
Electronic Journal of Qualitative Theory of Differential Equations
2024, No. 5, 1–13; https://doi.org/10.14232/ejqtde.2024.1.5 www.math.u-szeged.hu/ejqtde/

Homoclinic solutions for subquadratic
Hamiltonian systems with competition potentials

Rui-Qi Liu1, Dong-Lun WuB 2 and Jia-Feng Liao3

1Meishan High School, Meishan, 620010, P.R. China
2School of Science, Civil Aviation Flight University of China, Guanghan, 618307, P.R. China

3College of Mathematics Education, China West Normal University, Nanchong, 637009, P.R. China

Received 22 April 2023, appeared 11 January 2024

Communicated by Gabriele Bonanno

Abstract. In this paper, we consider of the following second-order Hamiltonian system

ü(t)− L(t)u(t) +∇W(t, u(t)) = 0, ∀t ∈ R,

where W(t, x) is subquadratic at infinity. With a competition condition, we establish the
existence of homoclinic solutions by using the variational methods. In our theorem, the
smallest eigenvalue function l(t) of L(t) is not necessarily coercive or bounded from
above and W(t, x) is not necessarily integrable on R with respect to t. Our theorem
generalizes many known results in the references.
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1 Introduction

In this paper, we consider the following Hamiltonian system

ü(t)− L(t)u(t) +∇W(t, u(t)) = 0, ∀t ∈ R, (1.1)

where W ∈ C1(R × RN , R
)
, L ∈ C

(
R, RN2

)
is a symmetric matrix valued function and

∇W(t, x) denotes the gradient with respect to the x variable. A nontrivial solution u(t) of
problem (1.1) is homoclinic if u(t) → 0, u̇(t) → 0 as t → ±∞ and u(t) ̸≡ 0.

The importance of homoclinic solutions for Hamiltonian systems in studying the dynamic
behavior has been recognized. In recent years, many mathematicians used the variational
methods to show the existence and multiplicity of homoclinic solutions for systems (1.1) with
different growth conditions on W(t, x). In this paper, we only consider the subquadratic cases.
In [5], Ding assumed
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(L′) letting l(t) ≡ inf|q|=1(L(t)q, q), there exists ξ > 1 such that

|t|−ξ l(t) → +∞, as |t| → +∞.

By (L′), Ding showed a compact embedding theorem from H1(R) to Lp(R) for p ∈ (1,+∞].
Under some other subquadratic conditions on W(t, x) with respect to x, Ding obtained the
existence and multiplicity of homoclinic solutions for systems (1.1). This result has been
generalized by many mathematicians. For example, in [19], Zhang introduced condition

(L′′) There exists a constant l0 > 0 such that l(t) + l0 ≥ 1 for all t ∈ R and∫
R
(l(t) + l0)

−1 dt < ∞. (1.2)

By (L′′), the embedding H1(R) ↪→ L1(R) is compact. Obviously, (L′′) is weaker than (L′)

and both of these two conditions yield that l−1(t) decays fast at infinity. When l−1(t) has a
slow decay at infinity, it is difficult for us to obtain such compact embeddings. In this case,
we can consider the decaying rate of W(t, x) at infinity with respect to t. Let us consider
the pure power nonlinearities with weight functions, i.e. W(t, x) = a(t)|x|ν(ν ∈ (1, 2)). In
[23], Zhang and Yuan assumed that a(t) belongs to L2(R, R+) ∩ L

2
2−ν (R, R+) to make sure

the corresponding functional is well defined and show the convergence of the (PS) sequence.
This condition is weakened by Sun, Chen and J. Nieto [12] by just requiring a ∈ L

2
2−ν (R, R+).

In 2014, Lv and Tang [11] obtained homoclinic solutions for systems (1.1) with more general
weight functions where a ∈ Lp(R, R) for some p ∈

(
1, 2

2−ν

]
. The readers are referred to

[1–3, 6–10, 13–18, 20–22] for more details.
From above papers, we know that, the decaying rates of l−1(t) and a(t) at infinity are

important for us in finding homoclinic solutions of (1.1). There is an interesting question
that whether systems (1.1) possesses homoclinic solutions when a(t) is unbounded or l(t) is
oscillating (which means lim inf|t|→∞ l(t) < +∞ and lim sup|t|→∞ l(t) = +∞)? Motivated by
the above analysis, we are encouraged to find a twisted condition between l(t) and a(t) which
can be stated as follows:

(W0) For b ∈ [1, 2] and µ ∈ (1, 2), there exist γ ∈
(
b, 2b

2+b−bµ

]
and k ∈

[
0, γ−b

bγ

]
such that

a(t)
(l(t))k ∈ Lγ(R).

More precisely, we obtain the following theorem.

Theorem 1.1. Suppose that (W0) holds for b = 2 and

(L1) one of the following statements holds:

(i) L ∈ C2(R, RN2
) and ((L′′(t)− κL(t))x, x) ≤ 0 for all |t| ≥ r̄1 and x ∈ RN ;

(ii) L ∈ C1(R, RN2
) and |L′(t)x| ≤ κ|L(t)x| for all |t| ≥ r̄1 and x ∈ RN

with some κ > 0 and r̄1 > 0, where L′(t) = (d/dt)L(t) and L′′(t) = (d2/dt2)L(t);

(L2) there exists M0 > 0 such that l(t) ≥ M0 for all t ∈ R, where l(t) ≡ inf|u|=1(L(t)u, u);

(W1) W(t, 0) ≡ 0, there exists a ∈ C (R, R+) such that |∇W(t, x)| ≤ a(t)|x|µ−1;

(W2) there exist λ ∈ (1, 2), η > 0, ζ > 0 and open set Ω ⊂ R such that

W(t, x) ≥ η|x|λ, ∀(t, x) ∈ Ω × RN , |x| ≤ ζ.

Then system (1.1) possesses at least one nontrivial homoclinic solution.

(L1) is assumed to show all the critical points of corresponding functional for systems
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(1.1) are classical homoclinic solutions, which is introduced in [5]. In [11, 13, 18], the authors
only considered the homoclinic solutions in sense of u(t) → 0 as |t| → ∞ while we consider
the classical ones. To obtain the asymptotic behavior of the solutions at infinity, we can also
consider the following condition

(L3) there exist δ > 0, D > 0, q ∈ [1, 2] and r0 > 0 such that∫ t+δ

t
l̂q(s)ds ≤ D

for all |t| ≥ r0, where l̂(t) ≡ sup|u|=1(L(t)u, u).

It is easy to see that (L3) holds if all the eigenvalues of L(t) are bounded from above. Then
(L3) can be seen as a generalization of the following bounded condition

(L4) there exists R > 0 such that

(L(t)u, u) ≤ R|u|2, ∀(t, u) ∈ R × RN .

Then we obtain the following theorem.

Theorem 1.2. Suppose (L2), (L3), (W1), (W2) and (W0) hold with b = q, then system (1.1)
possesses at least one nontrivial homoclinic solution.

Remark 1.3. In our theorems, condition (W0) is a class of competition conditions between
a and l. When 0 < inft∈R l(t) ≤ supt∈R l(t) < ∞, (W0) reduces to a(t) ∈ Lγ(R), which is
required in [12, 13, 18, 22]. There are examples satisfying the conditions of Theorems 1.1 and
1.2 but not the results in [2, 5, 7–14, 16–23].

Example 1.4 (Oscillating example for Theorem 1.1). Let L(t) = l(t)IdN and W(t, x) = a(t)|x| 8
5 ,

where

l(t) =

{
sin (ln 2) + 1 for |t| < 1,

t
6
7
(
sin
(
ln(t2 + 1)

)
+ 1
)
+ 1 for |t| ≥ 1,

a(t) = t
1

20
(
sin
(
ln(t2 + 1)

)
+ 1
) 3

10

and IdN is the identity matrix of order N. It is easy to see that

lim inf
|t|→∞

l(t) = 1, lim sup
|t|→∞

l(t) = +∞, lim inf
|t|→∞

a(t) = 0 and lim sup
|t|→∞

a(t) = +∞.

Hence l(t), a(t) are neither coercive nor bounded from above and l−1(t), (a(t))p ̸∈ L(R) for
any p ∈ (1, 5]. However, this example satisfies the conditions of Theorem 1.1 with γ = 5 and
k = 3

10 . Here, we only need to show condition (L1) is fulfilled while the other conditions can
be easily checked. To check (L1), we show (ii) holds, which can be verified by the following
inequality(

6
7

t−
1
7 sin

(
ln(t2 + 1)

)
+

2t
13
7

t2 + 1
cos

(
ln(t2 + 1)

))
|x| ≤

(
t

6
7
(
sin
(
ln(t2 + 1)

)
+ 1
)
+ 1
)
|x|

for all x ∈ RN and |t| large enough.
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Example 1.5 (Coercive example for Theorem 1.1). There are also examples in which l(t) and
a(t) are both coercive. Let L(t) =

(
t6 + 1

)
IdN and W(t, x) = t

2
5 |x| 3

2 . If we choose γ = 4 and
k = 1

4 , (W0) is fulfilled. Moreover, other conditions of Theorem 1.1 can be easily checked.
However this example does not satisfy the results in [2, 5, 7–14, 17–23].

Example 1.6 (Oscillating example for Theorem 1.2). Let

g(t) =


2n

8
9
(
n

8
9 + 1

)
|t| − 2n

17
9 (n

8
9 + 1), n ≤ |t| < n + 1

2
(

n
8
9 +1
) ,

−2n
8
9
(
n

8
9 + 1

)
|t|+ 2n

17
9
(
n

8
9 + 1

)
+ 2n

8
9 , n + 1

2
(

n
8
9 +1
) ≤ |t| ≤ n + 1

n
8
9 +1

,

0, otherwise

(1.3)

and

m(t) =


2n

1
72
(
n

8
9 + 1

)
|t| − 2n

73
72
(
n

8
9 + 1

)
, n ≤ |t| < n + 1

2
(

n
8
9 +1
) ,

−2n
1

72
(
n

8
9 + 1

)
|t|+ 2n

73
72
(
n

8
9 + 1

)
+ 2n

1
72 , n + 1

2
(

n
8
9 +1
) ≤ |t| ≤ n + 1

n
8
9 +1

,

0, otherwise

(1.4)

for all n ∈ N∪{0}. We see that g(t), m(t) ≥ 0 and g ̸∈ L(R), m ̸∈ L(R). Let a(t) = m(t)+ e−|t|

and L(t) = l(t)IdN , where l(t) =
√

g(t) + 1. Obviously,

lim inf
|t|→∞

l(t) = 1, lim sup
|t|→∞

l(t) = +∞, lim inf
|t|→∞

a(t) = 0, lim sup
|t|→∞

a(t) = +∞.

Choosing q = 2 and δ = 1
4 , we deduce from the definitions of l̂ and g that

∫ t+ 1
4

t
l̂2(s)ds =

∫ t+ 1
4

t
l2(s)ds =

∫ t+ 1
4

t
(g(s) + 1)ds

≤ 1
2

[
∑

i=[|t|]−1,[|t|],[|t|]+1

i
8
9

i
8
9 + 1

]
+

1
4

≤ 7
4

for |t| is large enough. Then (L3) is checked. Moreover, l−1(t) , (a(t))p ̸∈ L(R) for any p > 1.
Here we only give the proof for (a(t))p ̸∈ L(R). It follows from the definition of a(t) that

∫
R

ap(s)ds ≥
∞

∑
n=0

∫ n+ 1

2
(

n
8
9 +1
)

n
mp(s)ds

=
∞

∑
n=0

∫ n+ 1

2
(

n
8
9 +1
)

n

(
2n

1
72

(
n

8
9 + 1

)
s − 2n

73
72

(
n

8
9 + 1

))p
ds

=
∞

∑
n=0

n
p

72

2(p + 1)
(

n
8
9 + 1

)
= +∞
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which implies (a(t))p ̸∈ L(R) for all p > 1. Finally, we show (W0) is fulfilled with b = q = 2.
Set W(t, x) = a(t)|x| 3

2 . Choosing γ = 4 and k = 1
4 , from (1.3) and (1.4), we infer that

∫
R

(
a(s)

l
1
4 (s)

)4

ds

=
∫

R

a4(s)√
g(s) + 1

ds

≤
∫

R

8
(

m4(s) + e−4|s|
)

√
g(s) + 1

ds

≤ 8
∫

R

m4(s)√
g(s)

ds + 8
∫

R
e−4|s|ds

≤ 16
∞

∑
n=0

n− 63
144

∫ n+ 1

2
(

n
8
9 +1
)

n

(
2n

1
72

(
n

8
9 + 1

)
s − 2n

73
72
(

n
8
9 + 1

)) 7
2

ds

+ 16
∞

∑
n=0

n− 63
144

∫ n+ 1

n
8
9 +1

n+ 1

2
(

n
8
9 +1
)
(
−2n

1
72

(
n

8
9 + 1

)
s + 2n

73
72
(

n
8
9 + 1

)
+ 2n

1
72

) 7
2

ds + 4

=
32
9

∞

∑
n=0

n− 7
18

n
8
9 + 1

+ 4

< + ∞.

Then all the conditions of Theorem 1.2 are satisfied. However, since a is not integrable or
bounded, l(t) is not bounded or coercive, our example does not satisfy the theorems in [2, 5,
8, 9, 11–14, 17, 18, 20–23].

2 Proof of Theorem 1.1

Set

E :=
{

u ∈ H1(R, RN) :
∫

R
(|u̇(t)|2 + (L(t)u(t), u(t)))dt < ∞

}
with

(u, v) =
∫

R
((u̇(t), v̇(t)) + (L(t)u(t), u(t)))dt.

By (L2), the embedding E ↪→ Lp (R, RN) is continuous for all p ∈ [2,+∞]. Hence, for any
p ∈ [2,+∞],

∥u∥p ≤ Cp∥u∥, ∀u ∈ E (2.1)

for some Cp > 0. Furthermore, let I : E → R be the functional of (1.1) defined by

I(u) =
∫

R

(
1
2
|u̇(t)|2 + 1

2
(L(t)u(t), u(t))− W(t, u(t))

)
dt. (2.2)

First, we give the following useful estimate.
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Lemma 2.1. Let u ∈ E. For any θ > 0 and q ∈ [1, 2], the following inequality holds

|u(t)| ≤ θ
1

q∗ −1
(∫ t+θ

t
|u(s)|qds

) 1
q

+ θ
1

q∗

(∫ t+θ

t
|u̇(s)|q ds

) 1
q

, ∀t ∈ R. (2.3)

Furthermore, if u ∈ C2(R, RN), there holds

|u̇(t)| ≤ θ
1

q∗ −1
(∫ t+θ

t
|u̇(s)|qds

) 1
q

+ θ
1

q∗

(∫ t+θ

t
|ü(s)|q ds

) 1
q

, ∀t ∈ R, (2.4)

where 1
q +

1
q∗ = 1 (q∗ = +∞, if q = 1).

Proof. For any t, τ ∈ R,

|u(t)| ≤ |u(τ)|+
∣∣∣∣∫ t

τ
u̇(s)ds

∣∣∣∣ .

Integrating over [t, t + θ], we get

θ|u(t)| ≤
∫ t+θ

t
|u(τ)|dτ +

∫ t+θ

t

∣∣∣∣∫ t

τ
u̇(s)ds

∣∣∣∣ dτ

≤ θ
1

q∗

(∫ t+θ

t
|u(s)|qds

) 1
q

+ θ
∫ t+θ

t
|u̇(s)| ds

≤ θ
1

q∗

(∫ t+θ

t
|u(s)|qds

) 1
q

+ θ
1

q∗ +1
(∫ t+θ

t
|u̇(s)|q ds

) 1
q

,

which implies

|u(t)| ≤ θ
1

q∗ −1
(∫ t+θ

t
|u(s)|qds

) 1
q

+ θ
1

q∗

(∫ t+θ

t
|u̇(s)|q ds

) 1
q

.

Then we obtain (2.3). Similarly, we can also obtain (2.4).

Lemma 2.2. Suppose (L2), (W0)–(W2) hold, then I ∈ C1(E, R) and

⟨I′(u), v⟩ =
∫

R
[(u̇(t), v̇(t)) + (L(t)u(t), v(t))− (∇W(t, u(t)), v(t))]dt. (2.5)

Moreover, all the critical points of I are homoclinic solutions of (1.1) if (L1) holds with b = 2 or (L3)
holds with b = q respectively.

Proof. First, we show that I is well defined. By (W1), we infer that

|W(t, u(t))| =
∣∣∣∣∫ 1

0
(∇W(t, su(t)), u(t))ds

∣∣∣∣ ≤ 1
µ

a(t)|u(t)|µ, ∀(t, u) ∈ R × RN . (2.6)

First, we consider a general case, i.e. γ ∈
(
1, 2

2−µ

]
and k ∈

[
0, γ−1

γ

)
. For any Λ ⊂ R, it follows



Homoclinic solutions for subquadratic Hamiltonian systems 7

from (W0) and (2.1) that∫
Λ

a(t)|u(t)|µdt

=
∫

Λ

a(t)
(l(t))k (l(t))

k|u(t)|µdt

≤
(∫

Λ

(
a(t)

(l(t))k

)γ

dt
) 1

γ
(∫

Λ
(l(t))

kγ
γ−1 |u(t)|

µγ
γ−1 dt

) γ−1
γ

=

(∫
Λ

(
a(t)

(l(t))k

)γ

dt
) 1

γ
(∫

Λ
(l(t))

kγ
γ−1 |u(t)|

2kγ
γ−1 |u(t)|

(µ−2k)γ
γ−1 dt

) γ−1
γ

≤
(∫

Λ

(
a(t)

(l(t))k

)γ

dt
) 1

γ

(∫
Λ

l(t)|u(t)|2dt
) kγ

γ−1
(∫

Λ
|u(t)|

(µ−2k)γ
γ−1−kγ dt

) γ−1−kγ
γ−1


γ−1

γ

≤
(∫

Λ

(
a(t)

(l(t))k

)γ

dt
) 1

γ

Cµ−2k
(µ−2k)γ
γ−1−kγ

∥u∥µ. (2.7)

When k = γ−1
γ , we have∫

Λ
a(t)|u(t)|µdt =

∫
Λ

a(t)

(l(t))
γ−1

γ

(l(t))
γ−1

γ |u(t)|µdt

≤
(∫

Λ

(
a(t)

(l(t))
γ−1

γ

)γ

dt

) 1
γ (∫

Λ
l(t)|u(t)|

µγ
γ−1 dt

) γ−1
γ

≤
(∫

Λ

(
a(t)

(l(t))
γ−1

γ

)γ

dt

) 1
γ (

∥u∥
µγ

γ−1−2
∞

∫
Λ

l(t)|u(t)|2dt
) γ−1

γ

≤
(∫

Λ

(
a(t)

(l(t))
γ−1

γ

)γ

dt

) 1
γ

∥u∥
µ− 2(γ−1)

γ
∞ ∥u∥

2(γ−1)
γ

≤
(∫

Λ

(
a(t)

(l(t))
γ−1

γ

)γ

dt

) 1
γ

C
µ− 2(γ−1)

γ
∞ ∥u∥µ. (2.8)

Since
(
b, 2b

2+b−bµ

]
⊂
(
1, 2

2−µ

]
and

[
0, γ−b

bγ

]
⊂
[
0, γ−1

γ

]
for all b ∈ [1, 2], (2.7) and (2.8) also hold

when γ ∈
(
b, 2b

2+b−bµ

]
and k ∈

[
0, γ−b

bγ

]
.

Choosing Λ = R, we see I is well defined. Similar to Lemma 3.1 in [22], one shows
I ∈ C1(E, R) and (2.5) holds. Finally, we show all the critical points of I are homoclinic
solutions for (1.1), i.e. we need to show u(t) → 0 and u̇(t) → 0 as t → ±∞ if u(t) is a critical
point of I. We can easily deduce from (2.5) that L(t)u − ∇W(t, u) is the weak derivative
of u̇. Since E ⊂ C0 (R, RN)(the space of continuous functions), W ∈ C1 (R × RN , R

)
and

L ∈ C
(

R, RN2
)

, we know u is indeed in C2(R, RN). Obviously,

∫ t+θ

t
|u(s)|qds ≤ θ

2−q
2

(∫ t+θ

t
|u(s)|2ds

) q
2

→ 0 as |t| → +∞ (2.9)

and ∫ t+θ

t
|u̇(s)|qds ≤ θ

2−q
2

(∫ t+θ

t
|u̇(s)|2ds

) q
2

→ 0 as |t| → +∞ (2.10)
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for any θ ∈ R. It follows from (2.3) that u(t) → 0 as |t| → +∞. In order to prove u̇(t) → 0 as
|t| → +∞, we show a useful estimate as follow. For any b ∈ [1, 2], it follows from (W0) and
(2.1) that∫

R
|∇W(t, u(t))|bdt

≤
∫

R
ab(t)|u(t)|b(µ−1)dt

=
∫

R

(
a(t)

(l(t))k

)b

(l(t))bk|u(t)|b(µ−1)dt

≤
(∫

R

(
a(t)

(l(t))k

)γ

dt
) b

γ
(∫

R
(l(t))

bkγ
γ−b |u(t)|

bγ(µ−1)
γ−b dt

) γ−b
γ

≤
(∫

R

(
a(t)

(l(t))k

)γ

dt
) b

γ

(∫
R

l(t)|u(t)|2dt
) bkγ

γ−b
(∫

R
|u(t)|

bγ(µ−1−2k)
γ−b−bkγ dt

) γ−b−bkγ
γ−b


γ−b

γ

≤
(∫

R

(
a(t)

(l(t))k

)γ

dt
) b

γ

Cb(µ−1−2k)
bγ(µ−1−2k)

γ−b−bkγ

∥u∥b(µ−1). (2.11)

Similarly, when k = γ−b
bγ ,∫

R
|∇W(t, u(t))|bdt ≤

∫
R

ab(t)|u(t)|b(µ−1)dt

=
∫

R

(
a(t)

(l(t))
γ−b
bγ

)b

(l(t))
γ−b

γ |u(t)|b(µ−1)dt

≤
(∫

R

(
a(t)

(l(t))
γ−b
bγ

)γ

dt

) b
γ (∫

R
l(t)|u(t)|

bγ(µ−1)
γ−b dt

) γ−b
γ

≤
(∫

R

(
a(t)

(l(t))
γ−b
bγ

)γ

dt

) b
γ [

∥u∥
bγ(µ−1)

γ−b −2
∞

∫
R

l(t)|u(t)|2dt
] γ−b

γ

≤
(∫

R

(
a(t)

(l(t))
γ−b
bγ

)γ

dt

) b
γ

C
b(µ−1)− 2(γ−b)

γ
∞ ∥u∥b(µ−1). (2.12)

The following proof is divided into two cases.

Case 1. (L1) holds with b = 2. Let A be the self-adjoint extension of −(d2/dt2) + L(t)
with D(A) ⊂ L2(R, RN). Since we have (L2) and (i)(or (ii)) of (L1), similar to Lemma
2.3 in [5], D(A) is continuously embedded in W2,2(R, RN). Making estimates as (2.9) and
(2.10), it follows from (2.4) that u̇(t) → 0 as |t| → +∞ if u ∈ D(A). Subsequently, we
show all the critical points of I belong to D(A). By (2.11) and (2.12) with b = 2, we see
∥Au∥2

L2 =
∫

R
|∇W(t, u(t))|2dt < ∞. Then u ∈ D(A), which shows u is a homoclinic solution

for (1.1).

Case 2. (L3) holds with b = q. Since u ∈ C2(R, RN), we deduce from (L3) and (2.4) that

|u̇(t)| ≤ δ
1

q∗ −1
(∫ t+δ

t
|u̇(s)|qds

) 1
q

+ δ
1

q∗

(∫ t+δ

t
|ü(s)|q ds

) 1
q

.
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By (2.10), we only need to consider
∫ t+δ

t |ü(s)|qds. Similar to Lemma 3.1 in [22], (2.11) and
(2.12), for any γ ∈

(
q, 2q

2+q−qµ

]
and k ∈

[
0, γ−q

qγ

]
∫ t+δ

t
|ü(s)|qds

≤ 2q−1
∫ t+δ

t
(|∇W(s, u(s))|q + |L(s)u(s)|q) ds

≤ 2q−1M1

(∫ t+δ

t

(
a(s)

(l(s))k

)γ

ds
) q

γ

∥u∥q(µ−1) + 2q−1
∫ t+δ

t

∣∣∣(L(s)u(s))T L(s)u(s)
∣∣∣ q

2 ds

= 2q−1M1

(∫ t+δ

t

(
a(s)

(l(s))k

)γ

ds
) q

γ

∥u∥q(µ−1) + 2q−1
∫ t+δ

t

∣∣∣(u(s))T L2(s)u(s)
∣∣∣ q

2 ds

= 2q−1M1

(∫ t+δ

t

(
a(s)

(l(s))k

)γ

ds
) q

γ

∥u∥q(µ−1) + 2q−1
∫ t+δ

t

∣∣(L2(s)u(s), u(s))
∣∣ q

2 ds

≤ 2q−1M1

(∫ t+δ

t

(
a(s)

(l(s))k

)γ

ds
) q

γ

∥u∥q(µ−1) + 2q−1

[
sup
s≥t

|u(s)|q
] ∫ t+δ

t
l̂q(s)ds

→ 0 as |t| → +∞,

where

M1 =


Cq(µ−1−2k)

qγ(µ−1−2k)
γ−q−qkγ

, k ∈
[
0, γ−q

qγ

)
,

C
q(µ−1)− 2(γ−q)

γ
∞ , k = γ−q

qγ .

Thus u is a homoclinic solution for (1.1).

In the next lemma, we show the functional I satisfies the classical Palais–Smale ((PS) for
short) condition. We say that I satisfies the (PS) condition, if any sequence (ui)i in E such that

(I (ui))i is bounded and I′ (ui) → 0,

admits a convergent subsequence.

Lemma 2.3. Under (L2), (W0) and (W1), I satisfies the (PS) condition.

Proof. Let {ui}i∈N ⊂ E be a sequence such that {I (ui)}i∈N is bounded and I′ (ui) → 0 as
i → +∞. Then there exists B > 0 such that |I (ui)| ≤ B. By (2.2), (2.7) and (2.8) with Λ = R,
we have

∥ui∥2 = 2I (ui) + 2
∫

R
W (t, ui(t)) dt ≤ 2B +

2M2

µ

(∫
R

(
a(t)

(l(t))k

)γ

dt
) 1

γ

∥ui∥µ,

where

M2 =


Cµ−2k

(µ−2k)γ
γ−1−kγ

, k ∈
[
0, γ−1

γ

)
,

C
µ− 2(γ−1)

γ
∞ , k = γ−1

γ ,

which implies {ui}i∈N is bounded in E. Hence, there exists u0 ∈ E(up to passing to a subse-
quence) such that ui ⇀ u0 in E and

⟨I′(ui)− I′(u0), ui − u0⟩

= ∥ui − u0∥2 −
∫

R
(∇W (t, ui(t))−∇W(t, u0(t)), ui(t)− u0(t)) dt → 0 (2.13)
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as i → ∞. Moreover, there exists M3 > 0 such that

sup
j∈N

∥ui∥∞ ≤ M3 and ∥u0∥∞ ≤ M3. (2.14)

For any ε > 0 it follows from (W0) that there exists T > 0 such that(∫
|t|>T

(
a(t)

(l(t))k

)γ

dt
) 1

γ

< ε. (2.15)

It follows from (W0) and Sobolev’s compact embedding theorem in bounded domain that∫
|t|≤T

(∇W (t, ui(t))−∇W(t, u0(t)), ui(t)− u0(t)) dt

≤
∫
|t|≤T

a(t)
(
|ui(t)|µ−1 + |u0(t)|µ−1

)
|ui(t)− u0(t)| dt

≤ a0

(∫
|t|≤T

|ui(t)|µ
) µ−1

µ

+

(∫
|t|≤T

|u0(t)|µ
) µ−1

µ

(∫
|t|≤T

|ui(t)− u0(t)|µ
) 1

µ

≤ ε (2.16)

for i large enough, where a0 = max|t|≤T a(t). By (W0), (2.7) and (2.8) with Λ = R \ [−T, T],
one has ∫

|t|>T
(∇W (t, ui(t))−∇W(t, u0(t)), ui(t)− u0(t)) dt

≤
∫
|t|>T

|∇W (t, ui(t))−∇W (t, u0(t)∥ui(t)− u0(t)|dt

≤
∫
|t|>T

a(t)
(
|ui(t)|µ−1 + |u0(t)|µ−1

)
(|ui(t)|+ |u0(t)|) dt

≤ 3
∫
|t|>T

a(t)
(
|ui(t)|µ + |u0(t)|µ

)
dt

≤ 3M2

(∫
|t|>T

(
a(t)

(l(t))k

)γ

dt
) 1

γ

(∥ui∥µ + ∥u0∥µ) . (2.17)

By the arbitrariness of ε, (2.15) and (2.17), we obtain∫
|t|>T

(∇W (t, ui(t))−∇W(t, u(t)), ui(t)− u0(t)) dt → 0 as i → +∞. (2.18)

Together with (2.16), we obtain∫
R
(∇W (t, ui(t))−∇W(t, u(t)), ui(t)− u0(t)) dt → 0 as i → +∞.

Consequently, we infer from (2.13) and (2.18) that ∥ui − u0∥ → 0 as i → +∞.

Proof of Theorem 1.1. By (2.2), (2.6) and (2.7) with Λ = R, for any u ∈ E, we get

I(u) =
1
2
∥u∥2 −

∫
R

W(t, u(t))dt

≥ 1
2
∥u∥2 − 1

µ

∫
R

a(t)|u(t)|µdt

≥ 1
2
∥u∥2 − M2

µ

(∫
R

(
a(t)

(l(t))k

)γ

dt
) 1

γ

∥u∥µ,
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which implies that I(u) → +∞ as ∥u∥ → +∞. Thus I is bounded from below and satisfies
the (PS) condition. Then there exists ū such that I(ū) = c = infE I(u). We also need to show
that ū ̸≡ 0. Letting φ ∈ C∞

0 (Ω, RN) \ {0} and s > 0, it follows from (2.2) and (W2) that

I (sφ) =
s2

2
∥φ∥2 −

∫
R

W (t, sφ(t)) dt

=
s2

2
∥φ∥2 −

∫
Ω

W (t, sφ(t)) dt

≤ s2

2
∥φ∥2 − ηsλ

∫
Ω
|φ(t)|λ dt,

which implies I(sφ) < 0 when s > 0 small enough. Then we can deduce that infE I(u) < 0,
which implies that ū ̸≡ 0.

Proof of Theorem 1.2. The only difference between Theorems 1.1 and 1.2 is the way to obtain
the asymptotic behavior of the solutions for (1.1) at infinity. This has been shown in the proof
of Lemma 2.2. The remaining part is similar to Theorem 1.1, we omit it here.
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