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Abstract. This paper deals with necessary and sufficient conditions for weak and strong
minimizers of functionals ®(u) = fab f(x,u(x),u'(x))dx, where u € C'([a,b], RN). We
first derive conditions which are simpler than the known ones, and then apply them to
several particular problems, including stability problems in the elasticity theory. In par-
ticular, we solve some open problems in [A. Majumdar, A. Raisch, Stability of twisted
rods, helices and buckling solutions in three dimensions, Nonlinearity 27(2014), 2841-
2867] by finding optimal conditions for the stability of a naturally straight Kirchhoff
rod under various types of endpoint constraints.
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1 Introduction

This paper deals with necessary and sufficient conditions for local minimizers of one-dimen-
sional variational problems for vector-valued functions. We consider the functional

®:Cl([a, b, RY) - R:u s /bf(x,u(x),u’(x)) dx, (1.1)

where —oco < a < b < 00, u = (u1,uy,...,uy), and the Lagrangian'
fila,b] xRN xRN = R: (x,u,p) — f(x,u,p)

is sufficiently smooth (f € C3 or f € C?). We also fix a function u° € C!([a,b],RN) and
(possibly empty) subsets I”, IP of the index set I := {1,2,..., N}, and we look for conditions
guaranteeing that # is a local minimizer of ® in the set

M= {u € C([a,b],RN) : (u; — u?)(a) =0foric IP, (u; —ud)(b) =0foricIP}. (1.2)

SEmail: quittner@fmph.uniba.sk
lAsin [8, pp- 11-12], by u we denote both the functions [a,b] — RN and the independent variable in RY, and
by p we denote the last argument of f; see also similar notation L(¢, x(¢), %(t)) vs. L(t, x,v) in [15], for example.
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This means that at x = a we consider Dirichlet endpoint constraints for the components u;
with i € IP, while the endpoints of the remaining components u; with j € I\ I? are free;
similarly for x = b. It is well known (see Proposition 2.1) that if u° is a local minimizer of this
problem, then u° has to satisfy the natural boundary conditions

;fj(a, u°(a), (u°)'(a)) =0 for j¢ I and %(b,uo(b),(uo)/(b)) —0 for j¢ IP.

We say that u° is a weak (or strong, resp.) local minimizer if there exists ¢ > 0 such that
®(u’) < ®(u) for any u € M satisfying ||u — u®||a < e (or |[u — u®||c < e, resp.), where
|- llct and || - ||c are the usual norms in C! and C, respectively (see Definition 2.2 and the
subsequent comments for more details). If u” is a steady state of a mechanical system with
potential energy @, and u° is a weak (or strong) local minimizer of ®, then u° is stable with
respect to perturbations which are small in C! (or C), respectively. On the other hand, if u° is
not a minimizer, then ©° is unstable.

If IP = IP = I, i.e. if one considers the Dirichlet endpoint constraints for all components
and both ends, then necessary and sufficient conditions for u° to be a minimizer belong to
the classical results in the calculus of variations, see [5,7, 8], for example. They are based on
the Jacobi theory (conjugate points) or the Weierstrass theory (field of extremals and excess
function). In the general case such conditions are also known (see [15,16] and the references
therein, and cf. also [17]); however, they use the notion of a coupled point which is more
complicated than the classical notion of a conjugate point. This might be the reason why — as
far as the author is aware — that general theory has not yet been applied in the elasticity theory,
for example. In the scalar case, another approach to problems with variable endpoints (and
a special class of Lagrangians) can be found in [12] but the conditions there are even more
complicated than those in [15,16]. Reference [12] has been cited by several papers dealing
with problems in the elasticity theory: Some of those papers use the complicated theory in
[12] for scalar problems with special Lagrangians (see [10], for example), some use various
ad-hoc estimates to obtain at least partial results in the vector-valued case (when the theory
in [12] does not seem to apply, see [11], for example) and some refrain from considering
variable endpoints because of the complexity of the theory in [12], see [3], for example, where
the authors write: “...the application of the conjugate point test with nonclamped ends is a
delicate issue ...”. Difficulties arising in a scalar problem with variable endpoints have also
been analyzed in [14], for example.

The main purpose of this paper is to derive simple conditions for u° to be a minimizer,
and to show how they can be applied to particular problems.

In Section 3 we derive necessary and sufficient conditions for weak minimizers by mod-
ifying the Jacobi theory (see Theorem 3.4 and also Remark 7.1 for the comparison of our
conditions with those in [15,16]). In Section 4 we use the results from Section 3 to find op-
timal conditions for the stability of a naturally straight Kirchhoff rod under various types of
endpoint constraints. The reasons for this particular application are the following:

* We show that our general results can easily be applied to vector-valued problems in the
elasticity theory.

¢ We solve some open problems (and correct an erroneous result) in [11].

* We show how the choice of endpoint constraints influences the stability of the rod.
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In Section 5 we use the Weierstrass theory to derive conditions for weak, strong and global
minimizers, see Theorem 5.2. In this case we restrict our applications in Section 6 to the scalar
case N = 1. The reason for this restriction is the following: If N = 1 and the Lagragian f is
independent of its first variable x, then the phase plane analysis of the corresponding Du Bois-
Reymond equation yields a very simple and efficient way to prove (or disprove) the existence
of a suitable field of extremals; hence it is sufficient to verify the nonnegativity of the excess
function in order to check our conditions. In particular, this approach does not require the
verification of sufficient conditions based on the Jacobi theory and it can be used even if we
do not know an explicit formula for u°. In Section 6 we first determine the stability of a planar
weightless inextensible and unshearable rod (see Example 6.3). This problem has already been
analyzed in [1,10], for example, but our analysis is simpler than that in [10] and more complete
than that in [1]. The notions of weak and strong minimizers are equivalent for functionals
® in Section 4 and Example 6.3 (see Remark 4.2(vi) and Proposition 2.3, respectively). To
illustrate various interesting features of minimizers in a more general case and demonstrate
the applicability of our theory, in Example 6.5 we consider Lagrangians of the form f(u, p) =
u? + ¢(p), where g is a double-well function. In particular, the corresponding functional can
possess both strong (even global) minimizers and minimizers which are weak but not strong.
Some of our results in the scalar case N = 1 have been obtained in the Master thesis [2].

2 Preliminaries

Throughout this paper we will use the symbols @, f,u°,4,b, N, I, IP and I introduced in the
Introduction. The partial derivatives of f will be denoted by fx, fu,, fp., fpl.p]., e
Given f € {f, fx,fui,fpi,fpipj, ... }, we will use the notation?

P(x) o= f(x, u(x), (1) (x)).
If x € {a,b} and W is a space of functions [a,b] — RY, then we set

IV =1\17,
RY . :={CeRN:¢=0forieIl},
RY . :={¢€RN: & =0forie )},
Wpy:={v€W:o(x) € RY,},

Wp := Wp, N Wp .

In particular, if W = C! = C!([a, b], RN), then
CL = {v e C'([a,b],RN) : v;(a) = 0 fori € IP, v;(b) =0 fori c I’} 2.1)

is the space of C!-test functions. (Notice that the set M in (1.2) satisfies M = u® + Cl,.)

The norm in a general Banach space X will be denoted by || - || x; the norm in W2 will also
be denoted by || - [|12. In particular, if X = C' = C!([a,b], RN) or X = C = C([a,b], RN), then
[t cr = maxe(os) ()] + maxe(op)[1(x)] o [[ullc = maxee(os) u(x)], respectively, where
|u(x)| denotes the Euclidean norm of u(x) € RN. We also set B, := {¢ € RN : |¢| < ¢}.

2The superscript 0 in {° denotes evaluation of f along the reference arc u’; cf. similar notation L(t) =
L(t,£(t),2(t)) in [15] or f(x) = §(x,u(x),u'(x)) in [8, formulas (30), (39) in Section 2.3, pp. 114-116]. The ad-
vantages of our notation will become evident in Section 6: See the notation introduced in Theorem 6.1.
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We will assume that u? is a critical point of @ in the set u" 4 C},, i.e. ®'(u°)h = 0 for any test
function h € C}, where @' denotes the Fréchet derivative of ®. The following proposition is
well known, but for the reader’s convenience we explain the idea of its proof in the Appendix.

Proposition 2.1. Let f € C! and let u® be a critical point of ® in u® + Ck. Then u is an extremal
(i.e. it satisfies the Euler equations % (f;(o],-) = 31_, i=1,2,...,N),and u® also has to satisfy the natural
boundary conditions

fola)=0 for je LY and f)(b)=0 for je I}, (2.2)
If fp, € C' fori=1,2,...,N, and the strengthened Legendre condition
N
B3>0 Y &G =>ClE,  (eRN, xeab], (2.3)
ij=1
is true, then u® € C2.

It is known that the Legendre condition (i.e. condition (2.3) with ¥ =0)is necessary for u
to be a minimizer, but even the strengthened Legendre condition is not sufficient, in general.
Assuming that

f € C® satifies (2.3), where u’ € C!([a,b], RN) is an extremal satisfying (2.2), (2.4)

and denoting ¥, = YV |, we set
Y (h) = / S (), H(x)) dx, h € W2([a, b],RY), 2.5)

where

§=3(xup) = Z(f;?ipj(x)l?ipj + fou, (X)pisj + fip, (X)uipj +fb(t)iuj(x)uiuj>' (2.6)
i

If h € C!, then ¥(h) = ®"(u°)(h,h), i.e. ¥ is the second variation of ® at u°. In addition, if
h € C2, then integration by parts yields

‘Y(h) = /ﬂb Z(Alh)l’lz dx + Z(le/l)hz l;, (2.7)

where
. d . 0 0 0 0
A= ———(Bih) + Cih, Bih = ;( ot + fouhi), Gl ;( foplt+ fou ). @28)
Set also

Al = (Agh,..., ANh), Bli:= (Bih,...BNB),  foi= (forror fon)r fu = (Farsee oo fun)-

The (vector-valued) second-order linear differential equation Ah = 0 is called the Jacobi
equation (for ® and u): it will play a fundamental role in the study of positive definiteness of
Y. Notice also that the Jacobi equation is the Euler equation for functional ¥. More precisely,
by using the symmetry relations fy,p, = fp.pis fpiu; = fujp; and fuu; = fuu, we obtain

Fpi(x, h(x), 1 (x)) = 2B;h(x), §u,(x,h(x),H (x)) = 2C;ih(x), (2.9)
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hence
2A;h(x) = —;igpi(x,h(x),h’(x)) + Fu, (x, h(x), W (x)). (2.10)

Notice also that, given h, w € W12, (2.9) and the symmetry of the second-order derivatives of
f mentioned above imply

F(hw = /ah Z(spi(xzh(x)/h/(x))wg(x) + Fu, (x, B(x), B (x))wi(x)) dx
; b (2.11)

Definition 2.2. Let w € M, where M is a subset of C!([a,b], RN). The function w is called a
weak or strong local minimizer in M if there exists ¢ > 0 such that ®(v) > ®(w) for any v € M
satisfying ||v — w||c1 < € or ||v — w||c < ¢, respectively.
Let w € N, where N\ is a subset of W'2([a,b],RN). The function w is called a local
minimizer in N if there exists ¢ > 0 such that ®(v) > ®(w) for any v € N satisfying ||v|12 < e.
If the inequalities ®(v) > ®(w) in the definitions above are strict for v # w, then the
minimizer w is called strict.

Since the adjectives weak and strong are not meaningful in the case of global minimizers,
we often omit the word “local” in the notions of weak and strong local minimizers. Each
strong minimizer is a weak minimizer but the opposite is not true, in general. For example,
if N =1and f(x,u,p) = p*>+ p°, then u’ = 0 is a weak but not strong minimizer of ® in
ud + C%) for any choice of 4, b, IE and Il? (see also Example 6.5 for a less trivial example). On
the other hand, the following Proposition 2.3 and Remark 4.2(vi) show that in some cases the
notions of weak and strong minimizers are equivalent. The choice of the class of Lagrangians
in Proposition 2.3 is motivated by Example 6.3, where we consider the stability of a planar
rod. Proposition 2.3 is true for any choice of a4, b, If and IIP ; its proof is postponed to the
Appendix.

Proposition 2.3. Let N = 1 and f(x,u,p) = (p — K)*> + ¢(u), where K € R and g € C'(R). If
u% € Clis a weak minimizer, then it is a strong minimizer.

The following proposition is a consequence of well known facts (see [5, 8], for example).
The assumptions in that proposition are much stronger than necessary, but the proposition

will be sufficient for our purposes (see Remark 4.2(vi), Section 6 and the proof of Proposi-
tion 3.5).

Proposition 2.4.
(i) Let f € CK k> 2.
Ifu € Clis a critical point of ® in u® + Ck and (2.3) is true, then u® € C* and u° satisfies the
Du Bois-Reymond equation
d .
=@ f)) = fi in[ab]. (212)
Conversely, if u® € C? satisfies (2.12) and (u°)’ # 0 a.e., then u° is an extremal.

(i) Let f € C! satisfy the growth condition (1+ |p|)|fp| + |fu] < M(Jul)(1+ |p|)? where M :
[0,00) — [0,00) is nondecreasing. Then ® € CY(W'?). In addition, if u® € W'?2 is a local
minimizer of ® in u® + W%’Z, then there exists C € RN such that

fg(x) = /xfff(g) d¢+C fora.e. x € [a,b].
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3 Jacobi theory

In this section we will prove necessary and sufficient conditions for weak minimizers by
modifying the classical Jacobi theory. Throughout this section we assume (2.4).

The following proposition is well known, but for the reader’s convenience we provide its
proof in the Appendix.

Proposition 3.1. Assume (2.4) and let ¥ be defined by (2.5).
(i) If'Y is positive definite in W32, then u® is a strict weak minimizer in u® + Ch.
(i) If ¥ (h) < 0 for some h € W7, then u® is not a weak minimizer in u® + Ch.
We will consider the scalar case first. Assume that
h is a nontrivial solution of the Jacobi equation Ah = 0. (3.1)

Then the following classical result for problems with Dirichlet endpoint constraints is well
known.

Theorem 3.2. Assume (2.4) with N = 1 and (3.1). Let IV = Igv =@ and h(a) = 0.
(i) If h(y) = 0 for some y € (a,b), then u® is not a weak minimizer.
(ii) If h(y) # O for any y € (a,b), then u® is a strict weak minimizer.
Our analogue in the case of variable endpoints is the following theorem.
Theorem 3.3. Assume (2.4) with N = 1 and (3.1). Let IV = IZ\[ = {1} and Bh(a) = 0.
(i) If h(y) = O for some y € (a,b] or Bh(b)h(b) < 0, then u® is not a weak minimizer.
(ii) If h(y) # O for any y € (a,b] and Bh(b)h(b) > 0, then u® is a strict weak minimizer.

In fact, a slight generalization of Theorem 3.3(ii) has been proved in [2]: The initial condi-
tion Bh(a) = 0 can be replaced with Bh(a)h(a) < 0. Unfortunately, the method of the proof
in [2] does not seem to be easily extendable to the vector-valued case.

Theorems 3.2 and 3.3 are special cases of the following general theorem.

Theorem 3.4. Assume (2.4). Let h'V), ..., hN) be linearly independent solutions of the Jacobi equation
Ah = 0 satisfying the initial conditions h(a) € RY ,, Bh(a) € R}, ,. Set

D(x) := det(h(x),...,h'"N)(x)), H:=span(hV,...,hN)), Hy:={h e H:h(b) =0}.
(i) If D(x) = 0 for some x € (a,b) or
BN # @ and Bh(b) - h(b) < 0 for some h € Hpy,
then u® is not a weak minimizer.
(i) If D #0in (a,b] and
either IV =@ or Bh(b)-h(b) > 0 forany h € Hpy, \ {0},

then u° is a strict weak minimizer.
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(iti) Let D # 0in (a,b), D(b) = 0 (hence Hy # {0}), and IV # @. If
there exists h € Hy such that B;h(b) # 0 for some i € IV, (3.2)
then u° is not a weak minimizer. If IP = @, then (3.2) is always true.

The proof of Theorem 3.4 is based on a modification of the classical Jacobi theory, and
this is also true in the case of the corresponding proof in [16]. However, our conditions in
Theorem 3.4 are simpler than those in [15,16], see Remark 7.1 in the Appendix.

In order to prove Theorem 3.4, we need some preparation. Given y € (a, b], let

Xy := {h € W'?([a,b], RN) : h(a) € RY,, h(x) = 0 for x > y}

be endowed with the norm ||h[|x, := f Y, fplp]h’ K. dx)/? (which is equivalent to the stan-

dard norm in W'? for h € Xy due to (2.3) and the boundary condition h(b) = 0), and let S,
denote the unit sphere in X,,. If 7 € (y, b], then X, C Xj;, hence S, C Sj. Set also

A =M(y) = higsf Y(h) =1+ hmf Y(n), (3.3)
Y

J

where

b
_ / Z(fgiujhghj—i— £0. il + uuhh)dx.
L]

Since S, C Sy if y < 7, the function A, is nonincreasing. In addition, one can easily show that
Aq is continuous, and the estimate

x|=}/”ﬂédds ([ m@pra)” ==
o) 1
(/ prp,hh ) Vy—a= ﬁ\/ﬁ
for h € S, and x € (a,y) implies lim, ,, A1(y) = 1.
Proposition 3.5. Let D be as in Theorem 3.4 and y € (a, b].
(i) IfAM(y) =0, then D(y) = 0and A(z) < 0 for z € (y,b]. If D(y) = 0, then A1(y) < 0.
(ii) Ifh € Xy, then ¥ (h) > Al(b)||h||§(b. If A1(b) < O, then there exists h € X, such that ¥ (h) < 0.

Proof. Let A1(y) = 0 and let B, denote the closed unit ball in X, Since ¥ is weakly sequentially
continuous, there exists /i, € B, such that ‘?(hy) = infp, ¥ = —1. We have h, € Sy (otherwise
th, € B, for some t > 1, and ¥(th,) = *¥(hy) < infp, ¥, which yields a contradiction). Since
Y (hy) = infs, ¥ = 0, hy is a global minimizer of ¥ in X,. Notice that § € C! satisfies the
growth condition

(L + 1D I8 (1, )|+ [§u (2,1, p)| < CL+ [pD (Jul + [pl) <2CA+ [u?) (1 +[p),

where C depends only on the sup-norm of f;?,

7 frgiu/' fgip],, fgiuj, hence Proposition 2.4(ii) and
(2.9) imply

20 (x) = §p (0, (), Hy(0) = [ 3@y (@@ e+ = [ 2y +e (G4
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for a.e. x € [a,y]. Since the right-hand side of (3.4) is a continuous function of x, f € C3
and (2.3) is true (hence the matrix fgl,pj is invertible and the inverse matrix is a continuous

function of x), we see that the restriction of 1, to [a,y] is Cl. Denote this restriction by fzy
and set Cy := {w € C'([a,y]) : w(a) € ]RDa, w(y) = 0}, ¥y(h) = [YF(x,h(x),H (x))dx.
Then I_iy is a critical point of ¥, in hy + C1 C;. Now Proposition 2.1, (2.10) and (2.9)
imply that /1, is C?, it satisfies the Jacobi equation Ah = 01in [a,y] and the natural boundary
conditions Bh(a) € RY; ,. Since we also have h,(a) € R} ,, there exists « € RN \ {0} such that
hy = Yx axh® on [a,y], where h¥) are as in Theorem 3.4. Since &, (y) = 0, we have D(y) = 0.

Next assume on the contrary that A1(y) = 0 = A4(z) for some z € (y,b]. Then the
minimizer hy is a global minimizer of ¥ in X,. Similarly as above we deduce that h, €
C?([a,z]) and hy solves the Jacobi equation in [4,z]. Consequently, h,(y) = Iy (y) = 0, which
yields a contradiction with the uniqueness of solutions of the initial value problem for the
Jacobi equation.

Next assume that D(y) = 0. Then there exists « = (ay,...,ay) € RN\ {0} such that
ho:= Y, ah®) satisfies h(y) = 0, hence if we set i(x) := h(x) for x < y and fi(x) := 0
otherwise, then /1 € X,. In addition, using A;i = 0, B;ih(a) € RY; ,, h(a) € RY , and h(y) =0
we obtain

¥ (h) :/ﬂbg(x,fz(x),fz'(x))dx:/ays(x h(x) dx—/ 2 (A dx+2 (Bih)h

hence A4(y) < 0.
If h € X, \ {0}, then ¥(h) = ||h||§<b‘1’(h/||h||xb) > Al(b)||h||§<h by the definition of Aq. If
A1(b) < 0, then the definition of A; implies the existence of i € Sj, such that ¥ (h) < 0. O

Proof of Theorem 3.4. We will show that
the assumptions in (i) (or (iii)) imply ¥ (k) < 0 for some h € W%’Z, (3.5)

while
the assumptions in (ii) guarantee that ¥ is positive definite in Wy, (3.6)

hence the assertions in Theorem 3.4 will follow from Proposition 3.1.

(i) If D(x) = 0 for some x € (a,b), then Proposition 3.5(i) implies A1 (x) < 0and A4(b) <0,
hence Proposition 3.5(ii) implies the existence of h € X}, C W})'Z such that ¥(h) < 0.

If I # @ and Bh(b) - h(b) < 0 for some h € Hp;, C Wg?, then Ah = 0, h;(a) = O for
i € IP and Bih(a) = 0 for i € IV, hence (2.7) implies

b
¥(h) = Bh-h| =

(b) - h(b) < 0.

(i) Assume that D # 0 in (a,b]. Then Proposition 3.5 implies A1(b) > 0 and ¥ (h)
A1(D) ||h||§(b forh € X,,. If IN @, then X, = WD , hence we are done.

Next assume that I} # @ and Bh(b) - ii(b) > 0 for any it € Hp ), \ {0} (hence Bi(b) - i(b)
cl||hH12 for some c; > 0 due to dim Hp ), < oo) and let h € le be fixed. Since D(b) # 0,
there exists « € RN such that /1 := Y, ayh(¥) satisfies i(b) = h(b). In particular, i € Hp.
Set fi := h — h. Then i € X;, hence ¥(h) > /\1(b)||f1||§<b. In addition, ¥ (k) = Bh(b) - h(b) >
c1||])2,. Since ¥ is a quadratic functional, we have ¥” (k) (h,h) = 2¥(h) and ¥ = 0. Using
(2.11) and integration by parts we also obtain

v

SV

¥ ()i =¥ (h)h =

7
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hence there exists ¢ > 0 such that

V() = ¥+ h) = ¥ () + ¥ ()b + 29" () (b, )

5 ¥(h) +¥(h) > c|[h]l?,.

(iii) Let h € Hp and B;h(b) # 0 for some i € IbN. Then Ah =0, h(a) € ]R%]/u, Bh(a) € IR/I}’//Q
and h(b) = 0, hence

b b
‘P(h):/ Al -hdx+ Bh-h| =o.

Notice also that i # 0 due to Bih(b) # 0. Since D # 0 in (a,b), D(b) = 0, lim, ;4 A1(y) = 1
and A is continuous and nonincreasing, Proposition 3.5(i) implies A1(b) = 0, hence & is a
global minimizer of ¥ in X,. Choose i € Ck with h(a) = 0, hj(b) = é; for j = 1,2,...,N.
Then

N b
‘If’(h)h:Z/ Anh-hdx +2Bh-h| = 2B;h(b) #0,
a a

hence
Y (h+eh) = e¥'(h)h+o0(e) <0

provided |e| is small enough and eB;h(b) < 0.
If IP = @and h € Hy\ {0}, then Ah = 0 and h(b) = 0, hence the uniqueness of the
initial value problem for the Jacobi equation implies the existence of i € Iév = I such that

Bih(b) # 0. O
Remark 3.6.

(i) If ¥ is positive semidefinite but not positive definite, then there exists h* € W71),2 \ {0}
such that 0 = ¥(h*) = infw;jz‘I’ and h* can be determined from our analysis. For

example, if N = 1 and I = IbD = @ (cf. Theorem 3.3), then h* is a positive (or negative)
solution of the Jacobi equation satisfying Bh*(a) = Bh*(b) = 0. If ® depends smoothly
on a parameter 6, u° is a critical point of ® for any 6, and 1" is (or is not, respectively)
a weak minimizer for § > 0* (or 6 < 0%, respectively), then the critical parameter 6*
corresponds to the case where h* exists. (Such situation occurs, for example, in the
study of stability of a twisted rod in Section 4.) In this case one can expect bifurcation
for the problem ®'(u) = 0 at 6§ = 0* in the direction of h*, cf. [6, Theorem 5.6].

(ii) Let W%, k =1,2,...,N, be as in Theorem 3.4, & € RN and he = Yk (jkh(k). Set 2 :=
(ukl)]l(\,’lzl, where ay; = Bh® (b) - hV)(b), and

Ep:={¢ € RN : h¢(b) € R, }.

Then BhS(b) - hé(b) = AZ - &, i.e. the condition Bh(b) - h(b) > 0 for any h € Hp, \ {0}
in Theorem 3.4(ii), for example, is equivalent to A¢ - > 0 for any ¢ € Ep \ {0}. In
particular, if IP = @ (and D(b) # 0), then that condition is equivalent to the positive
definiteness of the matrix 2. Notice also that ay = aj due to 2ay = ¥/(h®)h{) and
¥ (hEY R =9/ (pD)pk),

(iif) Assertions (3.6) or (3.5) show that some of the assumptions in Theorem 3.4 are suffi-
cient for the positivity or the negativity of ¥, respectively. We will show that those
assumptions are also necessary, at least in some cases.
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Let ¥ be positive definite in Wzl)’z. Since X, C Wllj’z, Y is also positive definite in X}, and
Proposition 3.5(i) implies D # 0 in [a,b]. If Y # @ and h € Hp), \ {0}, then h € W7,
Bh(a) € IRJIQ’/IQ, Ah = 0, hence

b b
0<‘I’(h):/ Al -hdx+ Bh-h| = Bh(b) - h(b),

so that the assumptions in Theorem 3.4(ii) are satisfied. This fact and (3.6) show that the
positive definiteness of ¥ in W%’Z and the assumptions of Theorem 3.4(ii) are equivalent.

Let ¥(h) < 0 for some i € W and
P=0 o IV=0. (3.7)

Assume that the assumptions of Theorem 3.4(i) are not satisfied. Then D # 0 in (a,b)
(hence Aq(b) > 0 due to Proposition 3.5(i)) and either Ié\/ = @ or Bh(b) - h(b) > 0 for
any h € Hpy. If I{,\/ = @, then Wzl)’2 = Xy, hence ¥ > 0 in W})’Z, which is a contradiction.
Consequently, I}V # @, Bh(b) - h(b) > 0 for any h € Hpj, and I” = @ (due to (3.7)). If
D(b) # 0, then there exists i € Hp, such that ii(b) = ii(b). Set i := h —h € X;. Then
similarly as in the proof of Theorem 3.4(ii) we obtain

0>¥(h) =%¥(h+h) =%¥(h)+¥(h) > Bh(b) - h(b) + A (b) || A%, >0,

which is a contradiction. Consequently, D(b) = 0. Since IP’ = @ implies (3.2), all
assumptions of Theorem 3.4(iii) are satisfied. These considerations and (3.5) show that if
(3.7) is true, then the condition ¥ (i) < 0 for some i € W713,2 is satisfied if and only if the
assumptions of Theorem 3.4(i) or the assumptions of Theorem 3.4(iii) are satisfied. [

4 Stability of a twisted rod

In this section we use Theorem 3.4 in order to determine the stability of an unbuckled state of
an inextensible, unshearable, isotropic Kirchhoff rod. Under suitable assumptions the strain
energy of the rod is given by

1 C
d(u) = /o <((u’1)2 + (uh)?sinuy) + E(ulg + ub cosuq)* + FL? sin uy cos u2> dx,

where 1,17, u3 are so called Euler angles describing the orientation of the director basis,
A,C > 0 are constants, L is the rod-length and F € R is an external terminal load; the
rod is oriented horizontally (along the x axis), see [11, (9)]. The unbuckled state is given by
u(x) := (%,0,2tMx) where M is a twist parameter. Notice that u° is an extremal satisfying
the natural boundary conditions fgi(x) =0 fori= 1,2 and x = 0,1. The stability of u* was
studied in [11] under the Dirichlet boundary conditions u3(x) = u}(x) for x = 0,1, and one
of the following sets of boundary conditions for uy, u:

Ml(O) = Ml(l) = /2, uz(O) = uz(l) = 0, (4.1)
u(0) = w(1) = /2, uh(0) = uh(1) = 0, (42)
uy(0) = uy (1) =0, u3(0) = up(1) =0. (4.3)

The results in [11] are essentially optimal in case (4.1), but the results in cases (4.2) and (4.3) are
only partial, leaving several open problems. Notice that the Neumann boundary conditions
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are not the same as the natural boundary conditions in general (see [13] for related issues), but
one can easily show (see Proposition 7.2 and Remark 7.3 in the Appendix) that the problem of
stability of u° considered in [11] in cases (4.2) and (4.3) is equivalent to the question whether 1.°
is a weak minimizer of ® in u® + Cl with I}V = IV = {2} and I}V = IV = {1,2}, respectively;
hence we can use Theorem 3.4 in order to solve those problems. In fact, we will consider all
possible subsets v, I{\[ of {1,2}, and in each case we will find the borderline between the
stability and instability (i.e. between the situations when u is and is not a weak minimizer,
respectively). On the other hand, we will always assume 3 € IP N IP, ie. we will always
consider the Dirichlet boundary conditions for the third component u3.

In order to have a more graphic notation, given Y, I{v C {1,2}, we denote the correspond-

1.1 . .

ing case by (Eg;), where c; = Nific I]N, c;="D ifi € I]-D, i=1,2,j=0,1. For example,
DD N N . NN

( I N) corresponds to the case I}¥ = ¥ = {2}, i.e. (4.2), and ( v N) corresponds to the case
IV =1V = {1,2}, i.e. (4.3). Set also

o« L 26
, 5.—5, 9.—72_“52.

2nCM FL? 1
= = —— = —_ = 2
o A 7 B A’ v ”B 2"

(4.4)

1.1 .
We will show that we may assume a« > 0, and for any (Zg;) with C; € {D,N} we will find a
0~1

1.1

function g = gzgg : (0,00) - R : @ — B which describes the borderline between stability and
0~1

instability. In the particular cases (4.1), (4.2) and (4.3) we will also use the notation

g0 :=gpp, &M :=gna, and g = gNN,

respectively (the notation g reflects the fact that case (4.2) is called “Mixed” in [11, (13)]).

Proposition 4.1. Let u° be as above, &« > 0, and let v, I{V C {1,2} be fixed. Then there exists
a continuous function g : (0,00) — R having the properties mentioned above, i.e. if p > g(a) (or
B < g(a), resp.), then u° is a strict weak minimizer (or is not a weak minimizer, resp.).

(i) Let IP N {1,2} # @ # IP N {1,2}. Then

D =B =By =shE, b =g SN = h (= gm), (4.5)
2 2 2

o x T
gp(a) Z—ﬂzr SJY\D/DD(“):Z—Z/

SN (@) = (k+ V(e — (k+ V)7) ifa € [2km,2(k+1)71], k=0,1,2,...,
gm(a) = km(a — k) ifae[(2k—1)m, (2k+ 1)}, k=0,1,2,....

(ii) Let either IP N {1,2} = @ or IP N {1,2} = @. Then

SVD =8BV, SNB =8DA NN = SNA- (4.7)
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gn(a) = inf{ﬁ > %(xz : (1 —62) cosh(27) + 62 cos(26) = 1} € Bzxz, aZ],
sup{p € (a2 1a?): (a® — 2B) cosh(27y) = 2B} ifa>2,
gnp(a) = { a2 ifa =2,
sup{B € (1(a? — 72), 1a2) : (o — 2B) cos(27) =28} iFa € (0,2)

N =in s (q2 = 52 in = in e %a2 if“ST[/
vp (@) =inf{B > Bu : (7" — &%) sinh(27) = 276sin(20)}, Bu:= {g%([x) I

inf{B > gX//g(a) : (72 — 8%)sinh(2y) = —2v65sin(26)}  if a > ao,
gﬁﬁ(a) = < inf{B > gﬁg(a) : {2sindp cos ¢ = ¢3sindycosa} if o € (37, 00),
0 ifa € (0,37,
where &; = —%zx £ v and ag > 0 is defined by ng = 2 sin «.

Remark 4.2. (i) If u° is a weak minimizer of ® with given I, I{\/ (and the borderline function
g), then it remains a weak minimizer if we replace Ifcv with any subset of I,/Cv for x = 0,1,
since the set C}, becomes smaller. Therefore the new borderline function § has to satisfy

§ < g. In particular, gp < ¢ < gy for any borderline function g, gﬁ//g < min(g//\%‘)/ , g/j{//}\)/),
and g\-B(a) > g¥B(x) = 1(a? — 72). We also have gy(a) < a? since the Cauchy inequality
implies that the corresponding functional ¥ is positive definite for 8 > a2.

(i) If « € (0,a0) is fixed, then the function Z(B) := ¢Zsing,cos ¢ — ¢3sinéy cos s ap-
pearing in the formula for g/j{///?/ in Proposition 4.1 has a unique root * in in the interval
[¢\B(«), 1a%): This follows from our proof, since any root in that interval corresponds to the
case when the corresponding functional ¥ is positive semidefinite but not positive definite,

and the form of ¥ guarantees that, given a, this can happen only for one 8. Consequently,
g/\/ D) — 1o oo _ 22 :
(@) =supq B < ik ¢isingpcosdy = g5sindicosy ¢ ifa € (0, ).

In addition, our proof implies that if * > g\/5 (), then E changes sign at 8*. Similarly, if a >
g (or & > 0, resp.), then the function (72 — §2) sinh(27) + 278 sin(25) (or (% — 62) sinh(2) —
2ydsin(25), resp.) has a unique root f* in the interval [g\B(a), o) (or [Bs, ), resp.), and
it changes sign at g* if B* > g\B(a) (or B* > B, resp.). In addition, the estimates in (i)
guarantee that that root p* satisfies B* < gn(a) < a?. Analogous statements are true in the
case of gn.

(iii) Our definition of a and f in (4.4) implies that the borderline function g); was estimated
above and below in [11, Proposition 6] by functions

gm(a) := max(0,a> — 7?) and gum(x) := (& — 71%)/(a® + 71°),
respectively, see Figure 4.1. Let us also mention that the upper bound gx(a) := }a? for gn ()
in [11, Proposition 5] is incorrect: The error is explained below.

(iv) The function ¢(«a) := 3a? is a good approximation of functions g in Proposition 4.1(ii)
for « large, see Table 4.1 and Figure 4.2. The functions g%p, gﬁ%[ oscillate between gy and
gﬁ//g, they intersect each other whenever « = kmr, k = 1,2,..., and then their common val-
ues equal ¢(a) (and also gn(a) if k is even). Similarly, min(g\5 (@), g\ (@) = grAB ()
if « = (k+1)m, k = 0,1,2,.... Similar behavior of functions §(a) = a2 and gm, gk,
gf/% can be observed in Figure 4.1. The formulas for functions ¢ in Proposition 4.1(ii) can
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Figure 4.1: The case IP N {1,2} # @ # IP N {1,2}.

be used in the numerical computations of g, but they also can be used in the study of the
asymptotic or qualitative behavior of g. For example, they imply that lim, 0+ gbfx—gf") =1,
limaﬁm(g—gj\\//g)(a) =0, g/j\v/g isCl\C?ata =2,and gy is C\ Clata =2k, k=1,2....

(v) Numerical computations determining the borderlines for stability could be used also
if we did not know the formulas for functions g in Proposition 4.1. If By < pB1 and the
problem with parameters (g, Bo) or («o, B1) is unstable or stable, respectively, then one can set
B2 := (Bo + B1)/2 and numerically solve the Jacobi equations with suitable initial conditions
and parameters (ag, B2) (by the Euler method, for example). If that problem is stable or
unstable, then one can set B3 := (Bo + B2)/2 or B3 := (B2 + B1)/2, respectively, and solve the
problem with parameters («o, B3) etc. In fact, we used such general approach to compute the
numerical values of functions gn and gj\\//g first, and we verified a posteriori that the computed
critical parameters correspond to the critical values determined by Proposition 4.1.

(vi) Let u° be a weak minimizer. Then a straightfoward modification of the proof of
Proposition 2.3 shows that u is also a strong minimizer. In fact, assume first that there exist
v* € Wi such that 1 := [|o¥]|2 — 0 and @ (10 + o¥) < &(u®). Since ® € C'(W'?) is weakly
sequentially lower semicontinuous, we can find a minimizer u* of ® in {u € u®+ W%)’z :
|lu —u®||12 < 7} and Lagrange multipliers Ay < 0 such that &' (u¥)h = 1@’ (u¥)h for any
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2772

Figure 4.2: The case I[P N {1,2} = @.

h e W%’z, where ©(u) = ||u — u°||3,. The arguments in [5, Section 2.6] guarantee that uk e C?
and u* satisfy the Euler equations (P;f(x))’ = Ff(x), where F;f(x) i= Fyp(Ag, x, uk(x), (uF)'(x))
(similarly FF) and F(A, x,u,p) := f(x,u,p) — A(lp — (u®)(x)|? + |u — u®(x)|?). These equa-
tions, the particular form of f, u%, the positive definiteness of F]’,fp and the convergence u* — 1"
in W'?2 guarantee that {u*} is a Cauchy sequence in W?!, hence in C!, thus u* — u° in C.
However, this contradicts our assumption that u° is a weak minimizer. Consequently, 1 is
a local minimizer in u° + W%’z. Next assume that there exist v* € Ck such that ||o*||c — 0
and ®(u° + v*) < ®(u%). Then it is not difficult to show that there exists ¢ > 0 such that
0> ®(u’+v*) — () > c||v*]|}, + o(1), hence [[o¥]|]1, — 0, which yields a contradiction
and concludes the proof. ]

Proof of Proposition 4.1. Notice that u is a critical point of ® for any choice of I}V, IV C {1,2}.
By Proposition 3.1, we have to determine the positivity of functional ¥ in Wll)’z. We have
1Y(h) = Tl(hl, hz) + %, (]’l3), where

1, hy) = A /01((%1’1)2 + (h5)? — 2ahyhy + B(I5 + 13)) dx,  ¥a(hs) = C/Ol<hé>2dx

Since the positivity of ¥ does not change if we replace & by —« (consider —h; instead of hy),
we may assume « > 0. Since the case « = 0 is trivial, we assume a > 0. Since ¥ is positive
definite in W&’z([O, 1]), it is sufficient to study the positivity of the functional

F(hy, hy) = i‘yl o) = 5 / ((1)? Coulbhy + R+ 1)) dx  (48)
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w/70 | gn(a) /72 | g () /72 | §(w) /7% | gk (a) /7 | ghB(a) /72 | Amax(a)/ 72
0 0 0 0 0 -0.25 0.25
0.3 0.0842 0.0732 0.045 0.0000 -0.1222 0.2064
0.5 0.2137 0.1679 0.125 0.0000 0.0000 0.2137
0.7 0.3792 0.2820 0.245 0.1826 0.1533 0.2258
1.0 0.6717 0.5000 0.500 0.5000 0.4446 0.2271
1.3 1.0067 0.8197 0.845 0.8663 0.8129 0.1938
1.5 1.2549 1.1032 1.125 1.1440 1.1032 0.1516
1.7 1.5279 1.4334 1.445 1.4558 1.4305 0.0973
2.0 2.0000 2.0000 2.000 2.0000 1.9923 0.0076
2.5 3.2058 3.1274 3.125 3.1225 3.1225 0.0832
3.0 4.5759 4.5000 4.500 4.5000 4.4992 0.0767
35 6.1596 6.1248 6.125 6.1252 6.1248 0.0348
4.0 8.0000 8.0000 8.000 8.0000 7.9999 0.0001
Table 4.1: Numerical values of functions ¢ and Amax = gn — gﬁg if 137 N
{1,2} = @.
in the space
Wp := {h € W"([0,1],R?*) : hi(j) = O fori € IP, i =1,2, j = 0,1}. (4.9)

In fact, ¥ is positive definite (or semidefinite, resp.) in W%’z if and only if ¥ is positive definite
(or semidefinite, resp.) in Wp. Therefore, in what follows, we will apply the Jacobi theory
from Section 3 to the functional ¥ with « > 0. Notice that the assumptions in Theorem 3.4
depend only on the corresponding functional ¥, and the conclusions can also be formulated
in terms of ¥, see (3.5), (3.6). We will use Theorem 3.4 in this way. More precisely, we will
use assertions (3.5), (3.6) (with ¥ and W}J’Z replaced by ¥ and Wp, respectively) to determine
the positivity of ¥ (hence the positivity of ¥) and then we will use Proposition 3.1 (with
Y (h) = ¥ (h1,ho, h3)) to conclude that 1 is (or is not) a minimizer of ®.

Notice that the index sets for functional ¥ satisfy T]-D = I].D N{1,2} and T]N = I]N n{1,2} =
I]N for j = 1,2, hence we will use the notation I]N instead of T]N . Similarly, the corresponding
operators B;, i =12 (cf. (2.8), satisfy Bj(h1,hy) = Bi(h1,hy,0) for i = 1,2, and — without
fearing confusion — we will use the notation B;h instead of Bih and Bh := (Bih, Bah) if
h = (h1,hy) and i = 1,2. The same applies to operators C; and .A;. Since

Bih=Hh,, Byh=—ahy+hy, Cih=Bh —ahy, Ch=Bhy, (4.10)
the corresponding system of Jacobi equations is
hi 4+ ahy — Bhy =0,
p i ; pi in (0,1), (4.11)
]’l2 - Oéhl - ﬁhz - O,

and the initial conditions for ("), h(?) in Theorem 3.4 (with N = 2) are k;(0) = 0 if i € I’ and
i=1,2,1(0)=0if 1 € I}¥, and 1(0) = ahy(0) if 2 € I)V.
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The existence of continuous borderline functions g follows from the form of ¥. Notice that
if the index sets I?)) and I? are nonempty, then h1h,(0) = hihy(1) = 0 for any h € Wp, hence

1 1
/ Hyhy dx = — / Wy dx. 4.12)
0 0

Identity (4.12) shows that the value of ¥ does not change if we replace h; with h, and « with
—a. In general, the value of ¥ does not change if we replace h; with /;(x) = h;(1 — x) and a
with —a. These two observations guarantee (4.5) and (4.7).

Let us first consider the cases in Proposition 4.1(i), i.e. IN(? #+ Q@ #+ TID . Then (4.12) guaran-

tees fol 2hhhy dx = fol (hbhy — hihy) dx and the Cauchy inequality implies that
¥ is positive definite if &> < 48. (4.13)

Hence it is sufficient to study the case a* > 4.

Case (gD) has already been solved in [11, Proposmon 3], but Theorem 3.4 enables us to
to show ¢p(a) = ”‘ZZ — 712 in a simpler way. Assume a® > 48. We can set h1()(x) = (sin & x —
sin &x, cos {1x — cos &rx) and h(z)(x) = (—cos1x + cos §rx, siné1x — sinérx), where &1, =
—ZJa £ 7. The function D in Theorem 3.4 satisfies D(x) = 2 — 2cos(&; — &2)x, hence D # 0 in
(0,1] if and only if |& — &| < 27, ie. if B > gp(a). Consequently, if B > gp(a), then u? is
a strict weak minimizer (this remains true also if 43 = a? due to the monotonicity of ¥ with
respect to ), and if B < gp(a), then u” is not a weak minimizer.

The remammg cases in Proposition 4.1(i) are (f/?)) (/1\)/\’!), and ( iy /\/) Assume a2 > 4B.
Since I} = {2}, the initial conditions for h(1), h(?) in Theorem 3.4 are h;(0) = 0 and /5(0) = 0.
One can easily check that we can set h(?) (x) := (sing;x,cos¢ix), i = 1,2, where {1, := —%zx +

7. The function D in Theorem 3.4 satisfies
D(X) = sin(gl - Cz)x = sin2yx = sin \/mxl

if «> —4B > 7%, then D(x) = 0 for some x € (0,1), (4.14)
if 0 < a®>—4p < 7%, then D(x) # 0in (0,1]. (4.15)

hence

Theorem 3.4(i) (more precisely, assertion (3.5)) and (4.14) imply that
¥ is not positive semidefinite if a* — 4 > 7. (4.16)

Let I{\/ = @.1f0 < a? — 4B < 712, then (4.15) and Theorem 3.4(ii) (more precisely, assertion
(3.6)) guarantee that ¥ is positive definite. If 0 = a> — 48 < 712 and we replace B by B:=p—c¢
with & > 0 small, then 0 < a? — 4B < 7, hence the modified functional ¥# (with B replaced
by B) is positive definite, and the monotonicity of ¥ with respect to f implies that ¥ is positive
definite as well. These facts together with (4.13) and (4.16) imply ¢ ND( n) = "‘ZZ — %2

If BV = {2} and a? > 4B, then Hp, = {h € span(h™),h?) : hy(1) = 0} is spanned by
h = sin &k — sin & h(2). We have

B:=Bh(1)-h(1) = hy(1)hz(1) = (22 — 1) sin(G2 — &1) sin gy sin gy

and, assuming « € [(2k — 1), (2k+1)7|, k=0,1,2,..., « > 0, we have B > 0 or B < 0 if and
only if B is greater or less than k7r(a — k7), respectively. Notice that

w?/4 > kn(a — k) > (a® — 12) /4. (4.17)
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These facts, Theorem 3.4(ii) and (4.13) imply that ¥ is positive definite if B > km(a — k7),
B # a?/4. The assumption B # a®/4 can be removed by the same argument as above (by
considering B = B —e). If B < krt(a — k), then a? > 4B due to (4.17), hence B < 0 and
Theorem 3.4(i) imply that ¥ is not positive semidefinite. Consequently, the formula for gp =
g}\)/?/ in (4.6) is true.

If [}V = {1}, then we can use the same arguments as in the case I}¥ = {2} to show that the
formula for gQ/¥ in (4.6) is true. In particular, if «> > 4, then Hpj = {i € span(hV),h?)) :
hr(1) =0} is spanned by h := cos &hM — cos & 1@ and we have

B:= Bh(1)-h(1) = hy(1)h1(1) = (& — &) sin(&1 — &) cos & cos &y,
hence assuming «a € [2kr,2(k+1)7|, k =0,1,2,..., we obtain B > 0 or B < 0 if and only if B

is greater or less than (k + 3)7(a — (k + 3)7), respectively.

Next consider the cases in Proposition 4.1(ii), i.e. (%g), (//:f/jl\)[)’ (xf[) and (x//:f[) Since

I = {1,2}, the initial conditions for /1), h(?) in Theorem 3.4 are 1} (0) = 0 and h,(0) =
ah1(0). We will distinguish the following four subcases:

(ii-1) B =
(ii-2) p=
(ii-3) B > %az and § # %az,

a?,

Nj=

a?,

sl

(ii-4) B < ja2.

0

(ii-1) Assume that g = %ucz. We will show that ¥ is positive definite (hence u° is a strict

0

. . ND 3 - . S .
weak minimizer) in case ( /\/D) and Y is not positive semidefinite (hence u” is not a weak

minimizer) in case (/) if @ # 2km. In addition, in case (ﬁ//g/), uY is or is not a weak
minimizer if « € ((2k —1)7,2km) or « € (2km, (2k + 1)77), respectively, and the opposite is
true in case (AN[J?/)
Recall that 6 = «/2. If we set
K (x) := (% (cos(bx) — sin(6x)), €% (cos(bx) + sin(6x))),
h?)(x) := (e7%*(cos(dx) + sin(dx)),e %% (— cos(bx) + sin(dx))),

then we obtain D = —2, hence V¥ is positive definite in case (%g) due to Theorem 3.4(ii).

Considering case (xj\v[), one can check that the matrix 20 = (ay;) in Remark 3.6(ii) satisfies
ap = 46e¥ sin%8, ay = —46e 2 sin?6, app = ay = —48sin b cosb.
If 6 # km, then choosing & := (0,1) and h := Y7_,&h® = h® € Hp, = H we obtain

Bh(1)-h(1) = AZ-& = ap < 0, i.e. ¥ is not positive semidefinite due to Theorem 3.4(i).
Notice also that Bh(0) = 0, hence

N 1
¥(h) = Bh-h| <0, (4.18)

If 6 = krmt, then 2 = 0 (degenerate case). Already these facts contradict [11, Proposition 5]
which claims the stability for B > a?. In fact, the authors of [11] mention in their proof that
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“We have not used any integration by parts ...”, but they seem to use [11, (35)—-(37)], and [11,
(35)] does use an integration by parts requiring the boundary conditions h152(0) = hyhy(1).

In case (xf/) we set

h:=e"°(cosd +sind)hM) — e (cos & — sin)h2).

Since at least one of the numbers hgl) (1) and hgz) (1) is non-zero, we have dim Hp; < 1. Since

h1(1) = 0, we obtain Hp 1 = span(h), and
Bh(1) - h(1) = Bah(1) - ha(1) = (—ahy +h3)(1) - hp(1) = 2asina

due to hy(1) = 2 and K5 (1) = asina. Consequently, Bh(1) - h(1) > 0 if « € (2km, (2k + 1))
and Bh(1)-h(1) < 0if w € ((2k — 1) 7, 2k7r), so that our assertion follows from Theorem 3.4(ii)
and Theorem 3.4(i), respectively.

Similarly, in case (xg) we set
h:=e"%(cosd — sind)hM) + ¢ (cos & + sin 6)h2).

Then hy(1) = 0 and Hp; = span(h);

Bh(1) - h(1) = Byh(1) - h(1) = K{(1)h1(1) = —2asina (4.19)
due to h1(1) = 2 and #}(1) = —asina. The rest of the proof is the same as in case (%\D/)
Notice also that (similarly as in the case of (4.18)), (4.19) implies

_ 1
¥(h) =Bh-h| <0 (4.20)
provided « € (2kr, (2k + 1) 71).
(ii-2) Assume that g = %az. Set ¢ := —%a and

K (x) := (sin(&x) — &x cos(Ex), cos(Ex) + Exsin(Zx)),
h? (x) := (cos(&x) — Exsin(Ex), — sin(Ex) — Ex cos(Ex)).

Notice that the function D in Theorem 3.4 satisfies D(x) = ¢2x?> — 1, hence D < 0 in [0,1]
if « < 2, and D(x) = 0 for some x € (0,1) if « > 2. This shows that ;a? < gﬂg(tx) <

min (gAY (), ghr(a), gn () if & > 2, i.e. u® cannot be a weak minimizer in any case.

Let & < 2. Then 1° is a strict weak minimizer in case (%D). Next consider case (AN/JN\/) If

B = a?/2, then (4.18) implies that ¥ is not positive semidefinite. The monotonicity of ¥ with
respect to B shows that ¥ cannot be positive semidefinite if § = a?/4 either, hence uy is not

e . ... . NN
a weak minimizer. The same arguments show that ug is not a weak minimizer in case ( D ),

see (4.20). It remains to consider case (AN//Z\)f) Set
h:= (cos& — Esin&)hM — (sin& — & cos &)h?,

so that i;(1) = 0. Then the restriction a < 2 implies hy(1) = 1—¢2 > 0. Since h)(1) =
—&2 + Zsin(2¢), we see that 1) (1)h2(1) > 0 only if & < ap, where &g is defined by ay = 2sin ag
(0(0 ~ 067T)
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(ii-3) Assume B > 0(2 B# 5 142, and set

p(x) =" (" = &), Pu(x):=e T (y£5)%
Then we can take

D (x) := [(9(x) + ¢4 (x)) (cos(8x) + sin(0x)), (¢(x) + - (x))(— cos(x) +sin(8x))],
W (x) = [(@(x) + ¢ (x))(cos(6x) —sin(6x)), (¢(x) + - (x))(cos(8x) + sin(éx))],

and an easy computation yields
D(x) = 4(9* - 6) (('yz — %) cosh(2yx) + % + 52>. (4.21)

The function D does not vanish in (0,1] if and only if v > 6 (i.e. B > 1a?), or v < J and
cosh(2y) < % +‘5 . The last inequality can be written in the form

(a® — 2B) cosh(27) < 2. (4.22)
In case (xx), one has to consider the numbers a;; in Remark 3.6(ii):

a1 = 27(9” — 93)(1) +26(¢ + 4 )(1) cos(26),
ay = 27(¢* — 2 )(1) — 26(9 + 9 )*(1) cos(26),
ap = ay = —25(§9+¢’+)(§0+¢’ )(1) sin(26).

If v > 5 (ie. B> 1a?), then
a1 (Y +6) 2 +an(y —6) 72 = 8(y* + %) (v — 05 cos(26)) sinh(27) > 0,
hence the matrix 2 is positive definite if and only if 41740 > a%z, which is equivalent to
(1 — 62) cosh(27) + 62 cos(25) > 1. (4.23)

We used the assumption B > %zxz in order to derive (4.23), but this is not restrictive, since

NN
we know that u° can only be a weak minimizer of our problem in case (/) when g > ja®.

Hence in this case the condltlon (4.23) determines the domain of stability.

In cases (xp) and ( ) we set

hi=(¢(1) +¢_(1))(cosd +sind)hY) + (¢(1) + ¥, (1)) (cos & — sin §)h>?)

and
h:= (1) +¢_(1))(cosd — sin(S)h(l) — (1) 4+ ¢+(1))(cosd + siné)h(Z),

respectively. Then h(1) =0, h1(1) = D(1),
Bh(1) - h(1) = Kl (1) = 49(72 — )D(1) ((* — 6%) sinh(2y) — 276 sin(26)),
and 11 (1) =0, ha(1) = —D(1),

Bh(1) - h(1) = Wyhp(1) = 4y (7* — 6*)D(1) ((7v* — 6%) sinh(27) + 27vJsin(20)),
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respectively, where D is as in (4.21). Consequently, assuming that D does not vanish in [0, 1]
(i.e. (4.22) is true), the stability conditions are

(9% — 6%) sinh(27y) — 298 sin(25) > 0 (4.24)

and
(9% — 62) sinh(27) 4 294 sin(25) > 0, (4.25)
respectively. Notice that if § = %0(2 (hence v = §), then (4.24) and (4.25) are equivalent to the
corresponding stability conditions in case (ii-1).
(ii-4) If B < %0&2, then we can set

KD (x) := (& sin(&1x) — & sin(&ax), & cos(&1x) — & cos(&x)),
W@ (x) 1= (&1 cos(&1x) — &2 cos(Eax), —&1 sin(1%) + & sin(&x)),

where ¢1o = —%0& =+ 7, and we obtain
D(x) = —2B + (a* — 2B) cos(2yx). (4.26)

If > — 48 > 7%, then D changes sign in [0, 1]. Hence the condition D > 0 in [0, 1] is equivalent
to
a®> —4B < m® and (a® —2B)cos(2y) > 2B. (4.27)
It is not difficult to check (cf. case (ii-2)) that if « < 2 or &« > 2, then (4.27) or (4.22), respectively,
is the (essentially optimal) sufficient condition for the stability in our problem in case ( /\/g)'
If « = 2, then that sufficient condition is § > 1.
Case (ii-2) shows that it remains to consider only case (%j\)/) and « < ag. Take

h = (&1 cos & — & cos&r)hV) — (Eysin & — & sin&y)h ).
Then h1(1) =0, hp(1) = —D(1) (where D is as in (4.26)), and

(1) = (&3 sin gz cos &1 — &3 sin &1 cos §2) (&2 — &1).
Assuming D > 0in [0,1] (i.e. (4.27)), the condition hhy(1) > 0 is equivalent to
C% sin ¢ cos ¢1 > C% sin ¢1 cos ¢». (4.28)

Since ¢1 = 0 if B = 0, (4.28) can only be true if g > 0. It is not difficult to see that gﬁ//}\)/(zx) =0
for a < Jrrand g% (a0) = 1ad. If & > ao, then (4.25) determines g\/X(a).

The formulas for functions g in Proposition 4.1(ii) follow from the stability conditions
(4.22), (4.23), (4.24), (4.25), (4.27), (4.28). O

Remark 4.3. Consider case (fiv) We have g5R(a) = gm(a) > g2 («) except for a = ay :=

(2k—1)m,k=1,2,.... Ifa = g and B = gm(a) = g5 («), then the function D in Theorem 3.4
satisfies D # 0 in (0,1), D(1) = 0, hence condition (3.2) cannot be satisfied (otherwise (3.5)
would imply ¥ (i) < 0 for some i € Wp, so that ¥(h) < 0 also if B is slightly greater than
gm(a), which is a contradiction). For example, if k = 2 (ie. « = 37, p = 271%), then our
proof shows that Hj is spanned by h(x) := (—sin(7tx) — sin(27x), cos(7tx) + cos(27tx)) and
Bah(1) = hy(1) = h1(1) = 0 which violates (3.2). This degeneracy seems to be also responsible
for the non-smooth behavior of gy at & = ay. O
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5 Field of extremals

In this section we modify the Weierstrass theory to provide necessary and sufficient conditions
for weak, strong and global minimizers. Recall that B, := {& € RN : |¢] < e}.

Definition 5.1. Let f € C2, & > 0, and let u° € C? be an extremal. The image P of a Cl-
diffeomorphism P : [a,b] x B — [a,b] x RN : (x,a) — (x, ¢(x,a)) is called a field of extremals
for u® if ¢, € C!, @(-, &) is an extremal for each &, and ¢(-,0) = u°. The slope of the field of
extremals P is defined as ¢ : P — RN : (x,0) — ¢y(x,a(x,v)), where a(x,v) is defined by
¢o(x,a(x,v)) = 0.

It is known that in the case of the Dirichlet boundary conditions, the existence of a field of
extremals ¢(x, a) satisfying the self-adjointness condition (5.1), and the nonnegativity of the
excess function

E(x,u,p,q) = f(x,u,q) — f(x,u,p) = (q—p) - fp(x,u,p)

for suitable (x,u,p,q) imply that u° is a strong minimizer. In addition, the existence of the
field is guaranteed by the sufficient condition for the weak minimizer in Theorem 3.4(ii). In
the general case we have the following analogue (see Theorem 6.1 for a simpler version in the
scalar case N = 1):

Theorem 5.2. Let f € C2, & > 0, and let u® € C? be an extremal satisfying (2.2).
(i) Let there exist a field of extremals P for u° satisfying the conditions

fp(a,v,9(a,0)) _ 9fy;(a,0,¢(a,v))
ij - avi

whenever i,j €1, v— uo(a) € B, (5.1)

fo(a,0,9(a,0)) - (v —1u’a)) <0, whenever v —u°(a) € ]R%’,a N By, (5.2)
fo(b,0,9(b,0)) - (v —u"(b)) >0, whenever v —u’(b) € IR%]/b N Be, (5.3)
where 1 denotes the slope of the field. Assume also

E(x,0,¢(x,0),q9) >0 forall ((x,0),9) € P x RN, (5.4)

Then u® is a strong minimizer.
If (5.4) is only true for all (x,v) € P and q = q(x,v) satisfying |q — ¢(x,v)| < n for some
n > 0, then 1% is a weak minimizer.

If the field is global (i.e. P = [a,b] x RN) and (5.1), (5.2), (5.3) are true with B replaced by RN,
then u is a global minimizer.

(ii) Assume IP = @ and let there exist a field of extremals satisfying (5.1). If the reversed inequality
“>"is true in (5.2), and the reversed strict inequality “<" is true in (5.3) for v = u®(b) + tw®,
where t € (0,1) and w° € IR%],b is fixed, then w is not a weak minimizer.

(iii) Assume (2.4) and let the sufficient conditions for a weak minimizer in Theorem 3.4(ii) be satisfied.
FIP=QorIN =Qor

fyi(a,u,p) for i € IP does not depend on uj, pj with j ¢ I, 5.5)

fpiuj :fpjuifor ij€ I/?/ .

then a field of extremals satisfying (5.1), (5.2), (5.3) exists.
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Remark 5.3. The well known Weierstrass necessary condition for minimizers asserts that the
inequality E(x,u’(x), (%) (x),q) > 0 for all g € RN or g = g(x) satisfying |g — (1°)'(x)| < 7
is necessary for u° to be a strong or weak minimizer, respectively, hence the nonnegativity
conditions on E in Theorem 5.2 are not far from optimal. Similarly, Theorem 5.2(ii) shows that
the sufficient conditions (5.2)—(5.3) in Theorem 5.2(i) are also necessary in some sense, at least
if I = @. O

The proof of part (iii) of Theorem 5.2 is quite technical and, in addition, we will not
need that part in our examples (since we will prove the existence of the field required by
Theorem 5.2(i)—(ii) by other arguments). Therefore the proof of part (iii) is postponed to the
Appendix.

In what follows we assume that

f € C? u’ € C?is an extremal,

5.6
P is a field of extremals for u? with slope ¥, and (5.1) is true. (56

Given v € C!([a,b],RN) such that graph(v) := {(x,v(x)) : x € [a,b]} C P, we define the
Hilbert invariant integral

I(v) := /ab [f(x,0(x), ¢ (x,0(x))) + (V' (x) —¢(x,0(x))) - fp(x,0(x), ¥ (x,0(x)))] dx.

The following proposition is well known, but for the reader’s convenience we provide its
proof in the Appendix.

Proposition 5.4. Assume (5.6). Then there exists S € C2(P) such that

I(v) = S(b,v(b)) — S(a,v(a)) forany v € C'([a,b],RN) with graph(v) C P,

(5.7)
So(x,v) = fp(x,v,9(x,v)) forany (x,v) € P.

Proof of Theorem 5.2. (i) Let u — u® € C},, graph(u) C P, and let S be the function from Propo-
sition 5.4. If u is close to u° in the sup-norm, then the assumptions (5.2)-(5.3) guarantee

S(a,u(a)) — S(a,u°(a)) = /01 So(a,u’(a) + t(u(a) — u’(a))) - (u(a) — u’(a))dt <0,

and similarly S(b, u(b)) — S(b,u’(b)) > 0, hence I(u") < I(u) due to Proposition 5.4. This fact
and assumption (5.4) imply

®(u) — d(u’) = d(u) — I(u°) > ®(u) — I(u) = /b E(x,u(x),(x,u(x)),u'(x))dx >0,

a

hence 1 is a strong minimizer. The remaining assertions in (i) are obvious.

(ii) Choose t; — 0+ and let a; be such that ¢(b,a;) = u°(b) + t;w®. Then uf := @(-,ay) —
uin CY uk —ul e C%) due to If =Qand ' € IR%]’b, and, similarly as in (i), we obtain

& (uk) = I(u*) = S(b, u* (b)) — S(a,u*(a)) < S(b,u’ (b)) — S(a,u’(a)) = I(1°) = ®(u°),

0

hence #Y is not a minimizer. O
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6 Scalar examples with variable endpoints

Throughout this section (except for Remark 6.4) we assume N = 1 and IP = IbD = . Since
we will often use Theorem 5.2, let us first reformulate it in this special case. Notice that the
extremals in the field of extremals satisfy ¢,(x,a) # 0, hence we can assume ¢, > 0 without
loss of generality.

Theorem 6.1. Let N =1, IP = IP = @, f € C? and let u® € C? be an extremal satisfying (2.2).

(i) Let there exist a field of extremals P = {(x, ¢(x,a)) : x € [a,b], « € (—¢, &)} for u° satisfying
the conditions ¢, > 0 and

fl@e <0< fi,  ae (o), ©1)
where f;(x) := fp(x, @(x, &), px(x, ). Assume also
E(x,0,¢¥(x,v),q) >0 forall ((x,v),q) € P xR. (6.2)

Then u° is a strong minimizer.

If (6.2) is only true for all (x,v) € P and q = q(x,v) satisfying |q — ¢(x,v)| < n for some
1 > 0, then u° is a weak minimizer.

If P = [a,b] X R, then u° is a global minimizer.

(ii) Let there exist a field of extremals satisfying @, > 0. If, for &« > 0 or & < 0, the reversed
inequalities in (6.1) are true and one of them is strict (for example, if fy(a) > 0 > f7(D) for
a > 0), then ug is not a weak minimizer.

(iii) Assume (2.4) and let the sufficient conditions for a weak minimizer in Theorem 3.3(ii) be satisfied.
Then a field of extremals satisfying @, > 0 and (6.1) exists.

Remark 6.2. If /), = 0 and we set P := fp,, Q := f;,, then ¥(h) = fab(P(h/)2 + Qh?)dx and
the Jacobi equation has the form —%(Ph’ ) + Qh = 0. Notice also that if P,Q > 0, then ¥ is
positive definite in W'2. Consequently, Remark 3.6(iii) implies that the sufficient conditions
for a weak minimizer in Theorem 3.3(ii) are satisfied and Theorem 6.1(iii) implies the existence
of a field of extremals satisfying ¢, > 0 and (6.1). O

In the following examples we will consider Lagrangians f = f(u, p) and we will use the
phase plane analysis for the Du Bois-Reymond equation f° — (u?)’ f;,) =C.

Example 6.3. The study of the deformation of a planar weightless inextensible and unshear-
able rod (satisfying suitable boundary conditions) leads to the minimization of the functional

1
D(u) = /0 (%(u’ —K)*+Mecosu)dx, ueCY[0,1]), (6.3)
where K € R, M > 0, and u denotes the angle between the tangent to the rod and a suitable
vertical, see [10, (97)] and cf. also [1]. Functional ® possesses multiple critical points, i.e.
extremals satisfying the natural boundary conditions u'(0) = u/(1) = K; see [10] for their
detailed analysis. Their stability was also analyzed in [10], but that analysis based on the
approach from [12] is unnecessarily complicated. Somewhat simpler arguments were used in
[1], but those arguments cannot be used for all critical points. We will show that Theorems 3.3
and 6.1 yield a very simple way to determine the stability of any critical point.
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Proposition 2.3 implies that u° is a weak minimizer of @ if and only if it is a strong
minimizer. Therefore we will only speak about minimizers. Notice also that f,, = 1 and
the excess function satisfies E(x,u,p,q) = (g9 — p)*> > 0. Proposition 2.4 guarantees that
any critical point of ® is C* and satisfies the Du Bois-Reymond equation (/)2 = 2M cosu +
C, where C is a constant. Conversely, any non-constant solution of the Du Bois-Reymond
equation is an extremal.

We consider the phase plane (1,v), where v = 1/, and set

¢c := {(u,v) : v* =2Mcosu + C}, C e (—2M, )

(see Figure 6.1). The considerations above show that given any non-constant critical point u°,
there exists C® > —2M such that (u°(x), (1°)'(x)) € ¢co for x € [0,1], (u°)'(0) = (u°)'(1) = K.
On the other hand, if (Ag, K), (A1, K) € @0 for some C° € (2M, ), Ag # Ay, and u® € C! sat-
isfies (u°(x), (u°)'(x)) € ¢co for x € [0,1], (1°(0), (u°)'(0)) = (Ao, K) and (u°(b), (u°)' (b)) =
(A1, K) for some b > 0, then u” is a critical point if and only if b = 1 (the value of b is uniquely
determined in this case since (u°)’ # 0). Similar assertion is true if C° € (—2M,2M] (K # 0
if CO = 2M), but this time one can have (u(b), (u°)' (b)) = (A1, K) for multiple values of b
(since 1 need not be monotone), and one has to allow A; = Ay.

The phase plane analysis can be used to find critical points of ® (see [2] for a particular
case), but since those critical points are known (see [10], for example), we will restrict ourselves
to the determination of their stability. More precisely, considering the case K > 0 (the case
K < 0 being symmetric), we will show the following: A critical point of ® is a minimizer
if and only if either u%(x) = (2k + 1)7 for some integer k or u’ is a part of curve ¢pro with
C% > 2M and (u°)"(0) < 0 < (u°)"(1).

Figure 6.1: Phase plane and extremals for Example 6.3 and 0 < u < 4m; C~ <
2M < Ct, Z; = (¢(i,a), ¢x(i,x)), i = 0,1, Y1 = (A1 +a,K), X; = (A;,K) =
(u0(i), (u%)'(7)), i = 0,1.

Let us first consider a critical point u” being a part of curve o with CO > 2M, and let
(A, K) be as above. For symmetry reasons we may assume K > 0. Notice that #” = —Msinu,
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|(u®)”(0)| = [(u®)"(1)|, and that u°(x) can also be defined (as an extremal, hence a part of
$co) for x ¢ [0,1].

If (u)"(0) < 0 < (u°)"(1) (i.e. u(0) € (2km, (2k + 1)) and u°(1) € ((2m + 1)7, 2m +
2)7) for some m > k; see the extremal u® with (1°)'(0) = K; in Figure 6.1), then ¢(x, &) :=
uW(x+a), x € [0,1], « € (—¢¢), is a field of extremals for u° satisfying (6.1), hence The-
orem 6.1(i) guarantees that u° is a minimizer. If (u°)”(0) > 0 > (u°)”(1), then the same
argument and Theorem 6.1(ii) show that 1Y is not a minimizer.

Next assume that (u°)”(0) - (u°)”(1) > 0. We will show that u° is not a minimizer.

Assume (u°)”(0) < 0, or (u°)”(0) = 0 and (u°)"”(0) < 0 (the cases (u°)"”(0) > 0, or
(u%)"”(0) = 0 and (u°)"”(0) > 0 are analogous). We necessarily have A; = Ag + 2ko7 for
some kg € {1,2,...}. Let ¢(-,a) (with |«| being small) be the extremal with initial values
Zo = (¢(0,a), px(0,a)) = (A + &, K) (see the extremal u® with (1°)'(0) = K; in Figure 6.1).
Then ¢ is a field of extremals for u°, and ¢(-,a) is a part of the curve ¢c«, where C* is close to
C% C* > CVif o > 0.

Let « > 0 be small. If u! and u? are extremals in ¢ and ¢cx, respectively, and u!(0) =
u%(0) = 0, then ul(by) = u?(by) = 27 for some 0 < by < by (due to (u?)’ > (u')’ whenever
u? = u'). This fact and the 27t-periodicity of the problem guarantee that ¢(b,a) = A; + a for
some b < 1, hence ¢, (1,&) < (1°)'(1), and Theorem 6.1(ii) implies that u° is not a minimizer.

Next consider the case C° € (—2M,2M] and K > 0; K # 0if C® = 2M. If K > 0
and («°)”(0) > 0 > (u%)”(1), then the same arguments as above guarantee that u° is not a
minimizer. If K = 0 or (u°)”(0) < 0 < (u°)”(1) (hence A; < Ag) or (u°)"(0) - (u®)"(1) > 0
(hence Ag = Ay = 2km), then choosing ¢(-,«) to be an extremal satisfying initial conditions
(¢(0,a), 9x(0,&)) = (Ag + &, K) we see from the phase plane that ¢(-,a) and u intersect in
(0,1) for any & # 0 small (if, for example, (u°)”(0) < 0 < (u°)”(1) and & > 0 is small,
then there exists y € (0,1) such that ¢(y,a#) = ming(-,«) < minu’, and the inequalities
@(0,a) > u®(0), p(y,a) < u’(y) imply that ¢(-, &) and u intersect in (0,y); see the extremal
u® with (u°)(0) = Kj in Figure 6.1). Consequently, & := ¢,(-,0) is a solution of the Jacobi
equation satisfying h(0) = 1, h'(0) = 0, h(y) = 0 for some y € (0,1], and Theorem 3.3
guarantees that u° is not a minimizer.

Similar considerations as above can be used in the case of constant extremals k7, but we
will use a different argument: If u® = (2k + 1), then P = 1, Q = —Mcosu’ = M, and the
solution fi(x) = eVM¥ 4 ¢=VMX of the Jacobi equation satisfies h > 0, #/(0) = 0, k(1) > 0,
hence #° is a minimizer. If u° = 2k, then P = 1, Q = —M and the solution /(x) = cos(y/Mx)
of the Jacobi equation satisfies #(0) > 0, 1'(0) = 0 and either h(x) = 0 for some x € (0,1] or
W(1) < 0, hence u is not a minimizer. O

Remark 6.4. The author of [9] considers the functional @ in (6.3) with K = 0, [4,b] =
[—1/2,1/2] (instead of [a,b] = [0,1]), and the Dirichlet boundary conditions u(—1/2) =
u(1/2) = 0, see [9, (6)]. He considers the extremal u° satisfying u°(0) = B and (u°)’(0) = 0,
i.e. the extremal passing through the point (B, 0) in Figure 6.1, and he provides explicit formu-
las for this extremal, its field of extremals ¢ and the derivative ¢, (see [9, (8),(9),(13),(14) and
(16)]; functions 1, @ and @, are denoted by 0,y and dy /07, respectively). The nonnegativity
of the excess function then implies that u%is a strong minimizer. In [9, Introduction], the au-
thor claims that “Based on the Jacobian test, potential energy of Euler elasticas ... was proved
to hold a weak minimum value...”, but “...it is an open problem to find sufficient conditions
for the potential energy for these Euler elasticas to hold a strong minimum.” However, Propo-
sition 2.3 shows that weak and strong minimizers of functional ® in (6.3) are equivalent. In
addition, Theorem 5.2(iii) implies that the positive definiteness of the second variation ¥ in
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W&'Z(—l /2,1/2) (i.e. the sufficient condition for a weak minimizer) guarantees the existence
of the required field ¢, hence the technical construction of the field in [9] is not necessary even
if we do not consider Proposition 2.3. O

Example 6.5. Consider the functional ®(u) = f:f(u,u’) dx in C'([a,b]), where f(u,p) =
¢(p) + u? and g is a double-well function. More precisely, we will consider the following two
cases (see Figure 6.2):

(a) (b)

-1 0 1 P -1 0 2 P
Figure 6.2: Graphs of g in the symmetric and non-symetric cases.
() g(p) = (p* —1)* (hence ¢'(p) = 4p(p* - 1), ¢ (p) = 4(3p* - 1)),

(b) g(p) = 3p* — 3p° — p* + 5 (hence &'(p) = (p+ 1)p(p —2), §"(p) = 3p* = 2p - 2).
Let us consider the symmetric case (a) first. The Du Bois-Reymond equation has the form

u> =C+h(u'),  where h(p):=3p*—2p?%

see Figures 6.3 and 6.4 for the graph of 1 and the phase plane (u,u’), respectively. All mini-
mizers have to satisfy u'(a),u’(b) € {0, £1}; the only constant extremal is # = 0. Functional
® does not possess local maximizers since ®”(u°)(1,1) > 0 for any u".

)

Figure 6.3: Graph of /1 in the symmetric case.

S

:

Since fp, (1, p) = 4(3p> — 1), the extremals in the region |u/| < 1/+/3 (satisfying (u°)'(a) =
(%) (b) = 0) cannot be local minimizers. The extremal u* with (1*)'(a) = 1 and min(u*)’ =
1//3 (see Figure 6.4) satifies u*(b*) = 1 for some b* > a. If b € (a,b*), then there exists a
unique extremal u° satisfying (u°)'(a) = (u°)(b) = 1 (and a unique extremal u! satisfying
(u')(a) = (u")'(b) = —1); in addition (u°)’ > 1/+/3 (and (u')’ < —1/+/3). Since P, Q > 0 and
the excess function E = (g — p)?((q9 + p)* + 2(p* — 1)) considered as a function of g changes
sign if |p| < 1, Remarks 6.2 and 5.3 show that the extremals u°, u! are weak but not strong
minimizers. (Remark 6.2 also guarantees the existence of a field of extremals, but this fact
is not needed here: The Weierstrass necessary condition for strong minimizers in Remark 5.3
does not require the existence of a field of extremals.) Notice also that inf ® = 0 is not attained
(neither in C!, nor in W'4): A minimizing sequence in C! can be obtained by suitable smooth
approximation of piecewise C!-functions u, satisfying |u.| = 1 a.e. and |u,| < .

Next consider the nonsymmetric case (b). The Du Bois-Reymond equation has the form

u> =C+h(u'),  where h(p):= Zp4 — §p3 -7,
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Figure 6.4: Phase plane in the symmetric case.

see Figures 6.5 and 6.6 for the graph of I and the phase plane (u,u’), respectively. All mini-
mizers have to satisfy u'(a), u'(b) € {0, —1,2}; the only constant extremal is u = 0.

h

a

147
3

Figure 6.5: Graph of /1 in the non-symmetric case.

Since fp,(u,p) = 3p? — 2p — 2, similarly as in case (a) we see that the extremals in the
region u’ € [L=Y7, 147

~—

= 5-*] are neither local minimizers nor local maximizers. The extremal u*
with (#*)'(a) = 2 and min(u*)" = HTW (see Figure 6.6) satifies u*(b*) = 2 for some b* > a. If
b € (a,b*), then there exists a a unique extremal u° satisfying (1")(a) = (u°)'(b) = 2 and, as
above, this extremal is a weak local minimizer. However, now E = & (7 — p)2((v3(q+ p) —
%)2%-6;72—4;9—13%) >0 forall gif p < pj or p > p, where p1 = (1 —v21) < —1, pp =
1(1++v21) € (3(14 V7),2), and Remark 6.2 guarantees the existence of a field of extremals
satisfying ¢, > 0 and (6.1), hence u” is a strong local minimizer provided min(u°)" > p, (and
it is not if min(u®)’ < py). In fact, if min(u®)’ > p,, then Proposition 6.6 below shows the
existence of a global field of extremals for u° satisfying the assumptions of Theorem 6.1(i),
with slope ¢ > p,, hence 1" is a global minimizer.

An analogous analysis as in the case 1’ > HT‘ﬁ shows that the extremals in the region

u' < PTW are weak but not strong local minimizers. O

Proposition 6.6. Let ® and p; be as in Example 6.5(b), and let u° be a critical point of ® satisfying
min(u®)’ > py. Then there exists a global field of extremals for u® satisfying the assumptions of
Theorem 6.1(i), with slope p > po.

Proof. Assume first &« > 0. Then we choose the extremals u* := ¢(-, «) in the global field such
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Figure 6.6: Phase plane in the non-symmetric case.

that ¢(-, ) is the solution of the Du Bois-Reymond equation with (¢(a,a), px(a,a)) = A(x),
where A(a) = (A1(a), A2(a)) : (0,00) — R? is smooth,

Aa) = {(uo(a+o¢), (W) (a+wa)) ifa<b—a—e,

uo(b) +a—(b—a),2) ifa>b—a+te (6.4)

Al(a) >1, AS(a) >0 for o€ (b—a—¢eb—a+e), where e€ (0,(b—a)/2), (6.5)

see Figure 6.7. Notice that A{(b—a—¢) = (u®)'(b—¢) > pa > 1, AS(b—a—¢) = (u°)"(b—
e) >0, Ajlb—a+¢e) =1, Aj(b—a+e) =0, Aj(b—a+e¢e) — Aj(b—a—¢e) > 2¢ (since
Ai(b—a+e)=ul(b)+e Aj(b—a—e) =u’(b—e), u’(b) —u(b—e) = (u°)' (b —Be)e > poe),
Ay(b—a—+e) > Ay(b—a—e), so that (6.5) can be satisfied.

Let us show that ¢, > 0. Since ¢(x,a) = u’(x +a) fora < b—a—eand (u°) > 0,
we may assume & > b —a —¢, hence ¢ > 0. Set w(x,a) = ¢u(x,a). Then (6.4)—(6.5) imply
w(a,a) > 1. Let k™! denote the inverse of the increasing function h|(,, ). Since ¢(-, &) solves
the Du Bois-Reymond equation, there exists C(a) such that ¢(x,a)? = C(a) + h(@x(x,a)).
Consequently,

we= 2 (2) = 2 (9) = 2 (17 (97 = C(w) = () (97 = Cw)) 2w —C' (@) (66

>0
If wy(a,a) > 0 (which is true for &« < b —a+ ¢ due to (6.4)—(6.5)), then ¢, > 0 and (6.6)
guarantee wy(x,a) > 0 for x > a, hence w(x, ) > w(a,a) > 1. If wy(a,a) = 0 (which is true
for a > b —a+ e due to (6.4)), then (2¢w)(a,a) = C'(x) and

%(prw —C'(a))(a,a) = 2¢,w + 29wy = 2¢xw > 2p >0
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Figure 6.7: Global field of extremals: A(x) = (¢(a,a), ¢x(a,a)), B(a) =
(p(b,a),px(b,x)), (b—a)/2=u1 <b—a—e=a<az<ag=b—a+e<as.

hence wy(x,a) > 0 for x > a close to a, and (6.6) implies w,(x,a) > 0 for all x > a. As before,
this implies w(x, a) > 1.

If « < 0, then the choice of ¢(-,a) is symmetric: The extremal ¢(-, a) solves the Du Bois-
Reymond equation in [, b] and (¢(b,a), x(b,a)) = B(a) := (—A1(—a), Az(—a)).

As an alternative to the technical construction of the global field above, we could also set
(p(a,a), px(a,a)) = A(x), where

Aa) = {(uo(a+06)/(u0)/(a+a)) if0<a<b—a,
(uo(b) +a—(b—a),2) ifa>b—a,

and analogously for « < 0. Then the field ¢(-,«) is not sufficiently smooth if |a| = b —a,
but a simple generalization of Theorem 6.1 shows that this does not matter. In fact, denote
v* = ¢(-,£(b—a)). Letu € C'([a,b]); we want to show ®(u) > ®(u’). Approximating
u suitably, we may assume that the set {x € [a,b] : u(x) = o*(x) or u(x) = v (x)} is fi-
nite. Set # := max(v~, min(v", %)) and approximate i by a sequence of C!-functions u* such
that graph(u¥) C P; := {(x,¢(x,a)) : x € [a,b], |«| < b—a} and u*¥ — @ in W'*. Then
Theorem 6.1 shows that ®(u¥) > ®(u°), hence ®(ii) > ®(u’) due to the continuity of &
in W4, Let [x1, x2] be any maximal interval where i@ = v* (i.e. u > v¥) or i = v~. No-
tice that either x; = a or u(x;) = v*(x1), and either x; = b or u(xz) = v*(x2). Denote
D (u) = fx’? f(x,u(x),u’(x)) dx. Then the proof of Theorem 6.1 shows @ (u) > ®2(v™) (if
u > ot in [x1, x2]) or @ (u) > ®(v™), hence ®(u) > ® (i) > ©(u0). O

7 Appendix

Proof of Proposition 2.1. We will consider only the special case N =1, If =Q, Iév = @, but the
arguments in our proof can also be used in the general case.
If h € Ch, = {9 € C}([a,b]) : (b) = 0}, then integration by parts yields
b
Ja

0= (u)h = [ (RGN (x) + fx)h(x)) dx

=i+ [0 s



30 P. Quittner

where g(x f f2(¢)d¢ is Cl. Considering test functions h with compact support in (a, b),
the Du Bms Reymond Lemma and (7.1) yield the existence of a constant C such that f;,’(x) =
8(x) +C, hence fp € C' and the Euler equation #(f)) = f? is satisfied. This equation and
the choice of h with h(a) =1 in (7.1) imply

0= /() = /ﬂ b(f,?(x)h’(x) + () dx
= 100+ [ (19000 + 190 () dx = — £,

which concludes the proof of the first part. If f, € C! and f;(;)p > ¢ > 0, then the function

F(x,p) = fp(x,u’(x),p) — g(x) — Cis C!, F(x, (u°)'(x)) = 0, Fy(x, (u®)'(x)) > 0, hence the
Implicit Function Theorem implies u° € C2. O

Proof of Proposition 2.3. The proof is based on an idea due to [4].

Let u° € C! be a weak minimizer of ® in u® + C%). Assume first that there exist vF € Wil)’z,
k =1,2,..., such that r := [|v"||;2 — 0 and ®(u° + oF) < ®(u?). Since ® is weakly lower
semicontinuous in W'?, there exists a minimizer u* of ® in the set {u € u® + Wzl)’2 u—
u(|12 < ¢}, hence ®(uf) < ®(u® + oF) < ®(u0). Set O(u) := |lu — u0||%,2. Then there exists a
Lagrange multiplier Ay such that @' (u¥)l = A, @' (u¥)h for any h € W (where the derivatives
are considered in W'?). Since ®'(u*)(u* — u®) < 0, we have A, < 0. Standard theory implies
that u%, u* € C? solve the Euler equation

21 = A" = g/ () = 200((1)" + ¥ — ),

which shows that the sequence ¥ is bounded in C2. Since u* — uY in W12, the boundedness in

C2 implies u* — u° in C! which contradicts the fact, that u° is a weak minimizer. Consequently,
u? is a local minimizer in u° + W}J’z.

Next assume that there exist v* € C}, such that ||o*||c — 0 and ®(u° + v;) < ®(u°). Since
@' (u)h = fﬂb(Z((uO)’ — K)W + ¢/ (u®)h) dx = 0 for h € C},, we have

0< @) — o+ = /b[((uo)’ — K)?2 — () + (%) — K)* dx +0(1)

- —Hvk||12+/ Jokdx +0(1) = — [0 3, + (1),

hence v¥ — 0in W2, which yields a contradiction. Consequently, #° is a strong minimizer. [J

Proof of Proposition 3.1. Assume that ¥ (k) > c||h||7, for some ¢ > 0 and all i € Wy and recall
that ¥ (h) = ®"(u®)(h,h) if h € CL. If u! is close u” in C! and ¥' denotes the functional ¥ with
u0 replaced by u!, then one can easily check that ¥ (k) = ®"(u!)(h,h) > §||h||%2 for h € Ch,,
and the Mean Value Theorem implies the existence of 6 € (0,1) such that

Ou’ +h) — o) = <1>”(u + 6h)(h, h) > Hhle

whenever h € C}, is small enough. Consequently, 1 is a strict weak minimizer in u° + C},.

If ¥(h) <0 for some h € W%Z, then the density of CD in Wé’z and the continuity of ¥ in
W}jz guarantee the existence of /1 € C}, such that 0 > ¥(h) = ®"(u°)(h, h), which shows that
u? is not a weak minimizer u° 4 Ck. ]
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Proof of Theorem 5.2(iii). First assume that IV = @. If I,ﬁv = @, then the assertion is well
known (see [7] or [8], for example), hence we may assume I{)\[ # @. Our assumptions imply
D # 0in (a,b] and Bh(b) - h(b) > 0 for any h € Hpy \ {0}. We may also assume that
f is defined and of class C° in an open neighbourhood of {(x,u%(x), (u°)(x)) : x € [a,b]}
in R x RN x RN (see [2] for a detailed proof if N = 1). Consequently, there exists ¢ > 0
small such that u° can be extended (as an extremal) for x € [a — ¢,a], f° satisfies (2.3) in
[a — ¢,b], and the solutions W),k =1,2,...,N of the Jacobi equation in [a — ¢, b] with initial
conditions h*)(a —¢) = 0, (hl(k))’(a —¢€) = i, satisfy D > 0in (a — ¢, b] and Bh(b) - h(b) > 0
for any h € Hp) \ {0} due to the continuous dependence of solutions of ODEs on initial
values. Let ¢(-,a) be the extremal satifying the initial conditions ¢(a —¢,a) = u%(a —e),
px(a,a) = (u°)(a —¢€) + «. The arguments in [7,8] guarantee that such extremals define a
field of extremals for u (in [a, b]) satisfying (5.1). Condition (5.2) is empty, hence we only have
to show that (5.3) is true. Thus assume that v — u°(b) € lR%’/b N B\ {0}. We have v = ¢(b, )
for some a small. Set h* := Y ath®). If i € IP, then 0 = ¢;(b, ) — u?(b) = h¥(b) + o(«),
hence h* = h* +o(a) for some h* € Hp, \ {0} and & = « + o(«). Since our assumptions imply
Bh*(b) - h*(b) = Yiey Bih*(b)h*(b) > 0, we also have

fo0,0,9(0,0) - (v —u’(b)) = Y, fp.(b @(b,a), x(b,0))(@i(b,a) — 1] (b))
el
= Y (Bih*(b) + (@) (hf (b) + 0(a))
ierV
= ) (Bh*(b) +o(a)) (h (b) +o(@)) > 0.

ierV

Next assume IP = @. Since our proof in this case uses similar arguments as in the case
Iﬁv = @ (and a very detailed proof in the case N = 1 can be found in [2]), we will be brief.
Given & € RN small and v = v(a) := u(a) + &, the Implicit Function Theorem implies the
existence of a unique w = w(a) € RN close to (u°)’(a) such f,(a,v(x), w(a)) = 0. Let ¢(-, )
be the extremal satisfying the initial conditions ¢(a,a) = v(a), ¢x(a,a) = w(a). We claim that
such extremals ¢(-,a) define the required field. In fact, the function P in Definition 5.1 is a C!-
diffeomorphism and ¢, € C! due to the differentiability of solutions of ODEs on initial values
and the fact that h%) .= % (-,0),k=1,...,N, are linearly independent solutions of the Jacobi
equation Ah = 0 satisfying the initial conditions Bh(a) = 0, hence det(hV),...,h(N)) £ 0 in
[a,b] due to our assumptions. Properties (5.1) and (5.2) follow from f,(a,v,¢(a,v)) = 0 and
the proof of (5.3) is the same as in the case Iﬁv =Q.
Finally assume (5.5). Let (1), ..., h(N) be solutions of the Jacobi equation Ak = 0 in [a, b]
satisfying the initial conditions
hfk)(a) =ndy forkelP,iel, (h k))/(a) =0 forkel,ielP,
W) =6,  forkeN,icl, BhM@) =0 forkeliell,

where 17 € [0,1]. If { > 0 is small, then

B9@+0) = (n+0)dw +0(0)  ifkicI?,
W a+7) = 6 +0(0) otherwise,

1

hence D(x) := det(hV(x),...,hN)(x)) > 0 for x € [a,a+ ] and n € (0,1]. If § = 0, then
our assumptions imply D(x) > 0 for x € [a + ¢, b] and Bh(b) - h(b) > 0 for any h := Y Bih®
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satisfying h;(b) = 0 for i € IP and h # 0. Those properties remain true for 7 > 0 small
and we fix such 7 > 0. Set v;(a) = ul(a) + na; if i € IP, v;(a) = u¥(a) +a; if i € [V and
wi(a) = (u9)(a) +a; if i € IP. The Implicit Function Theorem guarantees that there exist
unique w;(a) for i € IV (close to (u?)'(a)) such that fp,(a,v(a),w(x)) = 0 for i € IV and «
small. Let ¢(-, ) be extremals satisfying the initial conditions ¢(a,a) = v(a), px(a,a) = w(a).
Then @, (a,0) = h®)(a) and @4, (a,0) = (h%))'(a), which shows that these extremals define
a field of extremals for a small. The same arguments as above guarantee that properties
(5.2),(5.3) are satisfied. Let us show that (5.1) is true. If i,j € I;\/ , then this follows from
fri(a,0,9(a,0)) = fp.(a,0,¢(a,0)) =0. Leti € IP. If j € IV, then the left-hand side in (5.1)
is zero due to fyu; = fpp, = 0. If j € IP, then that left-hand side equals f,.,(a,0,9(a,v)) +
Zkelfpipk(”rUrl/)(”rv))l/)k,vj(“rU)- Since fpiuj = fpjui’ fPiPk(a’U/l/)(a’U)) = 0 for k € Iév and
l/)krvj(a, v) = %(5;(]- if k € IP, we see that that left-hand side equals to the right-hand side. O
Proof of Proposition 5.4. If w = (wy,...,wy) depends on 6, then we denote w;y := aa”é". By
differentiating the identity ¢.(x,a) = ¢(x, ¢(x, «)) we obtain

Pix = Pjx + ) W0 Phx = Pjx + Y Pjo, Pk
k k

If we substitute this relation into the Euler equations

Z(fpilﬂj Pjxx + fPiuj (Pj,x) + fPix - fui =0,

]

(where the arguments of the derivatives of f and ¢ are (x, o(x,0), px(x, oc)) and (x, ), respec-
tively), then we obtain

2 pin (Bix = L W) + o) + fyix = fu = 0, (7.2)
j k

where the arguments of the derivatives of f and ¥ are (x,v,9(x,v)) and (x,v), respectively.
For (x,v) € P we set

V(x,0):= f(x,0,9(x,0)) — fp(x,0,9(x,0)) - p(x,0),

7.3
W(x,v) := fp(x,0,9(x,0)). 7:3)

We claim that

3 (x,0,9(x,0)  3fy(x,0,9(x,0))
av]- an

(Wip, — Wip,) (x,0) = =0, ijel (7.4)
In fact, if f and ¢ are of class C°, then setting v = @(x,a) and ¢(x,v) = @y (x,a) in (7.4),
the Euler equations imply that the d/dx-derivative of the resulting expression vanishes, hence
the conclusion follows from (5.1). Such argument can also be used without the additional
smoothness assumptions on f, ¢, see the proof of [8, Proposition 6.1.1.4].

Now (7.4) and (7.2) imply V, = Wy. This fact and (7.4) guarantee the existence of S €
C%(P) such that S, = V and S, = W. Finally,

I(v):/ab(V—i—W-v’)dx:/ab(Sx—i—Sv-v')dx:/;;;S(x,v(x))dx
=S(b,v(b)) — S(a,v(a)).



Necessary and sufficient conditions 33

Remark 7.1. Necessary and sufficient conditions for weak minimizers in [15,16] are formu-
lated in terms of (semi-)coupled points and seem to be more complicated than our condi-
tions. In order to compare them, let us consider the scalar case with variable endpoints
(ie. IP = IP = @), and let h be the solution of the Jacobi equation satisfying the initial con-
ditions h(a) = 1, Bh(a) = 0. Let us also denote Q := fJ,. Then our sufficient condition for a
weak minimizer in Theorem 3.3 is equivalent to

h(y) #0 for y € (a,b] and Bh(b) >0, (7.5)

while the sufficient condition for a weak minimizer in [15,16] is equivalent to

_ Bh(y) # (/b Q)h(y) for y € (a,b] and /;Q > 0. (7.6)

y

The proofs of the sufficiency guarantee that (7.5) is equivalent to (7.6). Let us show this
equivalence directly: For simplicity, consider just Lagrangians of the form 2f(x, u, p) = p2 +
Q(x)u?. Then Bh = I and the Jacobi equation has the form h” = Qh. Let h be the solution of
this equation with initial conditions h(a) =1, h'(a) = 0.

First assume that (7.5) is true. Then integration by parts yields

[lo= [ty PUR o

2
Assume to the contrary that —1'(y) = (fyb Q)h(y) for some y € (a,b]. Then

[l iG-S Le- ) e

Now (7.8) and (7.7) imply

b Yy (h/)z h/ b b (h/)z b
Lol <wlrf ==L
which yields a contradiction.

Next assume that (7.5) fails, i.e. either h(y) = 0 for some y € (a,b] or I'(b) < 0, and
assume also to the contrary (7.6) is true. If h(y) = 0 for some y € (a,b] and h > 0 on [a,y],
then '(y) < 0, hence

so that there exists z € (a,y) such that —1'(z) = (. b Q)h(z), which yields a contradiction. If
h > 0and 1/ (b) <0, then

—H'(b)>0=

so that there exists z € (a,b] such that —1'(z) = (/. b Q)h(z) and we arrive at contradiction
again.
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The proof above shows that if y; is the first (= smallest) zero of 1, then the smallest solution
z1 of the equation —/'(z) = ( fzh Q)h(z) satisfies z; < y1. The inequality z; < y; also follows
from the proof of Theorem 3.4 and the corresponding proof in [16]. In fact, those proofs show
that y; and z; correspond to the zeroes of the continuous nonincreasing functions A (y) =
infs, ¥ and M(z) = infs ¥, respectively, where S, is the unit sphere in X, (see (3.3)) and S,
is the unit sphere in X; = {h € W'?([a,b]) : h(x) = h(z) for x > z}. Since X, C X, and the
norm in X, is equivalent to the norm in W12 we have A; < max{CAq,0}. O

The following proposition is motivated by [11] and Section 4. Given u? € C!([a,b], RY),
we will use the following notation (cf. (1.2)):

M :=u"4+Ch ={uecCl(ab]): (u;—ud)(x) =0foric I” and x € {a,b}},
My ={ue M:u(x)=0forie I} and x € {a,b}}.

Proposition 7.2. Let f € C! and let u® be a weak minimizer of ® in Myr. Then u® is a weak
minimizer in M. Conversely, if u is a weak minimizer in M and % € My, then u° is a weak
minimizer in M.

Proof. For simplicity, we will prove the assertion only in the special case N = 1, IP = @,
Ié\/ = @, but it will be clear from the proof that our arguments can also be used in the general
case.

Hence assume first that u° is a weak minimizer of ® in

My ={u e Cl([a,b]): (u—u’)(b) =0, u'(a) = 0}.
Then there exists ¢ > 0 such that u° is a (global) minimizer of ® in the set
M i={ue My |lu—u]|a <el}
We will show that u° is a (global) minimizer in the set M®/4, where
Me={ue M: ||u—ul||a <e},

hence 1 is a weak minimizer of ® in M = {u € C!([a,b]) : (u —u°)(b) = 0}.
Fix u € M#*. Since (u°)'(a) = 0, given k € IN, there exists &; € (0,1/k) such that

|(u®) (x)] < 1/k for x € Ji := [a,a + &].

Since ||[u — u%||c1 < e/4, we also have |u'(x)| < ¢/4+ 1/k for x € J;. Consequently, we can
modify the function u in J; such that the modified function u* € C'([a, b)) satisfies u* = u
on [a + &,b], (u¥)'(a) = 0 and |(u*)'(x)| < e/4 +1/k for x € Ji (for example, we can choose

(uF)(x) = v/ (6¢) (x — a) / (6 — a) for x € J;). Then
() = ()] < 1) + ()| < e/442/k on i
and the Mean Value Theorem implies
Juk — O < Juf —u| + |u —u®| < m}ax\(uk —u) |6 +e/4< (e/2+2/k)/k+¢e/4 on ],
k
hence uf € M§, for k large, which implies ®(u*) > ®(u?). Since ®(u*) — P(u), we have

D(u) > d(ul).
The converse assertion is trivial. O
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Remark 7.3. In [11, Propositions 5 and 6] the authors consider the function 1% and the func-
tional ® from our Section 4, and they provide conditions guaranteeing that u is a weak
minimizer subject to the Neumann boundary conditions for some of its components (see (4.3)
and (4.2) above). Proposition 7.2 shows that the Neumann boundary conditions do not play
any role in such assertions, i.e. u’ remains a weak minimizer if we replace “the Neumann
boundary conditions” with “no boundary conditions”. Consequently (see Proposition 2.1), u°
then has to satisfy the corresponding natural boundary conditions (instead of the Neumann
boundary conditions). The Neumann boundary conditions are different from the natural
boundary conditions in general, but the first two components of the function u in Section 4
satisfy both the Neumann and the natural boundary conditions. O
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