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Abstract. In this paper, we study the existence of multi-bump solutions for the follow-
ing Schrödinger–Bopp–Podolsky system with steep potential well:{

−∆u + (λV(x) + V0(x))u + K(x)ϕu = |u|p−2u, x ∈ R3,
−∆ϕ + a2∆2ϕ = K(x)u2, x ∈ R3,

where p ∈ (4, 6), a > 0 and λ is a parameter. We require that V(x) ≥ 0 and has a
bounded potential well Ω = V−1(0). Combining this with other suitable assumptions
on Ω, V0 and K, when λ is large enough, we obtain the existence of multi-bump-type
solutions uλ by using variational methods.
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1 Introduction and main results

In this paper, we investigate the existence of multi-bump solutions for the following problem
with steep potential well:{

−∆u + (λV(x) + V0(x))u + K(x)ϕu = |u|p−2u, x ∈ R3,

−∆ϕ + a2∆2ϕ = K(x)u2, x ∈ R3,
(1.1)

where p ∈ (4, 6), a > 0 and λ is a parameter.
To illustrate the significance of this article, we first introduce some background about

Schrödinger–Bopp–Podolsky system. As mentioned in [10], problem (1.1) is a version of
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the Schrödinger–Bopp–Podolsky system, which is a Schrödinger equation coupled with a
Bopp–Podolsky equation. It is worth mentioning that, Podolsky’s theory is a second-order
gauge theory for the electromagnetic field developed by Bopp [7], independently by Podolsky–
Schwed [14]. For some more details about the Bopp–Podolsky equation, we refer to [5, 6, 15]
and the references therein.

If a = V0(x) = 0, λ = K(x) = 1, system (1.1) gives back the classical Schrödinger–Poisson
system as follows: {

−∆u + V(x)u + ϕu = f (x, u), x ∈ R3,

−∆ϕ = u2, x ∈ R3,

which has been first introduced by D’Aprile–Mugnai [9]. The authors studied the existence
of radially symmetric solitary waves by using the variational approach method for the above
question when V(x) is a constant. In this system, the potential function V is regarded as
an external potential, u and ϕ represent the wave functions associated with the particle and
electric potential respectively. For more details on the physical aspects of this system, we refer
the readers to [4, 8] and the references therein.

In the last decades, the classical Schrödinger–Poisson system has been widely studied
under variant assumptions on V and f . By using variational methods, the existence, nonex-
istence, and multiplicity results are obtained in many papers. For example, when f (u) =

|u|p−1u with p ∈ (3, 5), Cerami and Vaira in [8] studied the following Schrödinger–Poisson
system: {

−∆u + u + K(x)ϕ(x)u = a(x) f (u), x ∈ R3,

−∆ϕ = K(x)u2, x ∈ R3.

Without requiring any symmetry property on K(x) and a(x), they proved the existence of the
positive ground state and bound state solutions by minimizing energy functional restricted to
a Nehari manifold when K(x) and a(x) satisfy different assumptions. After that, Sun et al. in
[18] extended the result to a general nonlinear term.

Note that, the steep potential well has been introduced by Bartsch and Wang [3] in the
study of nonlinear Schrödinger equation. Our assumptions on V are similar to [11], in
which Ding and Tanaka have proven the existence of multi-bump-type solutions for nonlinear
Schrödinger equations. After that, more and more researchers have studied multi-bump-type
solutions, we refer the readers to the papers [1, 12, 19]. In particular, Zhang and Ma in [21]
considered the following system with steep potential well{

−∆u + (λa(x) + a0(x))u + K(x)ϕu = |u|p−2u, x ∈ R3,

−∆ϕ = K(x)u2, x ∈ R3,
(1.2)

they obtained the existence of multi-bump solutions for (1.2) by using variational methods.
Compared with [21], although our paper also studies the existence of multi-bump solutions,
it studies a new system which has great significance.

If a ̸= 0, system (1.1) is a Schrödinger–Bopp–Podolsky system. Based on variational
methods, D’Avenia–Siciliano [10] first proved the existence and nonexistence results which
depended on the parameters p and q to system{

−∆u + ωu + q2ϕu = |u|p−2u, x ∈ R3,

−∆ϕ + ε2∆2ϕ = 4πu2, x ∈ R3.
(1.3)
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Later, for p ∈ (2, 3], Siciliano–Silva [17] obtained the existence and nonexistence of solutions
to system (1.3) by means of the fiber map approach and the Implicit Function Theorem. Note
that, the authors in [10] and [17] merely considered system (1.3) with subcritical growth, so
Liu and Chen in [13] filled the gaps. More precisely, they studied the existence, nonexistence,
and asymptotic behavior of ground state solutions to system (1.3) which involves a critical
nonlinearity.

Recently, Wang et al. in [20] considered Schrödinger–Bopp–Podolsky system with general
nonlinear term: {

−∆u + ωu + q2ϕu = f (u), x ∈ R3,

−∆ϕ + ε2∆2ϕ = 4πu2, x ∈ R3,
(1.4)

where f is a continuous, superlinear, and subcritical nonlinearity. They proved the existence
and multiplicity of sign-changing solutions of system (1.4) by using the method of invariant
sets of descending flow incorporated with minimax arguments. In addition, the asymptotic
behavior of sign-changing solutions was also established.

Motivated by all results mentioned above, it is quite natural to ask, does the system (1.1)
have multi-bump solutions? In the present paper, we give an affirmative answer.

In this paper, we make the following assumptions:

(V1) V(x) ∈ C
(
R3, R+

)
and Ω := int V−1(0) is a non-empty bounded set with smooth

boundary. Moreover, there is a positive constant M0 such that the measure of the set
A =

{
x ∈ R3 : V(x) ≤ M0

}
is finite.

(V2) There is a V0(x) ∈ C
(
R3, R

)
and a constant M1 > 1 such that |V0(x)| ≤ M1(V(x) + 1).

(V3) Ω possesses m connected components Ω1, . . . , Ωm such that Ωj ∩ Ω\Ωj = ∅, and
infu∈H1

0(Ωj),|u|2=1

∫
Ω

[
|∇u|2 + V0(x)u2]dx > 0 for j = 1, 2, . . . , m.

Now, we say something about (V1): although A and M0 in (V1) are not explicitly men-
tioned in the article, they are used in the proof of Proposition 2.4. Note that the proof of
Proposition 2.4 is very similar to Corollary 1.4 in [11], so it is omitted. In [11], Corollary 1.4 is
proven by using Proposition 1.1, but the proof of Proposition 1.1 requires the use of A and M0

to ensure the vanishing of the energy outside the sphere. Please see [11] for details. Therefore,
the role of (V1) is to ensure that Proposition 2.4 holds in our manuscript.

We also assume that

(K) K ∈ L∞ (R3) , K(x) ≥ 0 and K ̸≡ 0.

The main result of this paper reads as follows:

Theorem 1.1. Assume that (V1) , (V2) , (V3) and (K) hold. Then, for any small ν > 0 and any non-
empty subset J of {1, 2, . . . , m}, there exist Λ = Λ(ν) and k(ν) > 0 such that, when λ > Λ and
|K|∞ ≤ k(ν), (1.1) has a solution uλ ∈ H1 (R3) satisfying∣∣∣∣∣

∫
Ωj

[
|∇uλ|2 + (λV(x) + V0(x)) u2

λ

]
dx −

(
1
2
− 1

p

)−1

c
(
Ωj
)∣∣∣∣∣ ≤ ν, j ∈ J

and ∫
R3\ΩJ

[
|∇uλ|2 + (λV(x) + V0(x)) u2

λ

]
dx ≤ ν,

where ΩJ =
⋃

j∈J Ωj, c
(
Ωj
)

are some constants. Moreover, for any sequence of solutions {uλn} with
λn → ∞, going if necessary to a subsequence, uλn converges strongly in H1 (R3) to a function u
satisfying u(x) = 0 for x ∈ R3\ΩJ .
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Remark 1.2. The constant c
(
Ωj
)

in Theorem 1.1 is the least energy of all the nontrivial solu-
tions for the following boundary value problem

−∆u + V0(x)u = |u|p−2u in Ωj, u|∂Ωj
= 0.

Hence under the assumption of (V3) , c
(
Ωj
)
> 0.

This paper is organized as follows. In Section 2, we give some variational frameworks.
After that, we introduce a modified functional and verify the Palais–Smale condition. In
Sections 4 and 5, we give some results on the Nehari manifold and the proof of Theorem 1.1
respectively.

2 Variational frameworks

We consider the following functional space

E :=
{

u ∈ H1 (R3) :
∫

R3
V(x)u2dx < ∞

}
with the inner product

(u, v)E :=
∫

R3
[∇u∇v + (V(x) + 1)uv]dx,

and the corresponding norm is ∥u∥E = (u, u)1/2
E . It is easy to see that (E, ∥ · ∥E) is a Hilbert

space and the embedding E ↪→ H1 (R3) is continuous. For any open set D ⊂ R3, we also
define

E(D) =

{
u ∈ H1(D) :

∫
D

V(x)u2dx < ∞
}

,

∥u∥E(D) =
∫

D

[
|∇u|2 + (V(x) + 1)u2]dx.

Note that ∥ · ∥E(D) is equivalent to ∥ · ∥H1(D) when D is bounded.
Now, we define D be the completion of C∞

0
(
R3) with respect to the norm ∥ · ∥D induced

by the scalar product

(u, v)D =
∫

R3

(
∇u∇v + a2∆u∆v

)
dx.

Then D is a Hilbert space, which is continuously embedded into D1,2 (R3) and consequently
into L6(R3). We denote that Lq(R3) is the usual Lebesgue space with the standard norm

∥u∥q :=
( ∫

R3 |u|qdx
) 1

q , 1 ≤ q < ∞.

Proposition 2.1 (see [10]). The space D is continuously embedded into L∞(R3).

By using the Lax–Milgram theorem, for every fixed u ∈ E, there exists a unique solution
ϕa

u ∈ D of the second equation in system (1.1). In order to explicitly write such solution (see
[15]), we consider that

K(x) =
1 − e

−|x|
a

|x| .

As for K, we have the following fundamental properties from [10].
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Proposition 2.2 (see [10]). For all y ∈ R3,K(· − y) solves in the sense of distributions

−∆ϕ + a2∆2ϕ = 4πδy.

Moreover,

(i) if f ∈ L1
loc

(
R3) and for a.e. x ∈ R3, the map y ∈ R3 → f (y)

|x−y| is summated, then K ∗ f ∈
L1

loc

(
R3);

(ii) if f ∈ Lp (R3) with 1 ⩽ p < 3
2 , then K ∗ f ∈ Lq (R3) for q ∈

( 3p
3−2p ,+∞

]
.

In both cases K ∗ f solves
−∆ϕ + a2∆2ϕ = 4π f .

Then if we fix u ∈ E, the unique solution in D of the second equation in system (1.1) can
be expressed by

ϕa
u = K ∗ (Ku2) =

1
4π

∫
R3

1 − e
−|x−y|

a

|x − y| K(y)u2(y)dy.

Now, let us summarize some properties of ϕa
u.

Proposition 2.3 (see [10]). For every u, v ∈ E, the following statements are correct.

(i) ϕa
u ⩾ 0.

(ii) For each t > 0, ϕa
tu = t2ϕa

u.

(iii) If un ⇀ u in E, then ϕa
un

⇀ ϕa
u in D.

(iv) ∥ϕa
u∥D ⩽ C∥u∥2

12
5
⩽ C∥u∥2

E and
∫

R3 ϕa
u|u|2 dx ⩽ C∥u∥4

12
5
⩽ C∥u∥4

E.

By using the classical reduction argument, system (1.1) can be reduced to a single equation:

−∆u + (λV(x) + V0(x)) u + K(x)ϕa
uu = |u|p−2u, x ∈ R3. (2.1)

From now on, the solutions of system (1.1) are equal to the solutions of equation (2.1). It is
easy to see that the solutions of equation (2.1) can be regarded as critical points of the energy
functional Iλ : E → R defined by

Iλ(u) =
1
2

∫
R3

(
|∇u|2 + (λV(x) + V0(x)) u2)dx +

1
4

∫
R3

K(x)ϕa
uu2dx − 1

p

∫
R3

|u|pdx.

According to (V1) and (V3), it is easy to check that Iλ is a well defined C1 functional in E.
Moreover, ∀φ ∈ E, we have〈

I′λ(u), φ
〉
=
∫

R3
(∇u∇φ + (λV(x) + V0(x)) uφ)dx +

∫
R3

K(x)ϕa
uuφdx −

∫
R3

|u|p−2uφdx.

By assumption (V3), there exist smoothly bounded open sets Ω′
1, Ω′

2, . . . , Ω′
m ⊂ R3 such

that Ωj ⊂ Ω′
j and Ω′

i ∩ Ω′
j = ∅ for i ̸= j. In the following proposition, which is one of the keys

of our argument, we will give the positivity of the operator −∆ + (λV(x) + V0(x)) acting on
the space E(D), where D is one of the following sets:

D = R3, Ω′
j (j = 1, 2, . . . , k), or R3\

⋃
j∈J

Ω′
j (J ⊂ {1, 2, . . . , k}).
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Now, we define a norm ∥ · ∥λ,D on E(D) for λ ≥ Λ1 by

∥u∥2
λ,D =

∫
D

[
|∇u|2 + (λV(x) + V0(x)) u2]dx.

We write ∥ · ∥λ = ∥ · ∥λ,R3 for simplicity. From Corollary 1.3 in [11], we can get that there exist
C1,λ, C′

1,λ > 0 such that

C1,λ∥u∥E(D) ≤ ∥u∥λ,D ≤ C′
1,λ∥u∥E(D) for u ∈ E(D).

Proposition 2.4. (see [11]) There exist δ0, ν0 > 0 such that for any set D and u ∈ E(D)

δ0∥u∥2
λ,D ≤ ∥u∥2

λ,D − (p − 1)ν0∥u∥2
L2(D) for λ ≥ Λ1.

3 Compactness condition

Since Iλ given in Section 2 does not satisfy the Palais–Smale condition easily, we modify it and
establish the compactness conditions in this section. For t ∈ R and ν0 given in Proposition 2.4,
set

f (t) =

|t|p−2t, if |t| ≤ ν
1

p−2
0 ,

ν0t, if |t| ≥ ν
1

p−2
0 ,

and F(t) =
∫ t

0 f (s)ds. Let J ⊂ {1, 2, . . . , k} and χJ : R3 → [0, 1] be the characteristic function
of Ω′

J :=
⋃

j∈J Ω′
j. We consider the penalized nonlinearity

g(x, t) = χJ(x)|t|p−2t + (1 − χJ(x)) f (t).

Setting G(t) =
∫ t

0 g(s)ds, we define Jλ : E → R by

Jλ(u) =
1
2

∫
R3

(
|∇u|2 +

(
λV(x) + V0(x)u2))dx +

1
4

∫
R3

K(x)ϕa
uu2dx −

∫
R3

G(x, u)dx.

By using a standard method, one can see that Jλ is of class C1 and its nontrivial critical points
are nontrivial solutions of

−∆u + (λV(x) + V0(x)) u + K(x)ϕa
u(x)u = g(x, u) in R3.

Since f (t) = |t|p−2t for |t| ≤ ν
1

p−2
0 , a critical point u of Jλ solves the original problem (1.1)

when it satisfies |u(x)| ≤ ν
1

p−2
0 for all x ∈ R3\Ω′

J .
Next, we verify the Palais–Smale condition of Jλ. First of all, the following lemma can give

the boundedness of the (PS)c sequence of Jλ.

Lemma 3.1. For any (PS)c sequence {un}n ⊂ E of Jλ, there exists a positive constant M(c) which is
independent of λ ≥ Λ1 such that

lim sup
n→∞

∥un∥2
λ ≤ M(c).

Proof. Due to {un}n is the (PS)c sequence of Jλ, we have

Jλ (un)−
1
p
⟨J′λ (un) , un⟩ = c + o(1) + εn ∥un∥λ ,
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where εn → ∞ as n → ∞. Then by using the fact F(t)− 1
p f (t)t ≤

( 1
2 −

1
p

)
ν0t2 for t ∈ R and∫

R3 K(x)ϕa
un

u2
ndx ≥ 0, we get

c + o(1) + εn ∥un∥λ = Jλ (un)−
1
p
⟨J′λ (un) , un⟩

=

(
1
2
− 1

p

)
∥un∥2

λ +

(
1
4
− 1

p

) ∫
R3

K(x)ϕa
un

u2
ndx

−
∫

R3\Ω′
J

(
F (un)−

1
p

f (un) un

)
dx −

∫
Ω′

J

(
F (un)−

1
p

f (un) un

)
dx

=

(
1
2
− 1

p

)
∥un∥2

λ +

(
1
4
− 1

p

) ∫
R3

K(x)ϕa
un

u2
ndx

−
∫

R3\Ω′
J

(
F (un)−

1
p

f (un) un

)
dx

≥
(

1
2
− 1

p

)
∥un∥2

λ −
(

1
2
− 1

p

)
ν0 ∥un∥2

L2 .

Using Proposition 2.4, we obtain(
1
2
− 1

p

)
δ0 ∥un∥2

λ ≤ c + o(1) + εn ∥un∥λ .

Hence, ∥un∥λ is bounded as n → ∞ and

lim sup
n→∞

∥un∥2
λ ≤ M(c).

Now we have the following fact.

Lemma 3.2. When c > 0, there exists Λ1 > 0, such that Jλ satisfies the Palais–Smale condition at
level c on E for λ ≥ Λ1 large enough.

Proof. By using Lemma 3.1, we know that any (PS)c-sequence {un}n is bounded in E. So,
going if necessary to a subsequence, we may assume that

un ⇀ u in E and H1(R3),

un → u in Lq
loc(R

3), 1 ≤ q < 6,

un → u a.e. in R3.

Now we prove that un → u in E. Firstly, it is easy to check that J′λ(u) = 0. In fact, by
Proposition 2.3, we know that ϕa

un
⇀ ϕa

u in D. For any φ ∈ C∞
0
(
R3), since K(x)uφ ∈ L

6
5
(
R3),

we have ∫
R3

K(x)uφ
(
ϕa

un
− ϕa

u
)

dx → 0 as n → ∞.

Similarly, ∫
R3

K(x)φϕa
un
(un − u)dx ≤ |K|∞∥φ∥3∥ϕa

un
∥6∥un − u∥L2(Ωφ)

≤ C∥un − u∥L2(Ωφ)

→ 0
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as n → ∞, where Ωφ is the support of φ. Consequently,∫
R3

(
K(x)ϕa

un
un φ − K(x)ϕa

uuφ
)

dx

=
∫

R3
K(x)uφ

(
ϕa

un
− ϕa

u
)

dx +
∫

R3
K(x)φϕa

un
(un − u)dx

→ 0

as n → ∞, thus we see that

⟨J′λ(un)− J′λ(u), φ⟩ = ⟨J′λ(un), φ⟩ − ⟨J′λ(u), φ⟩

=
∫

R3
(∇un∇φ + (λV(x) + V0(x)) un φ)dx +

∫
R3

K(x)ϕa
un

un φdx

−
∫

R3
(∇u∇φ − (λV(x) + V0(x)) uφ)dx −

∫
R3

K(x)ϕa
uuφdx

−
∫

R3
g(x, un)φdx +

∫
R3

g(x, u)φdx

= o(1).

So J′λ(u) = 0. Then we have

⟨J′λ (un)− J′λ(u), un − u⟩
= ⟨J′λ (un) , un − u⟩ − ⟨J′λ(u), un − u⟩

= ∥un − u∥2
λ +

∫
R3

(
K(x)ϕa

un
un (un − u)− K(x)ϕa

uu (un − u)
)

dx

−
∫

R3\Ω′
J

( f (un)− f (u)) (un − u)dx −
∫

Ω′
J

(
|un|p−2 un − |u|p−2u

)
(un − u)dx

= ∥un − u∥2
λ +

∫
R3

K(x)ϕa
un
(un − u)2 dx +

∫
R3

K(x)
(
ϕa

un
− ϕa

u
)

u (un − u)dx

−
∫

R3\Ω′
J

( f (un)− f (u)) (un − u)dx −
∫

Ω′
J

(
|un|p−2 un − |u|p−2u

)
(un − u)dx

= o(1)

as n → ∞. Because of maxx∈R | f ′(x)| ≤ (p − 1)ν0, by using the Mean Value Theorem, we get
that ∫

R3\Ω′
J

( f (un)− f (u)) (un − u)dx ≤ (p − 1)ν0 ∥un − u∥2
2 .

Noting that un → u in Lp
loc(R

3), so we have∫
Ω′

J

(
|un|p−2 un − |u|p−2u

)
(un − u)dx = o(1) as n → ∞.

We also remark that un ⇀ u in L3 (R3). Thus, by the uniqueness of limit, we have |un − u| 6
5 ⇀

0 in L
5
2
(
R3). Then according to K ∈ L∞(R3) and |u| 6

5 ∈ L
5
3
(
R3), we obtain

∫
R3

K(x)
(
ϕa

un
− ϕa

u
)

u (un − u)dx ≤ |K|∞∥ϕa
un
− ϕa

u∥6

(∫
R3

|u| 6
5 |un − u| 6

5 dx
) 5

6

= o(1) as n → ∞.
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Combining all these and the fact
∫

R3 K(x)ϕa
un
(un − u)2 dx ≥ 0, by using Proposition 2.4, we

have

δ0 ∥un − u∥2
λ ≤ ∥un − u∥2

λ − (p − 1)ν0 ∥un − u∥2
2 +

∫
R3

K(x)ϕa
un
(un − u)2 dx ≤ o(1)

as n → ∞, which completes the proof.

Following the spirit of Lemma 3.2, we have

Lemma 3.3. Suppose the sequences λn → ∞ as n → ∞ and {un}n in E satisfy

Jλn (un) ≤ c, ∥∇Jλn (un)∥λn
→ 0.

Then, after passing to a subsequence, we have:

(a) un ⇀ u in E for some u ∈ E;

(b) u ≡ 0 in R3\ΩJ , and uj = u|Ωj
∈ H1

0
(
Ωj
)

solves −∆v + V0(x)v + K(x)ϕa
uv = |v|p−2v in

Ωj weakly for j ∈ J;

(c) ∥un − u∥λn
→ 0, consequently un → u in H1 (R3);

(d) For n → ∞, un also satisfies:

(1)
∫

R3 λnV(x)u2
ndx → 0;

(2)
∫

R3\Ω′
J

(
|∇un|2 + (λnV(x) + V0(x)) u2

n

)
dx → 0;

(3)
∫

Ω′
j

(
|∇un|2 + (λnV(x) + V0(x)) u2

n

)
dx →

∫
Ωj

(
|∇u|2 + V0(x)u2)dx, j = 1, . . . , m.

Proof. By a similar method of Lemma 3.1, we obtain that {un}n is bounded in E and H1 (R3).
So we could assume that for some u ∈ E,

un ⇀ u in E and H1(R3),

un → u in Lq
loc(R

3), 1 ≤ q < 6,

un → u a.e in R3.

Let Cm =
{

x ∈ R3 : V(x) ≥ 1
m

}
. When n large enough such that λn ≤ 2 (λn − λ1), we have

that ∫
Cm

u2
ndx ≤ m

λn

∫
R3

λnV(x)u2
ndx

≤ 2m
λn

∫
R3

(λn − λ1)V(x)u2
ndx

≤ 2m
λn

∫
R3

(λn − λ1)V(x)u2
ndx +

2m
λn

∥un∥2
λ1

=
2m
λn

∫
R3

(
|∇un|2 + (λnV(x) + V0(x)) u2

n

)
dx

=
2m
λn

∥un∥2
λn

→ 0 as n → ∞.

Therefore, u(x) = 0 a.e. in
⋃
m

Cm = R3\Ω. For any φ ∈ C∞
0
(
Ωj
)

, j ∈ J, we get

⟨J′λn
(un) , φ⟩ =

∫
Ωj

(
∇un∇φ + V0(x)un φ + K(x)ϕa

un
un φ − |un|p−2 un φ

)
dx.
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Due to K(x)uφ ∈ L
6
5
(
R3) , Φ (un) ⇀ Φ(u) in D and un → u in Lq

loc

(
R3) for 1 ≤ q < 6, for

n → ∞, we have∫
Ωj

(
K(x)ϕa

un
un φ − K(x)ϕa

uuφ
)

dx =
∫

Ωj

K(x)ϕa
un
(un − u) φdx +

∫
Ωj

K(x)
(
ϕa

un
− ϕa

u
)

uφdx

→ 0.

Similar to the proof of Lemma 3.2, we have ⟨J′λn
(un)− J′λn

(u), φ⟩ → 0. Thus it follows from
⟨J′λn

(un) , φ⟩ → 0 that∫
Ωj

(
∇u∇φ + V0(x)uφ + K(x)ϕa

uuφ − |u|p−2uφ
)

dx = 0.

As a result, for j ∈ J, uj = u|Ωj
∈ H1

0
(
Ωj
)

solves −∆v + V0(x)v + K(x)ϕa
uv = |v|p−2v in Ωj

weakly. When j ∈ {1, 2, . . . , m} \ J, let φ = u, then we get∫
Ωj

(
|∇u|2 + V0(x)u2 + K(x)ϕa

uu2 − f (u)u
)

dx = 0.

Because of φ = u ∈ C∞
0
(
Ωj
)
, we have∫

Ω′
j

(
|∇u|2 + V0(x)u2 + K(x)ϕa

uu2 − f (u)u
)

dx = 0.

From Proposition 2.4, f (t)t ≤ ν0t2 for t ∈ R and the fact that K(x)ϕa
uu2 ≥ 0, we have

δ0∥u∥2
Λ1,Ω′

j
≤ ∥u∥2

Λ1,Ω′
j
− (p − 1)ν0∥u∥2

L2
(

Ω′
j

)
≤ ∥u∥2

Λ1,Ω′
j
− ν0∥u∥2

L2
(

Ω′
j

)
≤
∫

Ω′
j

(
|∇u|2 + a0(x)u2 + K(x)ϕa

uu2 − f (u)u
)

dx

= 0.

So that, u = 0 in Ωj when j ∈ {1, 2, . . . , m} \ J and we get (b).
In order to prove (c), we use the following fact:

o(1) = ⟨J′λn
(un)− J′λn

(u), un − u⟩
= ⟨J′λn

(un) , un − u⟩ − ⟨J′λn
(u), un − u⟩

= ∥un − u∥2
λn

+
∫

R3

(
K(x)ϕa

un
un (un − u)− K(x)ϕa

uu (un − u)
)

dx

−
∫

R3\Ω′
J

( f (un)− f (u)) (un − u)dx −
∫

Ω′
J

(
|un|p−2 un − |u|p−2u

)
(un − u)dx

= ∥un − u∥2
λn

+
∫

R3
K(x)ϕa

un
(un − u)2 dx +

∫
R3

K(x)
(
ϕa

un
− ϕa

u
)

u (un − u)dx

−
∫

R3\Ω′
J

( f (un)− f (u)) (un − u)dx −
∫

Ω′
J

(
|un|p−2 un − |u|p−2u

)
(un − u)dx.

Similar to the proof of Lemma 3.2, we also have∫
R3\Ω′

J

( f (un)− f (u)) (un − u)dx ≤ (p − 1)ν0 ∥un − u∥2
2 ,∫

Ω′
J

(
|un|p−2 un − |u|p−2u

)
(un − u)dx = o(1) as n → ∞
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and ∫
R3

K(x)
(
ϕa

un
− ϕa

u
)

u (un − u)dx = o(1) as n → ∞.

So we have

δ0 ∥un − u∥2
λn

≤ ∥un − u∥2
λn

− (p − 1)ν0 ∥un − u∥2
2 +

∫
R3

K(x)ϕa
un
(un − u)2 dx ≤ o(1).

This completes the proof of (c).
For (d), we use (c) and for sufficiently large n, λn ≤ 2 (λn − λ1). Then as n → ∞, we have

1
2

∫
R3

λnV(x)u2
ndx ≤

∫
R3

(λn − λ1)V(x)u2
ndx =

∫
R3

(λn − λ1)V(x) (un − u)2 dx

≤
∫

R3
(λn − λ1)V(x) (un − u)2 dx + ∥un − u∥2

λ1
= ∥un − u∥2

λn
→ 0.

Thus (1) in (d) is obtained. It is easy to show that (2), (3) in (d) also follows immediately
from (1) in (d) and (c), and we obtain the conclusion.

Lemma 3.4. For any fixed c > 0, there exists Λc ≥ Λ1 such that if uλ is a critical point of Jλ satisfying

|Jλ (uλ)| ≤ c for λ ≥ Λc, then |uλ| ≤ ν
1

p−2
0 on R3\Ω′

J , ν0 is defined in Proposition 2.4. In particular,
uλ solves the original problem (1.1) .

Proof. Since uλ ∈ E is a critical point of Jλ with |Jλ (uλ)| ≤ c, uλ is bounded in E uniformly for
λ ≥ Λ1. And it satisfies the equation

−∆uλ + (λV(x) + V0(x)) uλ + K(x)ϕa
uλ

uλ = g (x, uλ) in R3.

Due to Lemma 5.1 in [2], H−1
λ := (−∆ + (λV(x) + V0(x)))−1 is a well-defined bounded oper-

ator from Ls (R3) to Lr (R3) provided 1 ≤ s ≤ r ≤ +∞ and 1
s −

1
r ≤ 2

3 . And there exists a
constant Cr,s > 0 (independent of λ sufficiently large) such that∥∥∥H−1

λ g
∥∥∥

r
≤ Cr,s∥g∥s, g ∈ Ls(R3).

Let χλ,0 be the characteristic function of the set
{

x ∈ R3 : |uλ(x)| ≤ 1
}

and define vλ,0 =

χλ,0uλ, wλ,0 = uλ − vλ,0 = (1 − χλ,0) uλ. Setting lλ,0 = g (·, vλ,0) − K(·)ϕa
uλ

vλ,0 and hλ,0 =

g (·, wλ,0) − K(·)ϕa
uλ

wλ,0, we have g (·, uλ) = lλ,0 + hλ,0. Since uλ is bounded in E, ϕa
uλ

is
bounded in L∞. Thus, lλ,0 is bounded in L∞(R3) uniformly in λ. Moreover, hλ,0 is bounded

uniformly for λ in L
6

p−1 (R3). In fact,

∣∣ϕa
uλ
(x)
∣∣ ≤ 1

4π

∣∣∣∣∫
R3

K(y)
|x − y|u

2
λ(y)dy

∣∣∣∣
≤ c|K|∞

(∫
B1(x)

u2
λ(y)

|x − y|dy +
∫

Bc
1(x)

u2
λ(y)

|x − y|dy

)

≤ c|K|∞

((∫
B1(x)

1
|x − y|2 dy

)1/2 (∫
B1(x)

u4
λ dy

)1/2

+

(∫
Bc

1(x)

1
|x − y|4 dy

)1/4 (∫
Bc

1(x)
|uλ|8/3 dy

)4/3
)

≤ c′|K|∞.
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In the set |uλ| ≤ 1, we have |wλ,0| = 0; and in the set |uλ| > 1, we have |wλ,0| = |uλ − vλ,0| =
| (1 − χλ,0) uλ| = |uλ| > 1. So we have(∫

R3
|wλ,0|

6
p−1 dx

) p−1
6

=

(∫
{x:|uλ|≤1}

|wλ,0|
6

p−1 dx +
∫
{x:|uλ|>1}

|wλ,0|
6

p−1 dx
) p−1

6

≤
(

0 +
∫
{x:|uλ|>1}

|wλ,0|6 dx
) p−1

6

=

(∫
R3

|wλ,0|6 dx
) p−1

6

.

Therefore, combining this with Minkowski inequality, we have

∥hλ,0∥ 6
p−1

≤ ∥g (·, wλ,0)∥ 6
p−1

+
∥∥K(·)ϕa

uλ
wλ,0

∥∥
6

p−1

≤
(∫

R3
|uλ|6 dx

) p−1
6

+ |K|∞
∣∣ϕa

uλ

∣∣
∞

(∫
R3

|wλ,0|
6

p−1 dx
) p−1

6

≤
(∫

R3
|uλ|6 dx

) p−1
6

+ |K|∞
∣∣ϕa

uλ

∣∣
∞

(∫
R3

|wλ,0|6 dx
) p−1

6

≤ C ∥uλ∥
p−1
E .

Now we define vλ,1 = H−1
λ lλ,0 and wλ,1 = H−1

λ hλ,0 so that uλ = vλ,1 + wλ,1. Then, there exists
C2 > 0 such that

|vλ,1|∞ ≤ C2 and ∥wλ,1∥p1
≤ C2

uniformly in λ; here p1 = ∞ if p0 = 6
p−1 > 3

2 , and p1 is arbitrarily close to and less than 3p0
3−2p0

if p0 ≤ 3
2 . In the case p0 > 3

2 we are done. In the case p0 ≤ 3
2 , we have 5 ≤ p < 6. Thus, we can

assume that there is a positive constant δ ≤ 1 such that p = 6− δ. Let χλ,1 be the characteristic
function of the set

Aλ =
{

x ∈ R3 : |wλ,1(x)| ≤ C2 + 1
}

.

Setting
v̄λ,1 = χλ,1uλ = χλ,1 (vλ,1 + wλ,1) ,

w̄λ,1 = uλ − v̄λ,1 = (1 − χλ,1) (vλ,1 + wλ,1) ,

lλ,1 = g (·, v̄λ,1)− K(·)ϕa
uλ

v̄λ,1,

hλ,1 = g (·, w̄λ,1)− K(·)ϕa
uλ

w̄λ,1.

We see that |lλ,1|∞ is bounded uniformly in λ. In addition, since the measure of the set Ac
λ

is finite and ∥wλ,1∥p1
≤ C2, we have hλ,1 is bounded in L

p1
p−1 (R3). Now repeating the above

argument with vλ,2 = H−1
λ lλ,1 and wλ,2 = H−1

λ hλ,1, we obtain a constant C3 > 0 such that

|vλ,2|∞ ≤ C3 and ∥wλ,1∥p2
≤ C3,

where p2 = ∞ if p̄1 = p1
p−1 > 3

2 , and p2 is arbitrarily close to and less than 3p̄1
3−2p̄1

if p̄1 ≤ 3
2 .

Using the assumption p = 6 − δ, 0 < δ ≤ 1 and after a finite number of such steps we get a
uniform bounded for |uλ|∞.

According to the definition of g and uniform boundedness of
∣∣ϕa

uλ

∣∣
∞, we obtain that

A(x) = g(x,uλ(x))
uλ(x) + K(x)ϕa

uλ
is bounded in L∞(R). Moreover, the negative part of Wλ =



Multi-bump solutions of a Schrödinger–Bopp–Podolsky system 13

λV + V0 − A is bounded uniformly in λ. It follows from Theorem A.2.1 in [16] that the norm
of W−

λ in the Kato class K3 is bounded uniformly in λ. Therefore, Theorem C.1.2 in [16]
implies that there is a constant C(r) which is independent of λ such that

|uλ(x)| ≤ C(r)
∫

Br(x)
|uλ|dx,

where Br(x) is a ball in R3 centered at x with radius r. From Lemma 3.3(b), as n → ∞

uλ → 0 in L2 (R3\Ω
)

.

Thus, choosing r = 1
2 dist

(
Ω, R3\Ω′), we have uniformly in x ∈ R3\Ω′,

|uλ(x)| ≤ C(r)
∫

Br(x)
|uλ|dx

≤ C(r) (meas Br(x))
1
2 |uλ|2,Br(x)

≤ C(r) (meas Br(x))
1
2 |uλ|2,R3\Ω

→ 0 as λ → ∞.

4 Nehari manifold and minimax arguments

Consider the following nonlinear problems for j ∈ J,{
−∆u + V0(x)u = |u|p−2u, in Ωj,

u = 0, on ∂Ωj

and 
−∆u + (λV(x) + V0(x)) u = |u|p−2u, in Ω′

j,

∂u
∂n

= 0, on ∂Ω′
j

with their corresponding functionals

Ij(u) =
1
2

∫
Ωj

(|∇u|2 + V0(x)u2) dx − 1
p

∫
Ωj

|u|pdx; H1
0
(
Ωj
)
→ R,

Iλ,j(u) =
1
2

∫
Ω′

j

(|∇u|2 + (λV(x) + V0(x)) u2) dx − 1
p

∫
Ω′

j

|u|pdx; H1
(

Ω′
j

)
→ R.

It is easy to check that both Ij and Iλ,j possess the mountain pass geometry and satisfy the
(PS) condition. On the other hand, the infimum of Ij and Iλ,j on their Nehari manifold

Nj =
{

u ∈ H1
0
(
Ωj
)
\{0} :

(
∇Ij(u), u

)
= 0

}
,

Nλ,j =
{

u ∈ H1
(

Ω′
j

)
\{0} :

(
∇Iλ,j(u), u

)
= 0

}
are achieved by some ωj ∈ N and ωλ,j ∈ Nλ,j respectively. By a standard argument, we can
see that ωj, ωλ,j are critical points of Ij and Iλ,j separately. The critical values cj = Ij

(
ωj
)

and cλ,j = Iλ,j
(
ωλ,j

)
are equal to the mountain pass value of their corresponding functional.

Moreover, we also have the following lemma (see Lemma 3.1 in [11] and (3.8) for details).
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Lemma 4.1. The following statements hold:

(a) there is a ρ > 0 such 0 < ρ ≤ cλ,j ≤ cj for λ ≥ Λ1 sufficiently large;

(b) cj = max
r>0

Ij
(
rwj
)

, cλ,j = max
r>0

Iλ,j
(
rwλ,j

)
;

(c) cλ,j → cj as λ → ∞;

(d)

cj = inf

{
Ij(v) : v ∈ H1

0
(
Ωj
)

,
∫

Ωj

|v|pdx =

(
1
2
− 1

p

)−1

cj

}
,

cλ,j = inf

{
Iλ,j(v) : v ∈ H1

(
Ω′

j

)
,
∫

Ω′
j

|v|pdx =

(
1
2
− 1

p

)−1

cλ,j

}
.

In the following, we give a minimax argument for Jλ(u). First of all, we fix R ≥ 2 such
that

Ij
(

Rωj
)
< 0,

R2 ∥∥wj
∥∥2

λ,Ω′
j
= Rp ∣∣wj

∣∣p
p ≥ 2

(
1
2
− 1

p

)−1

cj
(4.1)

for all j ∈ J. By relabeling the indices, we could assume J = {1, 2, . . . , l} (l ≤ m). We define
γ0 : [0, 1]l → E,

γ0 (t1, t2, . . . , tl) (x) =
l

∑
j=1

tjRωj(x), (4.2)

ΓJ =
{

γ ∈ C
(
[0, 1]l , E

)
; γ (t1, t2, . . . , tl) = γ0 (t1, t2, . . . , tl) , (t1, t2, . . . , tl) ∈ ∂

(
[0, 1]l

)}
and

bλ,J = inf
γ∈ΓJ

max
t∈[0,1]l

Jλ(γ(t)).

Obviously, ΓJ ̸= ∅ since γ0 ∈ ΓJ . Thus bλ,j is well defined.
According to Lemma 3.3 in [11], by using a topological degree argument we can get the

following conclusion.

Lemma 4.2. For any γ ∈ ΓJ , there is a tγ ∈ [0, 1]l such that for j ∈ J

∫
Ω′

j

|γ (tγ) (x)|p dx =

(
1
2
− 1

p

)−1

cλ,j.

Lemma 4.3. ∑l
j=1 cλ,j ≤ bλ,J ≤ ∑l

j=1 cj + µ, where

µ =
R4

4

l

∑
j=1

∫
Ωj

K(x)ϕa
∑l

j=1 ωj

(
ωj
)2 dx. (4.3)

Proof. According to Lemma 4.2, for any γ ∈ ΓJ , we have

max
t∈[0,1]l

Jλ(γ(t)) ≥ Jλ (γ (tγ)) ≥ Jλ,R3\Ω′
J
(γ (tγ)) +

l

∑
j=1

Jλ,Ω′
j
(γ (tγ)) ,
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where Jλ,Ω′
j
(u) is defined by

Jλ,Ω′
j
(u) =

1
2

∫
Ω′

j

(
|∇u|2 +

(
λV(x) + V0(x)u2))dx +

1
4

∫
Ω′

j

K(x)ϕa
uu2dx −

∫
Ω′

j

G(x, u)dx.

And the definition of Jλ,R3\Ω′
j
(u) is similar. According to Proposition 2.4 and the fact that

|G(x, t)| ≤ 1
2 ν0t2 when x ∈ R3\Ω′

J , we get that

Jλ,R3\Ω′
j
(u) ≥ 0 for u ∈ E and j ∈ J.

By using
∫

Ω′
j
K(x)ϕa

uu2dx ≥ 0 and Lemma 4.1(d) we obtain

max
t∈[0,1]l

Jλ(γ(t)) ≥
l

∑
j=1

Jλ,Ω′
j
(γ (tγ)) ≥

l

∑
j=1

Iλ,j (γ (tγ))

≥
l

∑
j=1

inf

{
Iλ,j(v) : v ∈ H1

(
Ω′

j

)
,
∫

Ω′
j

|v|pdx =

(
1
2
− 1

p

)−1

cλ,j

}

=
l

∑
j=1

cλ,j.

According to the arbitrary choice of γ, we have ∑l
j=1 cλ,j ≤ bλ,J . On the other hand,

bλ,J ≤ max
t∈[0,1]l

Jλ (γ0(t))

= max
t∈[0,1]l

l

∑
j=1

Ij
(
tjRωj

)
+

1
4

l

∑
j=1

∫
Ωj

K(x)ϕa
∑l

j=1 tjRωj

(
tjRωj

)2 dx

≤
l

∑
j=1

cj +
R4

4

l

∑
j=1

∫
Ωj

K(x)ϕa
∑l

j=1 ωj

(
ωj
)2 dx.

Thus, we get the conclusion.

In the following, we denote ∑l
j=1 cj by cJ . It is easy to see that, for γ ∈ ΓJ , γ(t) = γ0(t) on

∂[0, 1]l . So, for t = (t1, t2, . . . , tl) ∈ ∂[0, 1]l , one has

Jλ(γ(t)) = Jλ (γ0(t)) ≤
l

∑
j=1

Ij
(
tjRωj

)
+

R4

4

l

∑
j=1

∫
Ωj

K(x)ϕa
∑l

j=1 ωj

(
ωj
)2 dx.

Choosing k small enough such that

R4

4

l

∑
j=1

∫
Ωj

K(x)ϕa
∑l

j=1 ωj

(
ωj
)2 dx ≤ 1

2
min
j∈J

cj

when |K|∞ ≤ k. Due to Lemma 4.1(b), Ij
(
tjRωj

)
≤ cj for j ∈ J. But on the other hand, because

of t = (t1, t2, . . . , tl) ∈ ∂[0, 1]l , there must be some j0 ∈ J, tj0 ∈ {0, 1}. Thus Ij0 ≤ 0. Hence

Jλ(γ(t)) ≤
l

∑
j=1

cj − cj0 +
1
2

min
j∈J

cj ≤
l

∑
j=1

cj −
1
2

ρ.

By Lemma 4.3 and cλ,j → cj for j ∈ J, we have bλ,j ≥ ∑l
j=1 cj − 1

4 ρ when λ is sufficiently large.
Combining this and the Palais-Smale condition of Jλ, we conclude that bλ,J is a critical value
of Jλ by using a standard deformation argument. Therefore, we have

Corollary 4.4. There exists k > 0 such that when |K|∞ ≤ k, bλ,J is a critical value of Jλ for large λ.
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5 Proof of Theorem 1.1

In this section, we find the so-called multi-bump solution uλ.
Firstly, we define

Dν
λ =

u ∈ E : ∥u∥λ,R3\Ω′
J
≤ ν,

∣∣∣∣∣∣∥u∥λ,Ω′
j
−

√(
1
2
− 1

p

)−1

cj

∣∣∣∣∣∣ ≤ ν, j ∈ J

 ,

and
Jc
λ = {u ∈ E : Jλ(u) ≤ c} .

Then we have

Lemma 5.1. For 0 < ν < 1
3 minj∈J

√( 1
2 −

1
p

)−1cj, there exist k1(ν) > 0 and σ0 > 0, such that for

λ ≥ Λ1 sufficiently large and u ∈
(

D2ν
λ \Dν

λ

)
∩ JcJ+µ

λ we have

∥∇Jλ(u)∥λ ≥ σ0 (5.1)

when |K|∞ < k(ν). Here

µ =
R4

4

l

∑
j=1

∫
Ωj

K(x)ϕa
∑l

j=1 ωj

(
ωj
)2 dx

is defined in (4.3).

Proof. If the conclusion is false, we can assume that there exists un ∈
(

D2ν
λn
\Dν

λn

)
∩ JcJ+µ

λ such
that ∥∇Jλn (un)∥λn

→ 0, λn → ∞.

Since (un) ⊂ JcJ+µ
λn

, according to Lemma 3.3, we have for some u ∈ E, ∥un − u∥λn
→ 0 and

cJ + µ ≥ lim
n→∞

Jλn (un)

=
1
2

∫
ΩJ

(
|∇u|2 + V0(x)u2)dx +

1
4

∫
ΩJ

K(x)ϕa
uu2 − 1

p

∫
ΩJ

|u|pdx

= ∑
j∈J

1
2

∫
Ωj

(
|∇u|2 + V0(x)u2)dx +

1
4

∫
Ωj

K(x)ϕa
uu2dx − 1

p

∫
Ωj

|u|pdx,

where u ≡ 0 in R3\ΩJ , and uj = u|Ωj
∈ H1

0
(
Ωj
)

is the weak solutions of −∆v + V0(x)v +

K(x)ϕa
uv = |v|p−2v in Ωj for j ∈ J. Hence, if uj ̸= 0, j ∈ J and tjuj ∈ Nj, we have

1
2

∫
Ωj

(∣∣∇uj
∣∣2 + V0(x)u2

j

)
dx +

1
4

∫
Ωj

K(x)ϕa
uu2

j dx − 1
p

∫
Ωj

∣∣uj
∣∣p dx

= max
t>0

t2

2

∫
Ωj

(∣∣∇uj
∣∣2 + V0(x)u2

j

)
dx +

t4

4

∫
Ωj

K(x)ϕa
uu2

j dx − tp

p

∫
Ωj

∣∣uj
∣∣p dx

≥
t2

j

2

∫
Ωj

(∣∣∇uj
∣∣2 + V0(x)u2

j

)
dx +

t4
j

4

∫
Ωj

K(x)ϕa
uu2

j dx −
tp

j

p

∫
Ωj

∣∣uj
∣∣p dx

≥ Ij
(
tjuj
)
≥ cj.

Thus, we have two possibilities:

(1) there exist some j0 ∈ J such uj0 = u|Ωj0
= 0;
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(2) 1
2

∫
Ωj

( ∣∣∇uj
∣∣2 + V0(x)u2

j
)
dx + 1

4

∫
Ωj

K(x)ϕa
uu2

j dx − 1
p

∫
Ωj

∣∣uj
∣∣p dx ∈

[
cj, cj + µ

]
.

When (1) occurs, by Lemma 3.3(d) we obtain∣∣∣∣∣∣∥un∥λn,Ω′
j0
−

√(
1
2
− 1

p

)−1

cj0

∣∣∣∣∣∣→
√(

1
2
− 1

p

)−1

cj0 ≥ 3ν,

which contradicts to the assumption un ∈ D2ν
λn
\Dν

λn
.

If (2) occurs, by Lemma 3.3(b), it is easy to check(
1
2
− 1

p

) ∫
Ωj

(∣∣∇uj
∣∣2 + V0(x)u2

j

)
dx +

(
1
4
− 1

p

) ∫
Ωj

K(x)ϕa
uu2

j dx

=
1
2

∫
Ωj

(∣∣∇uj
∣∣2 + V0(x)u2

j

)
dx +

1
4

∫
Ωj

K(x)ϕa
uu2

j dx − 1
p

∫
Ωj

∣∣uj
∣∣p dx.

Thus, (
1
2
− 1

p

) ∫
Ωj

(
|∇u|2 + V0(x)u2)dx +

(
1
4
− 1

p

) ∫
Ωj

K(x)ϕa
uu2dx ∈

[
cj, cj + µ

]
.

Since ∥u∥E ≤ M (cJ + µ), we can choose k1(ν) > 0 such that for j ∈ J,

(1) µ ≤ 1 and
√( 1

2 −
1
p

)−1 (cj + µ
)
≤
√( 1

2 −
1
p

)−1cj + ν;

(2)
[( 1

2 −
1
p

)−1cj −
( 1

2 −
1
p

)−1( 1
4 −

1
p

) ∫
Ωj

K(x)ϕa
uu2dx

]1/2 ≥
√( 1

2 −
1
p

)−1cj − ν, when |K|∞ <

k1(ν).

Hence we have
∣∣( ∫

Ωj
(|∇u|2 + V0(x)u2)dx

)1/2 −
√( 1

2 −
1
p

)−1cj
∣∣ ≤ ν. By Lemma 3.3 again we

get that un ∈ D2ν
λn

as n is large, which is a contradiction.

Lemma 5.2. For 0 < ν < 1
3 minj∈J

( 1
2 −

1
p

)
cj, there exists k(ν) > 0, such that for λ ≥ Λ1 sufficiently

large, (1.1) possesses a solution satisfying uλ ∈ Dν
λ when |K|∞ < k(ν).

Proof. If the conclusion is false, we assume that Jλ has no critical point in Dν
λ ∩ JcJ+µ

λ , here µ is
defined as that in Lemma 5.1. Since Jλ satisfies the Palais–Smale condition (see Lemma 3.2),
there is a constant σλ > 0 such that

∥∇Jλ(u)∥λ ≥ σλ, u ∈ Dν
λ ∩ JcJ+µ

λ .

By (5.1) there holds, for λ ≥ Λ1 and |K|∞ ≤ k1(ν),

∥∇Jλ(u)∥λ ≥ σ0, u ∈
(

D2ν
λ \Dν

λ

)
∩ JcJ+µ

λ .

Combining these, we could define a Lipschitz continuous function θ : E → [0, 1] such that
θ(u) = 1 for u ∈ D3ν/2

λ ; θ(u) = 0 for u /∈ D2ν
λ . Then, the vector field

V : JcJ+µ
λ → E, V(u) = −θ(u)

∇Jλ(u)
∥∇Jλ(u)∥λ

is well defined and Lipschitz continuous. And moreover

∥V(u)∥λ ≤ 1, u ∈ E. (5.2)
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Now we consider the associated gradient flow η : [0,+∞)× JcJ+µ
λ → JcJ+µ

λ defined by

d
ds

η = V(η), η(0, u) = u.

By a standard argument, one can show that

d
ds

Jλ(η(s, u)) = −θ(u) ∥∇Jλ(u)∥λ ≤ 0 (5.3)

and
η(s, u) = u, s ≥ 0, u ∈ JcJ+µ

λ \D2ν
λ . (5.4)

Recalling γ0 ∈ ΓJ , a path which is defined by (4.2). Because of (4.1), we have that

γ0(t) /∈ D2ν
λ , t ∈ ∂[0, 1]l .

Therefore, by using (5.4), we have

η (s, γ0(t)) = γ0(t), t ∈ ∂[0, 1]l .

Thus, η (s, γ0(·)) ∈ ΓJ for any s ≥ 0.
Since supp γ0 ⊂ ⋃

j∈J Ωj for t ∈ [0, 1]l , thus Jλ (γ0(t)) and ∥γ0(t)∥2
λ,Ω′

j
do not depend on

λ ≥ 0. Considering about

m0 = max
{

Jλ(u) : u ∈ γ0

(
[0, 1]l

)
\Dν

λ

}
, (5.5)

we also have that m0 does not depend on λ ≥ 0. Furthermore, we claim that there exists
k(ν) > 0 such that

m0 < cJ (5.6)

when |K|∞ ≤ k(ν). In fact, for any u = ∑l
j=1 tjRωj ∈ γ0

(
[0, 1]l

)
\Dν

λ, there must exists some
j0 ∈ J such that ∣∣∣∣∣∣tj0 R

∥∥ωj0

∥∥
λ,Ω′

j
−

√(
1
2
− 1

p

)−1

cj0

∣∣∣∣∣∣ > ν.

According to the definition of ωj0 , we know that
∥∥ωj0

∥∥2
λ,Ω′

j
=
( 1

2 −
1
p

)−1cj0 . Thus,
∣∣tj0 R − 1

∣∣ >( 1
2 −

1
p

) 1
2 c−

1
2

j0
ν. So there exists δ(ν) > 0 such that

t2
j0 R2

2

∫
Ωj

(∣∣∇ωj0

∣∣2 + V0(x)ω2
j0

)
dx −

tp
j0

Rp

p

∫
Ωj

∣∣ωj0

∣∣p dx < cj0 − δ(ν).

And consequently,

Jλ(u) =
l

∑
j=1

Ij
(
tjRωj

)
+

1
4

l

∑
j=1

∫
Ωj

K(x)ϕa
u
(
tjRωj

)2 dx

<
l

∑
j=1

cj − δ(ν) +
R4

4

l

∑
j=1

∫
Ωj

K(x)ϕa
∑l

j=1 ωj
ω2

j dx.
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Obviously, there is a k(ν) > 0 such that

R4

4

l

∑
j=1

∫
Ωj

K(x)ϕa
∑l

j=1 ωj
ω2

j dx <
1
2

δ(ν) for |K|∞ ≤ k(ν).

Thus, Jλ(u) < cJ − 1
2 δ(ν) and we show the claim.

Next, we prove that there is k(ν) > 0 such that for some S > 0 and |K|∞ < k(ν),

max
t∈[0,1]l

Jλ (η (S, γ0(t))) ≤ max
{

m0, cJ −
1
4

σ0ν

}
. (5.7)

If this is true, according to Lemma 4.3 and η (S, γ0(·)) ∈ ΓJ we have

l

∑
j=1

cλ,j ≤ bλ,J ≤ max
t∈[0,1]L

Jλ (η (S, γ0(t))) ≤ max
{

m0, cJ −
1
4

σ0ν

}
< cJ ,

which contradicts to the fact ∑l
j=1 cλ,j → cJ . Thus, we obtain the lemma.

Next, we want to prove (5.7). Setting u = γ0(t) ∈ E, if u /∈ Dν
λ, because of (5.3) and (5.5),

Jλ(η(s, u)) ≤ Jλ(u) ≤ m0 for all s ≥ 0. If u ∈ Dν
λ, we consider two possibilities:

(1) η(s, u) ∈ D3ν/2
λ for all s ∈ [0, S];

(2) η(s, u) ∈ ∂D3ν/2
λ for some s0 ∈ [0, S].

When (1) occurs, we have θ(η(s, u)) = 1 and ∥∇Jλ(η(s, u))∥λ ≥ min {σ0, σλ} when |K|∞ ≤
k1(ν) and λ ≥ Λ1 (see Lemma 5.1). Thus, setting S = σ0ν

2 min{σ0,σλ} , by (5.3)

Jλ(η(S, u)) = Jλ(u) +
∫ S

0

d
ds

Jλ(η(s, u))ds

= Jλ(u)−
∫ S

0
θ(η(s, u)) ∥∇Jλ(η(s, u))∥λ ds

≤ cJ + µ − S min {σ0, σλ}

= cJ + µ − 1
2

σ0ν.

(5.8)

When (2) occurs, there exist 0 < s1 < s2 ≤ S such that

η (s1, u) ∈ ∂Dν
λ,

η (s2, u) ∈ ∂D3ν/2
λ ,

η(s, u) ∈ D3ν/2
λ \Dν

λ, s ∈ (s1, s2] .

(5.9)

So we have, for some j0 ∈ J,

∥η (s2, u)∥λ,R3\Ω′
J
=

3
2

ν or

∣∣∣∣∣∣∥η (s2, u)∥λ,Ω′
j0
−

√(
1
2
− 1

p

)−1

cj0

∣∣∣∣∣∣ = 3
2

ν.

We only see the latter case and the former one can be dealt with by a similar method. Follow-
ing from (5.9), we have ∣∣∣∣∣∣∥η (s1, u)∥λ,Ω′

j0
−

√(
1
2
− 1

p

)−1

cj0

∣∣∣∣∣∣ ≤ ν,
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∥η (s2, u)− η (s1, u)∥λ,Ω′
j0
≥

∣∣∣∣∣∣∥η (s2, u)∥λ,Ω′
j0
−

√(
1
2
− 1

p

)−1

cj0

∣∣∣∣∣∣
−

∣∣∣∣∣∣∥η (s1, u)∥λ,Ω′
j0
−

√(
1
2
− 1

p

)−1

cj0

∣∣∣∣∣∣
≥ 1

2
ν.

This implies ∥η (s2, u)− η (s1, u)∥λ ≥ 1
2 ν.

According to (5.2),
∥∥ d

ds η
∥∥

λ
= ∥V(η)∥λ ≤ 1. Hence

1
2

ν ≤ ∥η (s2, u)− η (s1, u)∥λ ≤
∥∥∥∥∫ s2

s1

dη

ds
ds
∥∥∥∥

λ

≤
∫ s2

s1

∥∥∥∥dη

ds

∥∥∥∥
λ

ds ≤ s2 − s1.

According to (5.1), we have

Jλ(η(S, u)) = Jλ(u)−
∫ S

0
θ(η(s, u)) ∥∇Jλ(η(s, u))∥λ ds

≤ cJ + µ −
∫ s2

s1

σ0ds

≤ cJ + µ − 1
2

σ0ν.

(5.10)

Then, we can choose k(ν) > 0 such that µ ≤ 1
4 σ0ν if |K|∞ ≤ k(ν). Combining with (5.8)

and (5.10) we get (5.7). And hence Jλ possesses a critical point uλ in Dν
λ for λ ≥ Λ1 and

|K|∞ ≤ k(ν). According to Lemma 3.4, we know that uλ is a solution of (1.1).

Proof of Theorem 1.1. Setting uλn(λn → ∞) be a sequence of solutions of (1.1) obtained by the
procedure above. Then, they are critical points of Jλn with critical value bounded by cJ + µ.
According to Lemma 3.3, we get the conclusion.
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