
1

(k − i − 1)!

∣∣∣
t∫

c

(t − s)k−i−1u(k)(s)ds
∣∣∣ for a < t < b, (3.10)

k = 1, . . . , m, i = 0, . . . , k − 1, with c = a, from (3.9) we get the estimate

|u(m)(t)| ≤ |w(t0)| + (1 − δ1m)||u(m−1)||C
m−1∑

j=1

( t0∫

t

(s − a)n−j−1|pj(s)|ds+

+

t0∫

t

(s − a)n−m−1|pj(s)|
∣∣∣

τj(s)∫

s

(ξ − a)m−j−1dξ
∣∣∣ds

)
+

+||u(m−1)||C
t0∫

t

(s − a)n−m−1|pm(s)|ds for a < t < t0,

(3.11)
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where δij is Kronecker’s delta. Then conditions (1.28) yield

|u(m)(t)| ≤ |w(t0)| + (1 − δ1m)||u(m−1)||C
t0∫

t

(s − a)−1p(s)ds+

+γ||u(m−1)||C
t0∫

t

p(s)ds + ||u(m−1)||C
t0∫

t

(s − a)n−m−1|pm(s)|ds for a < t < t0,

where p(t) =
m∑

j=1

(t − a)n−j|pj(t)|,

γj = ess sup
a<t<b

1

|t − a|m+1−j

∣∣∣
τj(t)∫

t

(ξ − a)m−j−1dξ
∣∣∣, γ = max{γ1, . . . , γm}.

Consequently, in view of condition (1.29), u(m) ∈ L([a, t0]). Analogously, by (3.10) with
c = b, we can show that u(m) ∈ L([t0, b]). Finally u(m) ∈ L([a, b]) and if we put v(t) =
t∫

a

|u(m)(s)|ds, then

v ∈ C([a, b]), (3.12)

and from (3.10) it is clear that

|u(i)(t)| ≤ (t − a)m−i−1v(t) (i = 1, . . . , m − 1) for a < t < t0. (3.13)

In view of condition (1.29) we can choose δ > 0 such that

a+δ∫

a

p(s)ds <
1

2
. (3.14)

From (3.9), by conditions (1.28), (3.12) and inequality (3.13), we get

|u(m)(t)| ≤ |w(t0)|+
t0∫

t

p(s)v(s)

s − a
ds+

m∑

j=1

t0∫

t

(s−a)n−m−1|pj(s)|
∣∣∣

τj(s)∫

s

(ξ−a)m−j−1v(ξ)dξ
∣∣∣ds ≤

≤ |w(t0)| +
t0∫

t

p(s)v(s)

s − a
ds + γ||v||C

a0∫

a

p(s)ds, for a < t < a + δ.

Consequently, if w0 = |w(t0)| + γ||v||C
a0∫
a

p(s)ds, then

|u(m)(t)| ≤ w0 +

t0∫

t

p(s)v(s)

s − a
ds for a < t < a + δ. (3.15)
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From the last inequality, by the integration by parts and (3.14), we get

v(t) ≤ w0(t − a) + (t − a)

t0∫

t

p(s)v(s)

s − a
ds +

1

2
v(t) for a < t < a + δ.

The last inequality, by the Gronwall-Bellman lemma, results in

v(t)

t − a
≤ 2w0e

2
R t0

t p(s)ds ≤ 2w0e for a < t < a + δ.

Due to this inequality, from (3.15) by (3.14) we get |u(m)(t)| ≤ w0(1 + e) for a < t <
a + δ. Analogously we can show that u(m) is bounded in the neighborhood of the point b.
Therefore, condition (3.8) is satisfied.

Proof of Theorem 1.4. From Theorem 1.1 by conditions (1.30)-(1.33) it is obvious that
problem (1.1), (1.2) has Fredholm’s property. Thus to prove Theorem 1.4, it suffice to
show that the homogeneous problem (1.10), (1.2) has only the trivial solution in the space

C̃n−1, m(]a, b[). Suppose u ∈ C̃n−1, m(]a, b[) is a solution of problem (1.10), (1.2). Then
from Theorem 1.1 it is clear that

ρ =

b∫

a

|u(m)(s)|2ds < +∞. (3.16)

Multiplying both sides of (1.10) by (−1)n−m(t− a)n−2mu(t) and integrating from t0 to t1,
by Lemma 2.10 we obtain

wn(t) − wn(s) + νn

t∫

s

|u(m)(ξ)|2dξ = (−1)n−m
m∑

j=1

t∫

s

(ξ − a)n−2mpj(ξ)u
(j−1)(τj(ξ))u(ξ)dξ.

Moreover, from Lemma 2.5 it is evident that

lim inf
s→a

|wn(s)| = 0, lim inf
t→b

|wn(t)| = 0.

Then by (3.16) we get

νnρ = (−1)n−m
m∑

j=1

b∫

a

(ξ − a)n−2mpj(ξ)u
(j−1)(τj(ξ))u(ξ)dξ. (3.17)

According to (1.32), (1.33) and (3.16), all the conditions of Lemmas 2.3 and 2.4 with
pj(t) = (−1)n−m(t−a)n−2mpj(t), a0 = b0 = t∗, t0 = a, t1 = b and µj(t0, t1, t) = τj(t) hold.
Consequently, due to equalities ρ0(a) = ρ1(b) = 0, we have

(−1)n−m

b∫

a

(ξ − a)n−2mpj(ξ)u
(j−1)(τj(ξ))u(ξ)dξ ≤

≤ l0jβj(t
∗ − a, γ0j)ρ

1/2
0 (τ ∗)ρ

1/2
0 (t∗) + l0j

(2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
ρ0(t

∗)+

+l1jβj(b − t∗, γ1j)ρ
1/2
1 (τ∗)ρ

1/2
1 (t∗) + l1j

(2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
ρ1(t

∗)

(3.18)
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for a < t∗ < b. On the other hand, due to conditions (1.30) and (1.31), the number
ν ∈]0, 1[ can be chosen such that inequalities

m∑

j=1

(
l0j

(2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
+ l0jβj(t

∗ − a, γ0j)
)

<
νn − ν

2
,

m∑

j=1

(
l1j

(2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
+ l1jβj(b − t∗, γ1j)

)
<

νn − ν

2

(3.19)

are satisfied. Thus according to (3.18), (3.19), and inequalities ρ
1/2
0 (τ ∗)ρ

1/2
0 (t∗) ≤ ρ,

ρ
1/2
1 (τ∗)ρ

1/2
1 (t∗) ≤ ρ, (3.17) implies the inequality νnρ ≤ (νn − ν)ρ, and consequently,

ρ = 0. Hence, by

|u(t)| =
1

(k − 1)!

∣∣∣
t∫

a

(t − s)m−1u(m)(s)ds
∣∣∣ ≤ (t − a)m−1/2ρ for a < t < b,

we have u(t) ≡ 0.

Proof of Theorem 1.5. The proof is analogous to that of Theorem 1.4. The only difference
is that instead of Theorem 1.1, Theorem 1.2 is applied.

Proof of Theorem 1.6. Let u be a nonzero solution of the problem (1.10), (1.2). Then
analogously to Theorem 1.4, from conditions (1.40),(1.41), (1.32) and (1.33) it follow the
validity of relations (3.16), (3.17), (3.18) and the existence of ν ∈]0, 1[ such that

m∑

j=1

(
l0j

(2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
+ l0jβj(t

∗ − a, γ0j)
)

< νn − ν,

m∑

j=1

(
l1j

(2m − j)22m−j+1

(2m − 1)!!(2m − 2j + 1)!!
+ l1jβj(b − t∗, γ1j)

)
< νn − ν.

(3.20)

For the constants τ ∗ and τ∗, appearing in inequality (3.18), which are defined in Lemmas
2.3 and 2.4 (with t0 = a, t1 = b, a0 = b0 = t∗, and µj(t0, t1, t) = τj(t)), from the condition
(1.42) we have the estimates

τ ∗ ≤ t∗ for a < t ≤ t∗, t∗ ≤ τ∗ for t∗ ≤ t < b.

By the last estimates, from (3.18) it immediately follows the inequality νnρ ≤ (νn − ν)ρ.
Thus u ≡ 0.

Acknowledgement

This work is supported by the Academy of Sciences of the Czech Republic (Institutional
Research Plan # AV0Z10190503) and by the Shota Rustaveli National Science Foundation
(Project # GNSF/ST09 175 3-101).

EJQTDE, 2012 No. 38, p. 32



References

[1] R. P. Agarwal, Focal boundary value problems for differential and difference equa-
tions, Mathematics and Its applications, vol. 436, Kluwer Academic Publishers, Dor-
drecht, 1998.

[2] R. P. Agarwal and D. O’Regan, Singular differential and integral equations with
applications, Kluwer Academic Publishers, Dordrecht, 2003.

[3] R. P. Agarwal, I. Kiguradze, Two-point boundary value problems for higher-order
linear differential equations with strong singularities, Boundary Value Problems 2006,
1-32; Article ID 83910.

[4] E. Bravyi, A not on the Fredholm property of boundary value problems for linear
functional differential equations, Mem. Differential Equations Math. Phys. 20 (2000),
133-135.

[5] S. A. Brykalov, Problems for functional-differential equations with monotone
bounadry conditions, (Russian) Differential’nye Uravneniya 32 (1996), No. 6, 731-
738; English transl.: Differential equations 32 (1996), No. 6, 740-747.

[6] I. T. Kiguradze, On a singular multi-point boundary value problem, Ann. Mat. Pura
Appl. 86 (1970), 367-399.

[7] I. T. Kiguradze, Some singular boundary value problems for ordinary differential
equations, (Russian) Tbilisi University Press, Tbilisi, 1975.

[8] I. T. Kiguradze and T. A. Chanturia, Asymptotic properties of solutions of nonau-
tonomous or- dinary differential equations, Mathematics and Its Applications (Soviet
Series), vol. 89, Kluwer Academic Publishers, Dordrecht, 1993, Translated from the
1985 Russian original.

[9] I. Kiguradze, G. Tskhovrebadze, On two-point boundary value problems for systems
of higher order ordinary differential equations with singularities, Georgian Mathe-
matical Journal 1 (1994), no. 1, 31-45.
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