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Abstract. We discuss the Lagrange stability for a class of impulsive Duffing equation
with time-dependent polynomial potentials. More precisely, we prove that under suit-
able impulses, all the solutions of the impulsive Duffing equation (with low regularity
in time) are bounded for all time and that there are many (positive Lebesgue measure)
quasi-periodic solutions clustering at infinity.
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1 Introduction

The stability theory plays a central role in differential equations for its practical value in
real world applications. It is well known that the longtime behavior of a time-dependent
nonlinear ordinary differential equation can be very intricate. For instance, the well-known
Duffing equation,

ẍ + δẋ + αx + βx3 = γ cos(ωt),

is an example of dynamical system that exhibits chaotic behavior.
The generalized Duffing-type equation arises in a large class of practically important ap-

plied problems in mathematics, physical science and engineering such as the cubic–quintic
Duffing oscillatory [9] and the Helmholtz–Duffing oscillator [8], which takes the form of

ẍ = ∑
j∈K

aj xj(t), K ⊂ N is finite.

See [35] and the references therein for more details.
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1.1 Lagrange stability of Duffing-type equation

In contrast to “Lyapunov stability” that is related to the chaotic nature of the system, we
pay special interest in this paper to the Lagrange stability of nonlinear systems, which means
that all the solutions stay bounded for all time. The Lagrange stability refers roughly to the
stability against the escape of a body from the system. We refer to the classical monograph
[14] for more details about the Lagrange stability.

The study of Lagrange stability of Duffing-type equation dates back to Littlewood [16],
Moser [20,21] and Morris [19]. In 1987, Dieckerhoff and Zehnder studied the Lagrange stabil-
ity for the generalized Duffing-type equation with time-dependent polynomial potentials

ẍ + x2n+1 +
2n

∑
i=0

xi pi(t) = 0, n ≥ 1, (1.1)

where pi ∈ Cν(T1) (0 ≤ i ≤ 2n) are 1-periodic with T1 = R/Z, and proved that every
solution x(t) of (1.1) is bounded for all time, i.e., the solution x(t) exists for all t ∈ R and
supt∈R(|x(t)|+ |ẋ(t)|) < ∞, if ν is the smallest integer satisfying

v > 1 +
4
n
+ [log2 n] → ∞ as n → ∞.

There exist a lot of papers [12, 15, 17, 18, 32–34] devoting to the relaxation of the smooth-
ness of pi in (1.1) with respect to the t-variable when studying the Lagrange stability. How-
ever, there is an example in [31] showing that a continuous coefficient would result in an
unbounded solution.

As we know, a abrupt change at certain instant during the evolution process falls into the
scope of the impulsive dynamical system [1,13], which appear widely in applied mathematics.
The appearance of impulse forces may cause complicated dynamic phenomenons and bring
difficulties to study. There are many studies on the existence of periodic solutions of impulsive
differential equations [2,7,10,22–24] via different approaches. See also [11,26] for the periodic
solution of impulsive Duffing-type equation.

However, there are only few results on the Lagrange stability and the existence of quasi-
periodic solutions for impulsive differential equations (see [3–5, 25, 30]). Coming back to the
Duffing-type equation (1.1), the term ∑2n

i=0 xi pi(t) can be regarded as the perturbation of ẍ +

x2n+1 = 0 (up to some transformations). Then the Lagrange stability of (1.1) show that all
solutions of nonlinear equation ẍ + x2n+1 = 0 is bounded under a periodic perturbation. It is
very natural to ask the following question:

“what happens when the nonlinear equation ẍ + x2n+1 = 0 is subject to
both periodic perturbation and an impulse at the same time?"

Choosing different impulsive functions may have different effects on the solutions. It
is also not surprising that an offhand choice of impulse force would destroy the Lagrange
stability even though the coefficients pi are sufficiently smooth. To establish the Lagrange
stability of impulsive Duffing-type equation, one needs to be careful on the impulse such that
the Poincaré map can be well organized in order to apply Moser’s twist theorem after some
symplectic transformations. We mention some progress in this respect. In 2019, [30] proved
the boundedness of solutions and the existence of quasi-periodic solutions for the impulsive
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Duffing equation
ẍ + x2n+1 + ∑2n

i=0 xi pi(t) = 0, t ̸= tj, n ≥ 1,

∆x(tj) := x(t+j )− x(t−j ) = Ij(x(t−j ), ẋ(t−j )),

∆ẋ(tj) := ẋ(t+j )− ẋ(t−j ) = Jj(x(t−j ), ẋ(t−j )), j = ±1,±2, . . .

(1.2)

with the low regularity in time

pi(t) ∈ Cγ(T1), γ > 2 − 1
n

,

and with the general sequences of impulsive functions Ij, Jj : R2 → R, where T1 := R/Z.
Moreover, the following restricted conditions are needed: for j = 1, . . . , k,

(i) the jumps Ij(x, y) = o(1) as x2 + y2 → +∞;

(ii) the jump map Φj : (x, y) → (x, y) + (Ij(x, y), Jj(x, y)) is an area-preserving homeomor-
phism,

which enables us to apply Moser’s twist theorem. See [30, Remark 2.1] for the comparison of
different types of impulse forces and their roles when studying the Lagrange stability.

For the particular case of cubic Duffing-type equation, [25] extended the Morris’s bound-
edness result [19] to the impulsive Duffing equation

ẍ + x3 + p(t) = 0, t ̸= tj,

∆x(tj) := x(t+j )− x(t−j ) = I(x(t−j ), ẋ(t−j )),

∆ẋ(tj) := ẋ(t+j )− ẋ(t−j ) = J(x(t−j ), ẋ(t−j )), j = ±1,±2, . . . ,

where 0 < t1 < 1, tj+1 = tj + 1 for j = ±1,±2, · · · and p(t) is 1-periodic and integrable.
In 2020, [3] proposed some concrete and simple impulse forces, which do not satisfy the

above conditions (i) and (ii), and proved the Lagrange stability and the existence of quasi-
periodic solutions for the impulsive Duffing-type equation

ẍ + x2n+1 + ∑n
i=0 xi pi(t) = 0, t ̸= tj, n ≥ 1,

∆x(tj) = (γj − 1) x(t−j ),

∆ẋ(tj) = (γn+1
j − 1) ẋ(t−j )), j = ±1,±2, . . . ,

(1.3)

where γj > 0 are some constants and the coefficients pi ∈ C∞(T1) for technical simplicity.
In this paper, we pay special attention to the sharp regularity of the coefficients pi(t) in

the Duffing-type equation, together with the impulse forces given by (1.3), to establish the
Lagrange stability. More precisely, we will prove the Lagrange stability and the existence of
quasi-periodic solutions for (1.3) with low regularity in time

pi(t) ∈ Cγ(T1) (i = 0, . . . , n), γ > 1 − 1
n

.

1.2 Main result

To formulate our main result we have to introduce some notations and hypotheses. Let R, C, N
and Z be the sets of all real numbers, complex numbers, natural numbers and integers, re-
spectively. Denote by T the impulsive time sequence {tj}, j = ±1,±2, . . . , and denote by A
the set of indexes j. We assume that the following condition (H) holds true.
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(H) There exists a positive integer k such that 0 < t1 < t2 < · · · < tk < 1, and that tj’s, γj’s
are 1-periodic in j in the sense that tj+k = tj + 1, γj+k = γj for j ≤ −(k + 1) or j ≥ 1;
tj+k+1 = tj + 1, γj+k+1 = γj for −k ≤ j ≤ −1.

The main result in this paper is the following theorem.

Theorem 1.1. Suppose that condition (H) holds and that for each 0 ≤ i ≤ n, there is pi(t) ∈ Cγ(T1)

with γ > 1 − 1
n . In addition, assume that

k

∏
j=1

γj = 1. (1.4)

Then the time-1 map P̃ : (x, ẋ)t=0 7→ (x, ẋ)t=1 of (1.3) possesses many (positive Lebesgue measure)
invariant closed curves whose radiuses tend to infinity, and thus every solution x(t) of (1.3) is bounded
for all time, i.e. it exists for all t ∈ R and

sup
t∈R

(|x(t)|+ |ẋ(t)|) ≤ C̃ < +∞,

where C̃ = C̃(x(0), ẋ(0)) depends on the initial data (x(0), ẋ(0)).

Remark 1.2. In equation (1.3), the jump maps Φj : (x, y) 7→ (x, y)+ ((γj − 1)x, (γn+1
j − 1)y) are

homeomorphisms which are not area-preserving (when γj ̸= 1), and |Ij(x, y)| = |(γj − 1)x| =
O(|x|) (when γj ̸= 1). Thus, the conditions (i) and (ii) mentioned above in [30] are not satisfied.

Remark 1.3. Equation (1.1) can be written as a Hamiltonian system with the Hamiltonian
function H = h0(x, y) + R(x, y, t). It is essential to regard R as a relatively small perturbation
with respect to h0. See [15] for the detail. Otherwise, the stability might have been violated
even without the impulse. Note also that the Duffing-type equation in (1.3) is simpler than
(1.1) since the terms pi(t)xi (n + 1 ≤ i ≤ 2n) are absent. For the general case of equation (1.1)
under the impulse given by (1.3), we refer to [3] for some discussions on the obstruction when
establishing the Lagrange stability.

Remark 1.4. When using KAM theory to (1.2), one of the main difficulties is the estimation of
“small property condition” of Moser’s twist theorem. In [30], the difficult was overcome when
the smoothness in time pi ∈ Cγ(T1) with γ > 2 − 1

n is used. However, for equation (1.3), we
observe that the smoothness can be relaxed to Cγ(T1) with γ > 1 − 1

n , which is closely related
to the almost sharp result in [34]. Our method is also based on the approximation techniques
used in [34].

The paper is organized as follows. In Section 2, we establish the global existence of solu-
tions for impulsive differential equations (1.3) and construct the associated time-one map. In
Section 3, we introduce the action-angle variables and apply a preliminary symplectic trans-
formation such that (1.3) becomes a nearly integrable Hamiltonian system. In Section 4, we
introduce the approximate lemma to approximate the smooth periodic function by a real an-
alytic function. In Section 5, we take further symplectic transformations such that Moser’s
twist theorem can be applied. In Section 6, we establish some estimates for the impulsive
functions after the transformation. Finally, in Section 7, we prove Theorem 1.1 by employing
Moser’s twist theorem.
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2 Global existence of solutions and time-one map

In this section, we establish the global existence of solutions for impulsive differential equa-
tions (1.3) and construct the associated time-one map. We begin with the general impulsive
differential equation {

u̇ = F(t, u), t ̸= tj,

∆u(tj) := u(t+j )− u(tj) = Lj(u(tj)), j ∈ A
(2.1)

with the initial value condition
u(τ+) = u0, (2.2)

where τ ∈ R, u0 ∈ Rm, m ∈ N, and where u(τ+) = u(τ) if τ /∈ T . Suppose that

(H1) The function F : R × Rm 7→ Rm is continuous, locally Lipschitz in the second variable.

(H2) The function F is 1-periodic in the first variable. There exists a positive integer k such
that 0 < t1 < t2 < · · · < tk < 1, tj+k = tj + 1, Lj+k(·) = Lj(·) for j ≤ −(k + 1) or j ≥ 1;
tj+k+1 = tj + 1, Lj+k+1(·) = Lj(·) for −k ≤ j ≤ −1.

(H3) The impulsive functions Lj : Rm → Rm are continuous for all j ∈ A.

Lemma 2.1 ([30, Lemma 3.2]). Assume that the conditions (H1)–(H3) hold and that every jump
equation

u = v + Lj(v), u ∈ Rm, j = 1, . . . , k, (2.3)

has a unique solution with respect to v ∈ Rm. Assume in addition that all the solutions of the unforced
equation u̇ = F(t, u) exist for all t ∈ R. Then the following conclusions hold true.

(a) For any τ ∈ R, u0 ∈ Rm, there is a unique solution u = u(t; τ, u0) of (2.1) satisfying the initial
value condition (2.2), and it exists for all t ∈ R.

(b) If the equation u̇ = F(t, u) is conservative and the impulsive maps ℵj : u 7→ u + Lj(u)(j ∈ A)
are homeomorphisms of Rm, then for t ∈ R \ T , the map Qt : u0 7→ u(t; τ, u0) is also a
homeomorphism.

(c) The solution satisfies the elastic property. That is, for any b0 > 0, there is rb0 > 0 such that the
inequality |u0| ≥ rb0 implies |u(t; τ, u0)| ≥ b0, for t ∈ (τ, τ + 1].

In order to deduce a global existence result of the impulsive Duffing equation (1.3), by
letting y = ẋ and noting that x(t−j ) = x(tj), y(t−j ) = y(tj), we can rewrite equation (1.3) as an
equivalent system of the form

ẋ = y, t ̸= tj,

ẏ = −x2n+1 − ∑n
i=0 pi(t)xi, t ̸= tj;

∆x(tj) = Ij(x(tj), y(tj)) = (γj − 1)x(tj),

∆y(tj) = Jj(x(tj), y(tj)) = (γn+1
j − 1)y(tj), j = 1, 2, . . . , k.

(2.4)

For (2.4), each jump map

ℵ̃j :

{
u = x + Ij(x, y),

v = y + Jj(x, y), j = 1, . . . , k
(2.5)
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is a homeomorphism on R2. Note also that every solution (x(t), y(t)) of the unforced Duffing
equation {

ẋ = y,

ẏ = −x2n+1 − ∑n
i=0 pi(t)xi

satisfying the initial value condition (x(t0), y(t0)) = (x0, y0) is unique and exists for all t ∈ R.
Then using the implicit function theorem and Lemma 2.1, we obtain the following corollary.

Corollary 2.2. Suppose that condition (H) holds and that for each 0 ≤ i ≤ n, pi(t) ∈ Cγ(T1) with
γ > 1 − 1

n . Then the following statements hold.

(a) For any τ ∈ R, (x0, y0) ∈ R2, there is a unique solution

(x(t), y(t)) = (x(t; τ, x0, y0), y(t; τ, x0, y0))

of (2.4) satisfying the initial condition x(τ+) = x0, y(τ+) = y0, which exists for all t ∈ R.

(b) The map Qt : (x0, y0) 7→ (x(t; τ, x0, y0), y(t; τ, x0, y0)) is continuous in (x0, y0) for t ∈ R \ T .

(c) The solution satisfies the elastic property. More precisely, for any b0 > 0, there is rb0 >

0 such that the inequalities |x0| ≥ rb0 , |y0| ≥ rb0 implies that |x(t; τ, x0, y0)| ≥ b0 and
|y(t; τ, x0, y0)| ≥ b0 for t ∈ (τ, τ + 1].

In order to deduce the time-one map of impulsive Duffing equation (2.4), we denote
by (x(t), y(t)) = (x(t; x0, y0), y(t; x0, y0)) the solution of (2.4) satisfying the initial condition
(x(0), y(0)) = (x0, y0). Let

P̃0 : (x0, y0) 7→ (x(t1), y(t1)) := (x1, y1),

Φ1 : (x1, y1) 7→ (x1 + I1(x1, y1), y1 + J1(x1, y1)) = (x(t+1 ), y(t+1 )) := (x+1 , y+1 ),

P̃1 : (x+1 , y+1 ) 7→ (x(t2), y(t2)) := (x2, y2),

Φ2 : (x2, y2) 7→ (x2 + I2(x2, y2), y2 + J2(x2, y2)) = (x(t+2 ), y(t+2 )) := (x+2 , y+2 ),
...

P̃k−1 : (x+k−1, y+k−1) 7→ (x(tk), y(tk)) := (xk, yk),

Φk : (xk, yk) 7→ (xk + Ik(xk, yk), yk + Jk(xk, yk)) = (x(t+k ), y(t+k ) := (x+k , y+k ),

P̃k : (x+k , y+k ) 7→ (x(1), y(1)).

Then the time-one map P̃ : (x0, y0) 7→ (x(1), y(1)) of (2.4) can be expressed by

P̃ = P̃k ◦ Φk ◦ · · · ◦ P̃1 ◦ Φ1 ◦ P̃0.

Remark 2.3. Under the condition (H), since the impulsive maps Φj : (x, y) 7→ (x, y) +
(Ij(x, y), Jj(x, y)), (j = 1, 2, . . . , k) are homeomorphisms on R2, the time-one map P̃ of (2.4)
is also a homeomorphism on R2.

From Corollary 2.2 and Remark 2.3, we have the following result.

Corollary 2.4. Suppose that the condition (H) holds and that for each 0 ≤ i ≤ n there is pi(t) ∈
Cγ(T1) with γ > 1 − 1

n . Then the time-one map P̃ of (2.4) is a homeomorphism on R2. Moreover, for
any b0 > 0, there is rb0 > 0 such that the inequalities |x0| ≥ rb0 , |y0| ≥ rb0 implies that |x(1; x0, y0)| ≥
b0 and |y(1; x0, y0)| ≥ b0.
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3 Action-angle variables

In this section, we introduce the action-angle variables and apply a preliminary symplectic
transformation such that (1.3) becomes a nearly integrable Hamiltonian system. The trans-
formations are standard for the Duffing equation and can be found in [6, 30, 34] for instance.
Let

x = AX, (3.1)

Y = A−nẊ = A−n−1 ẋ = A−n−1y, (3.2)

∆X(tj) = X(t+j )− X(tj), ∆Y(tj) = Y(t+j )− Y(tj). (3.3)

Then we see from equation (1.3) that
Ẋ = ∂H∗

∂Y , t ̸= tj,

Ẏ = − ∂H∗

∂X , t ̸= tj,

∆X(tj) = (γj − 1)X(tj) := Ĩj(X(tj), Y(tj)),

∆Y(tj) = (γn+1
j − 1)Y(tj) := J̃j(X(tj), Y(tj)),

(3.4)

where j = 1, 2, . . . , k and

H∗(X, Y, t) = An
(

1
2

Y2 +
1

2(n + 1)
X2(n+1)

)
+

n

∑
i=0

pi(t)
i + 1

Ai−n−1Xi+1. (3.5)

The similar formulation of (3.4) can be also found in Section 5 in [30].
Consider the auxiliary Hamiltonian system

Ẋ =
∂H∗

0
∂Y

, Ẏ = −∂H∗
0

∂X
, (3.6)

where
H∗

0 (X, Y) =
1
2

Y2 +
1

2(n + 1)
X2(n+1).

Let (X0(t), Y0(t)) be the solution of (3.6) with initial (X0(0), Y0(0)) = (1, 0). Then this solution
is clearly periodic. Let T0 be its minimal positive period. By the energy conservation, we have

(s1) (n + 1)Y2
0 (t) + X2n+2

0 (t) ≡ 1;

(s2) X0(−t) = X0(t), Y0(−t) = −Y0(t);

(s3) Ẋ0(t) = Y0(t), Ẏ0(t) = −X2n+1
0 (t);

(s4) X0(t + T0) = X0(t), Y0(t + T0) = Y0(t).

We construct the following symplectic transformation

Ψ0 : X = cαλαX0(θT0), Y = cβλβY0(θT0), (3.7)

where α = 1
n+2 , β = 1 − α = n+1

n+2 , c = 1
αT0

and (λ, θ) ∈ R+ × T1 is the action-angle variables.

By calculation, the Jacobian determinant det ∂(X,Y)
∂(θ,λ) = 1. Then the transformation Ψ0 is indeed

symplectic.
By (3.7), we have

λ =
1
c
[X2n+2 + (n + 1)Y2]

n+2
2n+2 . (3.8)



8 X. He, Y. Sun and J. Shen

We claim that there exists the inverse function X̃−1
0 such that θ = X̃−1

0 (c−αλ−αX). Indeed,
from (3.7) we have X0(θT0) = c−αλ−αX. In the case of θ ∈ [0, 1

2 ], by (s3) we get dX0(θT0)
dθ =

T0Y0(θT0) < 0. Thus, we have
θ = T−1

0 X−1
0 (c−αλ−αX).

In the case of θ ∈ ( 1
2 , 1), by using (3.7), (s2) and (s4), we have

X = cαλαX0(θT0) = cαλαX0(−θT0) = cαλαX0((1 − θ)T0).

Let ξ = 1 − θ and we have dX0(ξT0)
dξ = T0Y0(ξT0) < 0 for ξ ∈ (0, 1

2 ). Then we get ξ =

T−1
0 X−1

0 (c−αλ−αX) and thus
θ = 1 − T−1

0 X−1
0 (c−αλ−αX).

From (3.4), we have that for j = 1, 2, . . . , k{
X(t+j ) = X(tj) + Ĩj(X(tj), Y(tj)) = γjX(tj),

Y(t+j ) = Y(tj) + J̃j(X(tj), Y(tj)) = γn+1
j Y(tj).

(3.9)

Then using (1.3), (3.7)–(3.9), we have that

∆λ(tj) = λ(t+j )− λ(tj)

=
1
c
[X2n+2(t+j ) + (n + 1)Y2(t+j )]

n+2
2n+2 − λ(tj)

=
1
c
{[X(tj)+ Ĩj(X(tj), Y(tj))]

2n+2+(n+1)[Y(tj)+ J̃j(X(tj), Y(tj))]
2} n+2

2n+2 −λ(tj)

=
1
c
{[γjX(tj)]

2n+2 + (n + 1)[γn+1
j Y(tj)]

2} n+2
2n+2 − λ(tj)

=
1
c
{γ2n+2

j [X2n+2(tj) + (n + 1)Y2(tj)]}
n+2

2n+2 − λ(tj)

= γn+2
j λ(tj)− λ(tj) = (γn+2

j − 1)λ(tj)

=: J∗j (λ(tj), θ(tj))

(3.10)

for j = 1, 2, . . . , k.
By using (3.7), we have that for j = 1, 2, . . . , k there is

X(tj) = c
1

n+2 λ
1

n+2 (tj)X0(θ(tj)T0), Y(tj) = c
n+1
n+2 λ

n+1
n+2 (tj)X0(θ(tj)T0), (3.11)

and

X(t+j ) = c
1

n+2 λ
1

n+2 (t+j )X0(θ(t+j )T0), Y(t+j ) = c
n+1
n+2 λ

n+1
n+2 (t+j )X0(θ(t+j )T0). (3.12)

Then using (3.10) and (3.12) we have that for j = 1, 2, . . . , k,

X(t+j ) = c
1

n+2 [λ(tj) + J∗j (λ(tj), θ(tj))]
1

n+2 X0(θ(t+j )T0)

= c
1

n+2 [λ(tj) + (γn+2
j − 1)(λ(tj)]

1
n+2 X0(θ(t+j )T0)

= γjc
1

n+2 λ
1

n+2 (tj)X0(θ(t+j )T0).

(3.13)

Combining γj > 0, (3.9), (3.12) and (3.13), we have that for j = 1, 2, . . . , k,

X(tj) = c
1

n+2 λ
1

n+2 (tj)X0(θ(t+j )T0). (3.14)
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Similarly, by (1.3), (3.9), (3.10) and (3.12), we have that for j = 1, 2, . . . , k,

Y(t+j ) = γn+1
j c

n+1
n+2 λ

n+1
n+2 (tj)Y0(θ(t+j )T0) = γn+1

j Y(tj),

and thus
Y(tj) = c

n+1
n+2 λ

n+1
n+2 (tj)Y0(θ(t+j )T0). (3.15)

By (3.11), (3.14) and (3.15), we have θ(t+j ) = θ(tj). Then, for j = 1, 2, . . . , k,

∆θ(tj) = θ(t+j )− θ(tj) = 0 := I∗j (λ(tj), θ(tj)). (3.16)

As a result, under the transformation Ψ0, system (3.4) is changed into
θ̇ = ∂H

∂λ , t ̸= tj,

λ̇ = − ∂H
∂θ , t ̸= tj,

∆θ(tj) = I∗j (λ(tj), θ(tj)),

∆λ(tj) = J∗j (λ(tj), θ(tj)), j = 1, 2, . . . , k,

(3.17)

where I∗j (λ(tj), θ(tj)) = 0, J∗j (λ(tj), θ(tj)) = (γn+2
j − 1)λ(tj) and H(λ, θ, t) = H0(λ) + R(λ, θ, t)

with
H0(λ) = d · An · λ

2(n+1)
n+2 , d =

1
2(n + 1)

c
2(n+1)

n+2

and

R(λ, θ, t) =
n

∑
i=0

pi(t)
i + 1

Ai−n−1(cαX0(θT0))
i+1λα(i+1).

4 Approximation lemma

In this section, we make use of the Jackson–Moser–Zehnder approximate lemma (see [28,29,34]
for the detail) to approximate the smooth periodic function R by a real analytic periodic
function Rε. Some estimates of Rε and the remainder Rε = R − Rε are also given for the later
application.

Let T1
ε = {t ∈ C/Z : |Im t| < ε} for any ε > 0. By the Jackson–Moser–Zehnder lemma (see

Lemma 6.1 in [30]), for each pi ∈ Cγ(T1), i = 0, 1, . . . , n, and any ε > 0, there is a real analytic
function (a complex value function f (t) of complex variable t in some domain in C is called
real analytic if it is analytic in the domain and is real for real argument t) pi,ε(t) from T1

ε to C
such that

sup
t∈T1

|pi,ε(t)− pi(t)| ≤ Cεγ∥pi∥Cγ

and
sup
t∈T1

ε

|pi,ε(t)| ≤ C∥pi∥Cγ .

Write
R(λ, θ, t) = Rε(λ, θ, t) + Rε(λ, θ, t),

where

Rε(λ, θ, t) =
n

∑
i=0

1
i + 1

Ai−n−1c
i+1
n+2 Xi+1

0 (θT0)λ
i+1
n+2 pi,ε(t),
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Rε(λ, θ, t) =
n

∑
i=0

1
i + 1

Ai−n−1c
i+1
n+2 Xi+1

0 (θT0)λ
i+1
n+2 (pi(t)− pi,ε(t)).

Then, we have
H = H0(λ) + Rε(λ, θ, t) + Rε(λ, θ, t), (4.1)

where
H0(λ) = d · An · λ

2(n+1)
n+2 , d =

1
2(n + 1)

c
2(n+1)

n+2 . (4.2)

We introduce two definitions.

Definition 4.1. Given constants p and q, for a complex valued function f = f (λ, θ, t, A):
(λ, θ, t) ∈ [1,+∞)× T1 × T1

ε → C, where A ≫ 1 is a large constant, we say that

f = Oε(Apλq),

if f is C∞ in (λ, θ) ∈ [1,+∞)× T1 and is analytic in t ∈ T1
ε and for all nonnegative integers k

and l, there is

sup
(θ,t)∈T1×T1

ε

|(Dλ)
k(Dθ)

l f (λ, θ, t, A)| < Ck,l Apλq−k, λ ≫ 1,

where Ck,l is a constant depending on k and l.

Definition 4.2. Given constants p and q, for a function f = f (λ, θ, t, A): (λ, θ, t) ∈ [1,+∞)×
T1 × T1 → R, where A ≫ 1 is a large constant, we say that

f = O(Apλq),

if f is C∞ in (λ, θ) ∈ [1,+∞)× T1 and C1 in t ∈ T1 and for all nonnegative integers k and l,
there is

sup
(θ,t)∈T1×T1

|(Dλ)
k(Dθ)

l f (λ, θ, t, A)| < Ck,l Apλq−k, λ ≫ 1,

where Ck,l is a constant depending on k and l.

Lemma 4.3.

(i) If f1 = O(Ap1 λq1), f2 = O(Ap2 λq2), then f1 · f2 = O(Ap1+p2 λq1+q2);

(ii) If f = O(Apλq1), g(λ) = O(λq2) satisfy |g(λ)| ≥ cλq2 for λ ≥ λ0, and c > 0, q2 > 0, then
f ∗(λ, θ, t) := f (g(λ), θ, t) = O(Apλq1q2);

(iii) If f = O(Apλq), u = O(Apλq1), v = O(Apλq2) and q1 < 1, q2 < 0, then f ∗∗(λ, θ, t) :=
f (λ + u, θ + v, t) = O(Apλq).

Proof. (i). Since

(Dk
λDl

θ)( f1 · f2) =
k

∑
i=0

l

∑
j=0

Ci
kCj

l (Dk−i
λ Dl−j

θ f1) · (Di
λDj

θ f2),

by Definition 4.2, it follows that

f1 · f2 = O(Ap1+p2 λq1+q2).
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(ii). Note that (Dk
λDl

θ) f (g(λ), θ, t) is a sum of the terms

(Dl
θ Dp

g f (g(λ), θ, t)) · (Dm1
λ g) · (Dm2

λ g) · · · (Dmp
λ g)

with ∑
p
i=1 mi = k. Direct computation leads to the estimate

sup
(θ,t)∈T1×T1

|(Dk
λ)(Dl

θ) f (g(λ), θ, t))| ≤ Ck,l Apλq1q2−k,

and consequently
f ∗(λ, θ, t)) = f (g(λ), θ, t)) = O(Apλq1q2).

(iii). We observe that (Dk
λ)(Dl

θ) f (λ + u, θ + v, t) is a sum of the terms

Dl
θ [(Dq

ϕDp
µ f (µ, ϕ))(Dm1

λ µ)(Dm2
λ µ) · · · (Dmp

λ µ)(Dn1
λ ϕ)(Dn2

λ ϕ) · · · (Dnq
λ ϕ)],

where µ = λ + u, ϕ = θ + v, 0 ≤ p + q ≤ k, ∑
p
i=1 mi + ∑

q
i=1 ni = k, and

Dl
θ [(Dq

ϕDp
µ f (µ, ϕ))(Dm1

λ µ)(Dm2
λ µ) · · · (Dmp

λ µ)(Dn1
λ ϕ)(Dn2

λ ϕ) · · · (Dnq
λ ϕ)]

=
l

∑
i=1

Ci
l(Di

θ Dq
ϕDp

µ f (µ, ϕ)) · Dl−i
θ [Dm1

λ µ) · · · (Dmp
λ µ)(Dn1

λ ϕ) · · · (Dnq
λ ϕ)],

where Di
θ Dq

ϕDp
µ f (µ, ϕ) is a sum of the terms

(Dq+q̃
ϕ Dp+ p̃

µ f (µ, ϕ))(Dm̃1
θ µ)(Dm̃2

θ µ) · · · (Dm̃p
θ µ)(Dñ1

θ ϕ)(Dñ2
θ ϕ) · · · (Dñq

θ ϕ),

with 0 ≤ p̃ + q̃ ≤ i, ∑
p̃
j=1 m̃j + ∑

q̃
j=1 ñj = i. Noting that u = O(Apλq1), v = O(Apλq2),

q1 < 1, q2 < 0, we have

sup
(θ,t)∈T1×T1

|(Dk
λ)(Dl

θ) f (λ + u, θ + v, t)| ≤ Ck,l Apλq−k.

As a result, we obtain

f ∗∗(λ, θ, t) = f (λ + u, θ + v, t) = O(Apλq).

Let ε = A−ν, where ν > 0 will be specified later. By Definition 4.1 and Definition 4.2,
we have

Rε(λ, θ, t) = Oε

(
A−1λ

n+1
n+2
)
, (4.3)

Rε(λ, θ, t) = O
(

A−1−νγλ
n+1
n+2
)
. (4.4)

In the following, we will omit the constant d in H0(λ) (see (4.2)) without loss of generality.

5 Some transformations

Firstly, we look for a series of symplectic transformations Ψ1, . . . , ΨN such that HN := H ◦
Ψ1 ◦ · · · ◦ ΨN = HN

0 + O(ε0), ε0 = A−δ, δ > 0. The following lemma is similar to Lemma 7.1
in [30] and we refer to [30] for the proof.
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Lemma 5.1. Let H(λ, θ, t) be the same as (4.1). For A ≫ 1, λ ≫ 1, then there is a symplectic
diffeomorphism Ψ1 depending periodically on t of the form

Ψ1 :

{
λ = µ̃ + u1(µ̃, ϕ̃, t),

θ = ϕ̃ + v1(µ̃, ϕ̃, t),

with u1 = Oε

(
A−1−nµ̃

1
n+2
)

and v1 = Oε

(
A−1−nµ̃− n+1

n+2
)
. Moreover the transformed Hamiltonian

vector field Ψ1(XH) = XH1 is of the form

H1(µ̃, ϕ̃, t) = H1
0(µ̃, t) + R̃1

ε (µ̃, ϕ̃, t) + Rε ◦ Ψ1(µ̃, ϕ̃, t),

where
H1

0(µ̃, t) = H0(µ̃) + [Rε](µ̃, t), H0 = dAn · µ̃
2(n+1)

n+2 ,

[Rε] = Oε

(
A−1µ̃

n+1
n+2

)
, R̃1

ε (µ̃, ϕ̃, t) = O ε
2

(
A−2−n)+ O ε

2

(
Au−1−nµ̃

1
n+2

)
,

Rε ◦ Ψ1(µ̃, ϕ̃, t) = O
(

A−1−vγµ̃
n+1
n+2

)
.

Let
τ > 0, ν < n(1 + τ), (5.1)

and
λ ∈

[
c1A(n+2)τ, c2A(n+2)τ

]
, c2 > c1 > 0.

Repeating the symplectic diffeomorphism in Lemma 5.1 for N times, we get N symplectic
transformations Ψ1, . . . , ΨN such that

HN(µ, ϕ, t) = H ◦ Ψ1 ◦ · · · ◦ ΨN = HN
0 (µ, t) + RN

ε (µ, ϕ, t),

where
µ ∈

[
c1A(n+2)τ, c2A(n+2)τ

]
, c2 > c1 > 0,

HN
0 (µ, t) = H0(µ) + H1(µ, t),

H0 = d · An · µ
2(n+1)

n+2 , H1 = O ε
2N

(
A−1µ

n+1
n+2

)
,

RN
ε = O ε

2N

(
A−1−N(1+n)µ

n+1−N(n+1)
n+2

)
+ O ε

2N

(
A−1+N(v−n)µ

n+1−Nn
n+2

)
+ O

(
A−1−νγµ

n+1
n+2

)
.

Now the corresponding unforced equation in (3.17) can be changed intoϕ̇ = ∂HN

∂µ = ∂H0(µ)
∂µ + ∂H1(µ,t)

∂µ + ∂RN
ε (µ,ϕ,t)

∂µ ,

µ̇ = − ∂HN

∂ϕ = − ∂RN
ε (µ,ϕ,t)

∂ϕ ,
(5.2)

where
∂H0(µ)

∂µ
= d · 2n + 2

n + 2
Anµ

n
n+2

and we omit the constant d · 2n+2
n+2 for simplicity in the following arguments. Define the diffeo-

morphism

Ψ : ρ =
∂µ

2n+2
n+2

∂µ
=

2n + 2
n + 2

µ
n

n+2 , ϕ = ϕ, (5.3)



Lagrange stability for a class of impulsive Duffing-type equations 13

and we get

ρ̇ =
n(2n + 2)
(n + 2)2 µ

−2
n+2 µ̇.

Then we have

ρ̇ = O
(

A−1−N(n+1)µ
n−1−N(n+1)

n+2

)
+ O

(
A−1+N(ν−n)µ

n−1−Nn
n+2

)
+ O

(
A−1−νγµ

n−1
n+2

)
,

ϕ̇ = ρ + r(ρ, t) + O
(

A−1−N(n+1)µ
−1−N(n+1)

n+2

)
+ O

(
A−1−N(ν−n)µ

−1−Nn
n+2

)
+ O

(
A−1−νγµ

−1
n+2

)
,

where r(ρ, t) = ∂H1(µ,t)
∂µ with µ =

( n+2
2n+2 ρ

) n+2
n . Thus

r(ρ, t) = O
(

A−1µ
−1

n+2

)
= O

(
A−1

(
n + 2

2n + 2
ρ

)− 1
n
)

= O
(

A−1ρ−
1
n

)
.

Noting that µ ∈ [c1A(n+2)τ, c2A(n+2)τ], we have

ρ ∈
[

c1
2n + 2
n + 2

Anτ, c2
2n + 2
n + 2

Anτ

]
. (5.4)

It follows that

ρ̇ = O
(

A−1−N(n+1)+[n−1−N(n+1)]τ
)
+ O

(
A−1+N(ν−n)+(n−1−Nn)τ

)
+ O

(
A−1−νγ+(n−1)τ

)
,

ϕ̇ = ρ + r(ρ, t) + O
(

A[−1−N(n+1)](1+τ)
)
+ O

(
A−1+N(ν−n)+(−1−Nn)τ

)
+ O

(
A−1−νγ−τ

)
.

When N ≫ 1 and ν < n(1 + τ), we have

−1 + N(ν − n) + (n − 1 − Nn)τ = N[ν − n(1 + τ)] + (n − 1)τ − 1 < 0,

−1 + N(ν − n) + (−1 − Nn)τ = N[ν − n((1 + τ)]− (1 + τ) < 0.

When N ≫ 1 and τ > 0, we have

−1 − N(n + 1) + [n − 1 − N(n + 1)]τ < 0, [−1 − N(n + 1)](1 + τ) < 0.

Note that −1 − νγ − τ < −1 − νγ + (n − 1)τ < n − 1 − νγ + (n − 1)τ. Let

n − 1 − νγ + (n − 1)τ < 0, (5.5)

Then, by (5.1) and (5.5), we have

(n − 1)(1 + τ)

γ
< ν < n(1 + τ). (5.6)

Since γ > 1 − 1
n , we have (n − 1)/γ < n. Then, when τ > 0 and ν ∈

( (n−1)(1+τ)
γ , n(1 + τ)

)
,

there is δ > 0 and (5.2) can be changed into{
ϕ̇ = ρ + r(ρ, t) + f (ρ, ϕ, t) = ρ + r(ρ, t) + O(A−δ),

ρ̇ = g(ρ, ϕ, t) = O(A−δ),
(5.7)

where ϕ ∈ T1, r(ρ, t) = O(A−1ρ−
1
n ) and ρ ∈ [c3Anτ, c4Anτ] for c4 > c3 > 0 given by (5.4).
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Next we compute the transformed impulsive forces in (3.17). Based on the symplectic
transformation Ψ1 in Lemma 5.1, we see from the implicit function theorem that

µ̃ = λ + u(λ, θ, t), ϕ̃ = θ + v(λ, θ, t).

Under the symplectic transformation Ψ1, we see that the jumps ∆θ(tj) and ∆λ(tj) in (3.17) can
be changed into {

∆ϕ̃(tj) := ϕ̃(t+j )− ϕ̃(tj) = Ĩ∗j (µ̃(tj), ϕ̃(tj)),

∆µ̃(tj) := µ̃(t+j )− µ̃(tj) = J̃∗j (µ̃(tj), ϕ̃(tj)),
(5.8)

where j = 1, 2, . . . , k.
In the same way, under the symplectic transformation Ψ2, the jumps ∆ϕ̃(tj) and ∆µ̃(tj) can

be changed into new forms{
∆ϕ̄(tj) := ϕ̄(t+j )− ϕ̄(tj) = Ī∗j (µ̄(tj), ϕ̄(tj)),

∆µ̄(tj) := µ̄(t+j )− µ̄(tj) = J̄∗j (µ̄(tj), ϕ̄(tj)),
(5.9)

where j = 1, 2, . . . , k. Repeating this procedure by the symplectic transformations Ψ1, . . . , ΨN ,
the jumps in (3.17) are finally changed into{

∆ϕ(tj) := ϕ(t+j )− ϕ(tj) = I∗∗j (µ(tj), ϕ(tj)),

∆µ(tj) := µ(t+j )− µ(tj) = J∗∗j (µ(tj), ϕ(tj)),
(5.10)

where j = 1, 2, . . . , k. Combining (5.2) and (5.10), we see that (3.17) can be transformed into
ϕ̇ = ∂H0(µ)

∂µ + ∂H1(µ,t)
∂µ + ∂RN

ε (µ,ϕ,t)
∂µ ,

µ̇ = − ∂RN
ε (µ,ϕ,t)

∂ϕ , t ̸= tj;

∆ϕ(tj) = I∗∗j (µ(tj), ϕ(tj)),

∆µ(tj) = J∗∗j (µ(tj), ϕ(tj)), j = 1, 2, . . . , k.

(5.11)

Similarly, under Ψ defined by (5.3), system (5.11) can be transformed into
ϕ̇ = ρ + r(ρ, t) + f (ρ, ϕ, t) = ρ + r(ρ, t) + O(A−δ),

ρ̇ = g(ρ, ϕ, t) = O(A−δ), t ̸= tj;

∆ϕ(tj) = I∗∗1
j (ρ(tj), ϕ(tj)),

∆ρ(tj) = J∗∗1
j (ρ(tj), ϕ(tj)), j = 1, 2, . . . , k,

(5.12)

where ϕ ∈ T1, r(ρ, t) = O(A−1ρ−
1
n ) and ρ ∈ [c3Anτ, c4Anτ].

It should be pointed out that, although we have not been able to formulate explicitly
I∗∗1
j (ρ(tj), ϕ(tj)) and J∗∗1

j (ρ(tj), ϕ(tj)), we can implicitly express them. We will calculate the
estimates of the impulsive functions I∗∗1

j (ρ(tj), ϕ(tj)) and J∗∗1
j (ρ(tj), ϕ(tj)) in next section.

6 Some estimates

In this section, we will establish some estimates for impulsive functions I∗∗1
j (ρ, ϕ) and

J∗∗1
j (ρ, ϕ). To this end, we first give the estimates of I∗∗j (µ, ϕ) and J∗∗j (µ, ϕ). In this whole

section and in the sequel, all the occurrences of j mean j = 1, 2, . . . , k.



Lagrange stability for a class of impulsive Duffing-type equations 15

Lemma 6.1. Assume that the conditions in Theorem 1.1 are satisfied. Let µ(tj) = µ, ϕ(tj) = ϕ. We
have the following estimates

I∗∗j (µ, ϕ) = O(A−1−nµ− n+1
n+2 ),

J∗∗j (µ, ϕ) = (γn+2
j − 1)µ + f j(µ, ϕ)

with f j(µ, ϕ) = O(A−1−nµ
1

n+2 ), where I∗∗j (µ, ϕ) and J∗∗j (µ, ϕ) are given by (5.10).

Proof. For (λ, θ) ∈ [c1A(n+2)τ, c2A(n+2)τ] × T1, from Lemma 5.1, the symplectic diffeomor-
phism Ψ1 is of the form

Ψ1 : λ = µ̃ + u1(µ̃, ϕ̃, t), θ = ϕ̃ + v1(µ̃, ϕ̃, t), (6.1)

where (µ̃, ϕ̃) ∈ [c1A(n+2)τ, c2A(n+2)τ]× T1, u1 = O(A−1−nµ̃
1

n+2 ), v1 = O(A−1−nµ̃− n+1
n+2 ). By the

implicit function theorem, we have

µ̃ = λ + u(λ, θ, t), ϕ̃ = θ + v(λ, θ, t), (6.2)

where |u| < CA−1−nλ
1

n+2 and |v| < CA−1−nλ− n+1
n+2 .

Next we show that

u = O
(

A−1−nλ
1

n+2

)
, v = O

(
A−1−nλ− n+1

n+2

)
. (6.3)

Indeed, we see from Lemma 5.1 that{
λ = µ̃ + ∂S1

∂θ = µ̃ + ν(µ̃, θ, t),

ϕ̃ = θ + ∂S1
∂µ̃ = θ + g(µ̃, θ, t),

(6.4)

where
ν(µ̃, θ, t) = O

(
A−1−nµ̃

1
n+2

)
, g(µ̃, θ, t) = O

(
A−1−nµ̃− n+1

n+2

)
.

From (6.2) and (6.4) we know
u = −ν(λ + u, θ, t). (6.5)

If µ̃ and λ are large, then |Dµ̃ν| ≤ 1/2, so that u is uniquely determined by the contraction
principle. Moreover, the implicit function theorem implies that u is C∞ with respect to (λ, θ) ∈
[c1 A(n+2)τ, c2A(n+2)τ]× T1. We claim that

u = O
(

A−1−nλ
1

n+2

)
. (6.6)

Indeed, applying (Dλ)
l to equation (6.5), the right hand side is a sum of the terms

(Dp
µ̃)(Dj1

λ (λ + u))(Dj2
λ (λ + u)) · · · (Djp

λ (λ + u)), (6.7)

with 1 ≤ p ≤ l and ∑
p
i=1 ji = l. The highest order term is the one with p = 1, namely

(Dµ̃ν)Dn
λu. Note that |u| < CA−1−nλ

1
n+2 . Assuming that for j ≤ n − 1 the estimates |Dj

λu| <
CA−1−nλ

1
n+2−j hold true, then inductively, from (6.4) and (6.5) we can conclude that the same

estimate holds true for j = n. In fact, from (6.4) we have

|Dp
µ̃ν| < CA−1−nλ

1
n+2−p,
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which yields

|(1 − Dµ̃ν)Dl
λu| ≤ CA−1−nλ

1
n+2−pλ1−j1 · · · λ1−jp < CA−1−nλ

1
n+2−l .

It follows that
|Dl

λu| < CA−1−nλ
1

n+2−l .

The estimates of (Dθ)
j(Dλ)

iu can be proved similarly. Thus, the claim (6.6) is valid. Similarly,
one also has

v = O
(

A−1−nλ− n+1
n+2

)
.

Under the symplectic transformation Ψ1, the jumps ∆θ(tj) and ∆λ(tj) in (3.17) can be
changed into Ĩ∗j (µ̃(tj), ϕ̃(tj)) and J̃∗j (µ̃(tj), ϕ̃(tj)) (see (5.8)). Then using (3.17), (5.8), (6.1) and
(6.2), we have

Ĩ∗j (µ̃(tj), ϕ̃(tj)) = ϕ̃(t+j )− ϕ̃(tj)

= θ(t+j ) + v(λ(t+j ), θ(t+j ), tj)− θ(tj)− v(λ(tj), θ(tj), tj)

= I∗j (λ(tj), θ(tj)) + v(λ(tj) + J∗j (λ(tj), θ(tj)), θ(tj)

+ I∗j (λ(tj), θ(tj)), tj)− v(λ(tj), θ(tj), tj)

= v[γn+2
j (µ̃(tj) + u1(µ̃(tj), ϕ̃(tj), tj)), ϕ̃(tj) + v1(µ̃(tj), ϕ̃(tj), tj), tj]

− v[µ̃(tj) + u1(µ̃(tj), ϕ̃(tj), tj), ϕ̃(tj) + v1(µ̃(tj), ϕ̃(tj), tj), tj],

J̃∗j (µ̃(tj), ϕ̃(tj)) = µ̃(t+j )− µ̃(tj)

= λ(t+j ) + u(λ(t+j ), θ(t+j ), tj)− λ(tj)− u(λ(tj), θ(tj), tj)

= J∗j (λ(tj), θ(tj)) + u(λ(tj) + J∗j (λ(tj), θ(tj)), θ(tj)

+ I∗j (λ(tj), θ(tj)), tj)− u(λ(tj), θ(tj), tj)

= (γn+2
j − 1)λ(tj) + u(γn+2

j λ(tj), θ(tj), tj)− u(λ(tj), θ(tj), tj)

= (γn+2
j − 1)µ̃(tj) + (γn+2

j − 1)u1(µ̃(tj), ϕ̃(tj), tj)

+ u(γn+2
j (µ̃(tj) + u1(µ̃(tj), ϕ̃(tj), tj)), ϕ̃(tj) + v1(µ̃(tj), ϕ̃(tj), tj), tj)

− u(µ̃(tj) + u1(µ̃(tj), ϕ̃(tj), tj), ϕ̃(tj) + v1(µ̃(tj), ϕ̃(tj), tj), tj)

=: (γn+2
j − 1)µ̃(tj) + f̃ j(µ̃(tj), ϕ̃(tj)).

It follows from
u1 = O

(
A−1−nµ̃

1
n+2

)
, v1 = O

(
A−1−nµ̃− n+1

n+2

)
,

u = O
(

A−1−nµ̃
1

n+2

)
, v = O

(
A−1−nµ̃− n+1

n+2

)
and Lemma 4.3 that

Ĩ∗j (µ̃(tj), ϕ̃(tj)) = O
(

A−1−nµ̃− n+1
n+2

)
, f̃ j(µ̃(tj), ϕ̃(tj)) = O

(
A−1−nµ̃

1
n+2

)
. (6.8)

Similarly, under the symplectic transformation Ψ2, the jumps Ĩ∗j (µ̃(tj), ϕ̃(tj)) and
J̃∗j (µ̃(tj), ϕ̃(tj)) can be changed into Ī∗j (µ̄(tj), ϕ̄(tj)) and J̄∗j (µ̄(tj), ϕ̄(tj)) (see (5.9)). Moreover,
there are

Ī∗j (µ̄(tj), ϕ̄(tj)) = O
(

A−1−nµ̄− n+1
n+2

)
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and
J̄∗j (µ̄(tj), ϕ̄(tj)) = (γn+2

j − 1)µ̄(tj) + f̄ j(µ̄(tj), ϕ̄(tj))

with
f̄ j(µ̄(tj), ϕ̄(tj)) = O

(
A−1−nµ̄

1
n+2

)
.

Finally, by repeating this procedure and noting the fact that Ψ = Ψm ◦ Ψm−1 ◦ · · · ◦ Ψ1

transforms (3.17) into (5.11), we have

I∗∗j (µ(tj), ϕ(tj)) = O
(

A−1−nµ̄− n+1
n+2

)
and

J∗∗j (µ(tj), ϕ(tj)) = (γn+2
j − 1)µ(tj) + f j(µ(tj), ϕ(tj))

with f j(µ(tj), ϕ(tj)) = O
(

A−1−nµ
1

n+2
)
. This completes the proof of Lemma 6.1.

Lemma 6.2. Under the assumptions of Theorem 1.1, we have

I∗∗1
j (ρ(tj), ϕ(tj)) = O

(
A−1−nρ−

n+1
n

)
,

and
J∗∗1
j (ρ(tj), ϕ(tj)) = (γn

j − 1)ρ(tj) + g̃j(ρ(tj), ϕ(tj))

with g̃j(ρ(tj), ϕ(tj)) = O
(

A−1−nρ−
1
n
)
, where I∗∗1

j (ρ(tj), ϕ(tj)) and J∗∗1
j (ρ(tj), ϕ(tj)) are given by

(5.12).

Proof. By (5.3), (5.12), Lemma 6.1 and Taylor’s formula, we have

I∗∗1
j (ρ(tj), ϕ(tj)) = ϕ(t+j )− ϕ(tj) = I∗∗j (µ(tj), ϕ(tj))

= I∗∗j

((
n + 2

2n + 2
ρ(tj)

) n+2
n

, ϕ(tj)

)
and

J∗∗1
j (ρ(tj), ϕ(tj)) = ρ(t+j )− ρ(tj) =

2n + 2
n + 2

µ
n

n+2 (t+j )− ρ(tj)

=
2n + 2
n + 2

[µ(tj) + J∗∗j (µ(tj), ϕ(tj))]
n

n+2 − ρ(tj)

=
2n + 2
n + 2

[µ(tj) + (γn+2
j − 1)µ(tj) + f j(µ(tj), ϕ(tj))]

n
n+2 − ρ(tj)

=
2n + 2
n + 2

[γn+2
j µ(tj)]

n
n+2

(
1 +

f j(µ(tj), ϕ(tj))

γn+2
j µ(tj)

) n
n+2

− ρ(tj)

= γn
j ρ(tj)

1 +
n

n + 2
f j(µ(tj), ϕ(tj))

γn+2
j µ(tj)

(
1 + ξ

f j(µ(tj), ϕ(tj))

γn+2
j µ(tj)

)− 2
n+2
− ρ(tj)

= (γn
j − 1)ρ(tj) +

ρ−
2
n (tj) f j

(( n+2
2n+2 ρ(tj)

) n+2
n , ϕ(tj)

)
n+2

n

( n+2
2n+2

) n+2
n γ2

j

×

1 + ξ

f j

(( n+2
2n+2 ρ(tj)

) n+2
n , ϕ(tj)

)
γn+2

j

( n+2
2n+2 ρ(tj)

) n+2
n


− 2

n+2
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=: (γn
j − 1)ρ(tj) + g̃j(ρ(tj), ϕ(tj))

by (6.8), where ξ ∈ (0, 1). Then by Lemma 4.3 and Lemma 6.1, we have

I∗∗1
j (ρ(tj), ϕ(tj)) = O

(
A−1−nρ

n+2
n ·(− n+1

n+2 )
)
= O

(
A−1−nρ−

n+1
n

)
,

g̃j(ρ(tj), ϕ(tj)) = O
(

ρ−
2
n A−1−nρ

n+2
n · 1

n+2

)
= O

(
A−1−nρ−

1
n

)
.

This completes the proof of Lemma 6.2.

7 Proof of Theorem 1.1

The following two lemmas are similar to Lemma 9.2 in [30] and Lemma 6.2 in [3], respectively.
We refer to [30] and [3] for the proofs. Let (ρ(t), ϕ(t)) = (ρ(t, ρ, ϕ), ϕ(t, ρ, ϕ)) be the solution
of (5.12) with the initial value (ρ(0), ϕ(0)) = (ρ, ϕ). Let ϕ1 = ϕ(1), ρ1 = ρ(1).

Lemma 7.1. If all conditions of Theorem 1.1 hold, then the time one map Φ1 of the flow Φt of (5.12)
takes the form of

Φ1 :

{
ϕ1 = ϕ + α(ρ) + F(ρ, ϕ),

ρ1 = ρ + G(ρ, ϕ).

Moreover, α̇(ρ) > 0 and for any non-negative integers r, s with r + s ≤ 5,∣∣∣∣∂r+sF(ρ, ϕ)

∂ρr∂ϕs

∣∣∣∣ ,
∣∣∣∣∂r+sG(ρ, ϕ)

∂ρr∂ϕs

∣∣∣∣ < CA−ε0 ,

where ε0 = min(τ, δ) > 0, (ρ, ϕ) ∈ [c3Anτ, c4Anτ]× T1, c4 > c3 > 0, A ≫ 1, τ > 0, δ > 0.

Lemma 7.2. Assume that the conditions of Theorem 1.1 are satisfied, then the time-1 map Φ1 of (4.1)
has the intersection property on Ω = {(ρ, ϕ) | ρ large enough, ϕ ∈ T1}, i.e. if Γ is an embedded
circle in Ω homotopic to a circle ρ = const. in Ω, then Φ1(Γ)

⋂
Γ ̸= ∅. In particular, Φ1 has the

intersection property on Ω =
{
(ρ, ϕ) | c3Anτ ≤ ρ ≤ c4Anτ, ϕ ∈ T1}, where c4 > c3 > 0, τ > 0.

Now let us state Moser’s twist theorem. Let D be an annulus given by

D : a ≤ r ≤ b, 0 < a < b.

For convenience, we introduce for a function h ∈ Cl(D) the norm

|h|l = sup
D, m+n≤l

∣∣∣∣ ∂m+n

∂rm∂θn

∣∣∣∣ .

Theorem 7.3 (Moser’s twist theorem). Let α(r) ∈ Cl and |∂r α(r)| ≥ ν > 0 on the annulus D for
some l with l ≥ 5, and ε be a positive number. Then there exists a δ > 0 depending on ε, l, α(r), such
that any area-preserving mapping

M :

{
θ1 = θ + 2πα(r) + f (r, θ),

r1 = r + g(r, θ)

of D into R2 with f , g ∈ Cl and
| f |l + |g|l ≤ ν δ
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possesses an invariant curve of the form

r = c + u(ξ), θ = ξ + v(ξ)

in D where u, v are continuously differentiable, of period 2π and satisfy

|u|1 + |v|1 < ε,

and c is a constant in (a, b). Moreover, the induced mapping of this curve is given by

ξ → ξ + ω,

where ω is incommensurable with 2π, and satisfies infinitely many conditions∣∣∣∣ ω

2π
− p

q

∣∣∣∣ ≥ γ q−τ

with some positive γ, τ, for all integers q > 0, p. In fact, each choice of ω in the range of α(r) and
satisfying the above inequalities give rise to such an invariant curve.

Moser’s twist theorem above can be found in [21, pp. 50–54] (see also [27]). It should be
pointed out that the δ does not depend on ν. It should be also noted that the period 2π can
be replaced by any period T. In addition, “any area-preserving mapping” can be relaxed to
“any mapping which has intersection property”.

We are now in a position to prove Theorem 1.1. From Lemma 7.1 and Lemma 7.2, by
Moser’s twist theorem, Φ1 has an invariant curve Γ̃ in the annulus (ρ, ϕ) ∈ [c3Anτ, c4Anτ]×T1,
c4 > c3 > 0, A ≫ 1, τ > 0. It follows that the time-one map of the original system has an
invariant curve Γ̃A0 . Choosing a sequence A0 = Am0 → ∞ as m → ∞, we have that there are
countable many invariant curves Γ̃Am0 , clustering at ∞. Therefore any solution of the original
system is bounded. This completes the proof of Theorem 1.1.

Remark 7.4. Any solutions starting from the invariant curves Γ̃Am0 (m = 1, 2, . . . ) are quasi-
periodic with frequencies (1, ωm) in time t, where (1, ωm) satisfies Diophantine conditions
and ωm > CAnτ

m0. Actually, the frequencies can form a positive Lebesgue set in R.
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