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Abstract. An exact solution of an initial value problem for the Susceptible-Exposed—
Infectious—Recovered-Deceased (SEIRD) epidemic model is derived, and various prop-
erties of the exact solution are obtained. It is shown that the parametric form of the
exact solution satisfies some linear differential system including a positive solution of
an Abel differential equation of the second kind. In this paper Abel differential equa-
tions play an important role in establishing the exact solution of the SEIRD differential
system, in particular the number of infected individuals can be represented in a simple
form by using a positive solution of an initial value problem for an Abel differential
equation. Uniqueness of positive solutions of an initial value problem to SEIRD differ-
ential system is also investigated, and it is shown that the exact solution is a unique
solution in the class of positive solutions.

Keywords: exact solution, SEIRD epidemic model, initial value problem, linear differ-
ential system, Abel differential equation, uniqueness of positive solutions.
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1 Introduction

Recently there is an increasing interest in mathematical approach to the epidemic models.
Since the pioneering work of Bernoulli [2], a vast literature and research papers has been pub-
lished so far (cf. [4,5,9]), and studies of epidemic models have become one of the important
areas in mathematical biology. In particular we mention Kermack and McKendrick [11] in
which the Susceptible-Infectious-Recovered (SIR) epidemic model was proposed. Exact solu-
tions of epidemic models have been investigated in recent years. We refer to Bohner, Streipert
and Torres [3], Harko, Lobo and Mak [10] and Shabbir, Khan and Sadiq [16] and Yoshida
[19] for SIR epidemic models, to Yoshida [18] for Susceptible-Infectious—Recovered—Deceased
(SIRD) epidemic models, and to Yoshida [20] for Susceptible-Exposed-Infectious-Recovered
(SEIR) epidemic models.
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2 N. Yoshida

The Susceptible-Exposed-Infectious—-Recovered-Deceased (SEIRD) epidemic models have
been an important and interesting subject to study (cf. [6,12-15,17]). However, there appears
to be no known results about exact solutions of SEIRD epidemic models. The objective of this
paper is to establish an exact solution of an initial value problem for SEIRD epidemic model.
Our method is an adaptation of that used in Yoshida [20], and is based on the existence
of unique positive solution of an initial value problem for Abel differential equations of the
second kind. We refer the reader to Abel [1] and Davis [8] for Abel differential equations.
Uniqueness of positive solutions of an initial value problem to SEIRD differential system is
also studied, and we find that the exact solution is a unique solution in the class of positive
solutions.

We study the Susceptible-Expose-Infectious—Recovered—-Deceased (SEIRD) epidemic
model

B _ psiie), (11)
diéﬂ==ﬁ5(ﬂl(0<—5E(O, (1.2)
dld(:) = SE(t) — qI(t) — uI(t), (1.3)
RO — e, (14)
D _ prr (15)

for t > 0, where 8,7y, 6 and p are positive constants. The initial condition to be considered is
the following:

S(0)=S, E(0)=E, 1(0)=1I R(0)=R, D(0)=D. (1.6)
It is assumed throughout this paper that:

(Ay) I>0;

(As) D > 0 and D satisfies
N — R > SelB/WP 1 p;

(Ag) S+ E+ T+ R+ D = N (positive constant).

In Section 2 we obtain a parametric solution of an initial value problem for SEIRD dif-
ferential system, and in Section 3 we derive an exact solution of an initial value problem for
SEIRD differential system. Section 4 is devoted to various properties of the exact solution of
SEIRD differential system. In Section 5 we show that there exists one, and only one, solution
of an initial value problem for SEIRD differential system in the class of positive solutions.
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2 Parametric solution of an initial value problem for SEIRD differ-
ential system

In this section we show that a positive solution of the initial value problem (1.1)—(1.6) can be
represented in a parametric form.

Since
d _dS(t) dE(t) dI(t) dR(t) dD(t)_
250 +E() +1()+R() + D)) = T2 + T S0 L B8 L B0 _ g

by (1.1)—(1.5), we obtain
S(t)+ E(f)+I(t) + R(t)+D(t) =k (t>0)
for some constant k. The hypothesis (Ag) implies
k=5(0)+ E(0)+I(0) + R(0) + D(0) =S+E+I+R+D =N,

and therefore
S(t) +E(t)+I(t) +R(t)+ D(t) =N (t>0).

We state the following important lemma.

Lemma 2.1. If (S(t), E(t), I(t), R(t), D(t)) is a solution of the SEIRD differential system (1.1)—(1.5)
such that S(t) > 0 for t > 0, then

D'(t)+ (0 +v+u)D'(t) = du (N ~R+ ZD — GelB/1De=(B/mD(1) _ <1 + Z) D(t)) 2.1)
fort > 0.
Proof. We see from (1.1) and (1.5) that

D'(t) = wi(t) = (g7 ) =~ oS’

and integrating the above on [0, {| gives

D(t)—D = —Z(logS(t) —log$).

Hence we obtain

log S(t) = —'i(D(t) —D) +1og$

and therefore

S(t) =exp <10gS~ — iD(t) + ﬁf)) = GelP/mD = (B/mD(), (2.2)
It follows from (1.5) that I(¢t) = D’(t)/p, and hence I'(t) = D" (t)/u. Therefore, (1.3) implies
that

E(t) = S (I'() + (v + w)I(t))

1

=55 (D"O+(r+mD'®). (23)

S S ]
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It is obvious that

and hence

k=R-Tp,
H
and therefore
R(t) = ID(t) +R— 1D, 2.4)
H K
We observe, using (1.5), (2.2)—(2.4), that
D'(t)
=I(t
. (t)
= N—S5(t) — E(t) — R(t) — D(¥)
:N—Qﬁwmfwwm”—é(U%%H7+MD%»—ZD®—R+ZD—D@

which implies

iD”(t) 4 (1 + W) D'(t) =N — R+ LD — Gel/mDe=(6/mD(1) _ <1 + 7) D(t).
Op pooop 2 M

Multiplying the above by dyu yields the desired identity (2.1). O

By a solution of the SEIRD differential system (1.1)—(1.5) we mean a vector-valued function
(S(t),E(t),I(t),R(t),D(t)) of class C'(0,00) N C[0,00) which satisfies (1.1)~(1.5). Associated
with every continuous function f(t) on [0, o), we define

f(o0) := lim f ().

t—o0

Lemma 2.2. Let (S(t),E(t),I(t),R(t),D(t)) be a solution of the SEIRD differential system (1.1)—
(1.5) such that S(t) > 0, E(t) > 0, I(t) > 0 and R(t) > 0 for t > 0. Then there exists the limit
D(o0).

Proof. Since I(t) > 0 for t > 0, it follows from (1.5) that D'(t) = uI(t) > 0 for t > 0, and
therefore D(t) is increasing on [0,00). It is easy to see that D(t) is bounded from above in
light of

D(t) = N — S(t) — E(t) — I(t) — R(t) < N (¢ > 0).

Hence there exists the limit D (o). O

Theorem 2.3. Let (S(t),E(t),I(t),R(t),D(t)) be a solution of the initial value problem (1.1)-
(1.6) such that S(t) > 0, E(t) > 0, I(t) > 0 and R(t) > 0 for t > 0. Then the solution
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(S(t),E(t),I(t),R(t),D(t)) can be represented in the following parametric form:
S(p(u)) = Self/MPy, (2.5)

o~ (B/W)D

Ee—09() 4 GplB/mDy—dp(u) / e o, (2.6)

u

E(p(u)) +
I(p(u)) =N—-R+ ZD — GelB/mWDy 4 T log 1 — Fo—d9(u)

g*(,B/V)D

— ge(ﬁ/y)bef5(p(u) / e(sq)(v)dvl (27)
R(p(u)) = — g logu + R — ZD, (2.8)
D(g(w) = — g logu (2.9)
for e~ (B/1D(®) 3 < o= (B/WD here
—(B/w)D

e e

t= o(u) = / g% (2.10)
A A 6

with (u) satisfying the Abel differential equation of the second kind

5 BN = BR+ ((BY)/1)D — pSelP/1Pu + (7 + u) logu
u

)
yyp— T LEE @11)

for e (B/10D() < 4y < ¢=(B/MD and the following conditions

lim u) =20,
u—)g_(ﬁ/V)D(oo)+OlP( )

1102

$(u) >0 in (e (B/MD() o=(B/mD],

Proof. Since D'(t) = uI(t) > 0 for t > 0 in view of (1.5), we find that D(t) is increasing on
[0,00). Then there exists the limit D(c0) by Lemma 2.2. It is easy to check that u = u(t) =
e~ (B/mD(t) g decreasing on [0, %), e~ (B/mWD() <y < ¢=(B/WD and limy 0 u(t) = e~ (B/u)D(e0)
Hence there exists the inverse function ¢(u) € C! (e~ (B/mWP() ¢=(B/1DY of 1y = u(t) such that

t = qo(u) (ef(lB/H)D(oo) <u S ei(lB/]/l)D> ,

¢(u) is decreasing in (e~ (F/1D() o=(B/1)D], lim,, _,, g/ 4o @(1) = 00, and (e~ (B/1D) = 0.
Substituting t = ¢(u) into (2.1) in Lemma 2.1 yields

D"(@(u)) 4 (6 + v+ u)D'(¢(u))

= by (N — R+ ZD — SelP/1)D=(B/mD(g(w)) _ (1 + Z) D(qo(u))) (2.12)

for e~ (B/mD(®) <y < = (B/1)D. Differentiating both sides of u = e~ (#/#)P(¢(1) with respect to
u yields
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and therefore

D'(plu)) = e

(2.13)

Since D'(t) € C'(0,00) by means of (1.5) and ¢(u) € Cl(e~(B/mD(®) o=(F/1D) we see that
D'(¢(u)) € Cl (e~ (B/mD(=) ¢=(B/1)D) and consequently 1/ (¢’ (u)u) € C (e~ (B/#)D() o=(B/1)D),

We differentiate (2.13) with respect to u to obtain

D"(p(w)e' 0 =5 (i)
and hence ,
" _H 1 1
D<“”)“ﬁ<¢ww>qmm
It is obvious that
D(g(u)) = — % logu

p
in light of u = e~ (B/m)D(g(u)), Combining (2.12)—(2.15), we get

- Z <(p’(1u)u>/ <p’1u) " (Hvﬂi) (_Z¢/(1Lt)“>

B
or
5 (o) (i) 55 ()
B\ ¢(u)u ¢'(wu) B u ¢ (u)u
:—(SV% (N—R+ZD—§e(ﬁ/”)Du+Z 1+Z>logu>.
Letting
1
Y=

(2.14)

(2.15)

(2.16)

(2.17)

we observe that 1(u) satisfies (2.11). Since t = @(u) > 0 for e~ (F/1D(®) <y < ¢=(B/1D e

see from (1.5), (2.13) and (2.17) that

in (e_(ﬁ/V)D(""),e_(ﬁ/V)D). If we define
llJ(e ) u—)e’(lg};)’j—ow(u

)
_ B iy B _af
=0 lim D'(1) = ul(0) = BT >0,

then ¢ (u) is a positive continuous function in (e~(B/#P() ¢=(B/1D] 1t follows from (2.17)

that .
g*<5/V)D dé

t=o(u)= /euw/mb ¢(5)de = /u (o)
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and therefore (2.10) holds. Since lim

limu—>e (B/u)D +0 110( )
Now we estabhsh the representation formulae (2.5)—(2.9). We see from (2.2) and (2.15) that

u—se—(B/m)D(x0) 1) p(u) = oo, it is necessary that
S(g(u)) = SelP/MDe=(B/mD(p(w) = Ge(B/mDy,
D(p(u)) = —Zlogu,

which are the desired representations (2.5) and (2.9). Combining (1.1) with (1.2) yields the
first order linear differential equation

E'(t) + 6E(t) = —S'(t)

which implies

t
E(t) = Ee™% — ¢~ / ¢! (&)de. (2.18)
0
Differentiating (2.2), we obtain
S'(t) = ég (B/WD Y (4 (t)e —(B/m)D(t) (2.19)
H
Substitution of (2.19) into (2.18) gives
Beyenm, o [y
E(t) = Ee~* + Ege(p/mb o0t / D! (&)e B/MP@) g, (2.20)
i 0

By changing the variables D({) = s, we obtain

[ = /Otelsé'D/(g) (B/WD(@) g — / o~ (B/1)s g

_ / B10%) (B s 4

~B) (= (B/p)s
;s/ ) ds

in view of D71(s) = (e~ (B/#)3), Letting v = e~ (B/1)* yields

—(B/mb
= / s 0. 2.21)

Combining (2.20) with (2.21), we are led to
5 B _ g’(ﬁ/lr‘)D
E(t) = Ee™* + Se(ﬁ/”)De_‘”/ ) dy. (2.22)
(B/wD(t)
Substituting t = ¢(u) into (2.22), we arrive at (2.6). We observe, using (2.4), that

R(¢(1)) = ID(p(u)) + R - ZD - —glogu FR- ZD

H

which is equal to (2.8). Since I(¢(1)) = N — S(¢(u)) — R(¢(u)) — D(¢(u)) — E(@(u)), (2.7)
follows from (2.5), (2.6), (2.8) and (2.9). O
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relations:

S(t) = SelP/1Pe=(B/m)D(1) (2.23)
N e—(B/mD
E(t) = Ee %" + S~e(ﬁ/")De’5t/ D (= (u/p)logv) gy, (2.24)
e—(B/WD(®)
I[(f) = N — R+ XD — GelB/mbe=(B/mD(t) _ TR D(t) — Ee~
H K
_ g*(ﬁ/ﬂ)b
_ Gp(B/mD ot / D7 (~(n/B)log) g, (2.25)
e=(B/mD(®)
R(t) =D(t) + R — ZD (2.26)
fort > 0.
Proof. It is easy to see that
u = q)_l(t) = g_(ﬁ/.u)D(t), (227)
¢(v) = D~ (~(u/p)logo) (2.28)
in the proof of Theorem 2.3. Combining (2.5)—(2.8), (2.27) and (2.28), we are led to (2.23)-
(2.26). O

3 Exact solution of an initial value problem for SEIRD differential
system

In this section we establish an exact solution of an initial value problem for SEIRD differential
system (1.1)—(1.5) by utilizing Theorem 2.3 in Section 2.

The following lemma follows from a result of Yoshida [18, Lemma 3] by replacing R,D,v,u
by D,R, 1,7y, respectively.

Lemma 3.1. Under the hypothesis (As), the transcendental equation

x=-Ht NP py T po P GeB/mDe(B/m)x
T+u Y+H T+ H Y+u

has a unique solution x = « such that
D<a<N

(cf. Figure 3.1).
We assume that the following hypothesis

(A7) S < L;g"g(ﬂ/#)(“*f))

holds in the rest of this paper. We note that (A7) is equivalent to the following
ry rte T e

(A7) B >N R+HD h g

in view of Se(B/MDe=(B/Wa — N — R + (v/u)D = ((y + ) /n) a.
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Figure 3.1: Variation of (u/(y + u))N — (u/(y +u))R+ (7v/(y + u))D —
(u/ (7 + p))SelB/WDe=(B/mWx _ x for N = 1000,5 = 950,R = 0,D = 0, =
0.2/1000, ¢ = 0.05 and u = 0.01. In this case we find that (1/ (v +u))(N —S) =
25/3 and 0 < a = 160.2... < 1000.

Remark 3.2. Combining (A;) with (A3), we have

- _OF
§> 95 X
pr— B
Lemma 3.3. There exists a unique positive solution w(x) of the initial value problem for the Abel
differential equation

W+ ﬁ(5+:+ﬂ)w
_ B </5N — BR + Prp_ BSelB/mDe=(p/p)x _ Wx) (D<x<a), (31
H H H
subject to the initial condition
w(D) = BI. (3.2)

Proof. Let

f(x):=N-R+ ZD _ GolB/WD (B _ 77"'

Since f'(x) = 0 for

x=x= Elog ( P 56(/5/”)’3) ,
P T
we see that D < ¥ < a by means of (A7) and Remark 3.2, and that f/(x) > 0for D < x < &
and f'(x) < 0 for ¥ < x < a. Hence, f(x) is increasing in [D, ¥) and decreasing in (%, ).
Since f(D) = N—R—-S—D = E+1 > 0and lim,_,,_¢ f(x) = 0 by Lemma 3.1, it follows
that f(x) € C[D,a), f(x) > 0in [D,a) and lim,_,_o f(x) = 0. Therefore there exists a
unique positive solution w(x) of the initial value problem (3.1), (3.2) by a result of Yoshida
[20, Theorem 3] (cf. Figure 3.2). O

Lemma 3.4. There exists a unique positive solution P(u) of the initial value problem for the Abel
differential equation

0 vtm, BN = BRA+ ((B)/W)D — pSePPu+ (v + ) logu
u u

Yy (3.3)
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with the initial condition i
(e B/1P) = BT (3.4)

(cf. Figure 3.3).

007

0.06

0.05

004
=

0.03

002

pf0)=001 —0.01
w(0) = 0.006

0.00

2I0 4:(1 EIO BI(J 160 120 140 160

I — o
=

0 0=1602---

Figure 3.2: Variations of f(x) (dashed curve), and w(x) (solid curve) obtained
by the numerical integration of the initial value problem (3.1), (3.2), for N =
1000, S = 950,E = 20, = 30,R = D = 0,8 = 0.2/1000,y = 0.05,6 = 0.2,y =
0.01 and « = 160.2... In this case we obtain f(0) = BN — BS = 0.01 and
w(0) = BI = 0.006.

007F  emmmmel Pl
S~ u
0.06] // W N .
/ U(u .
oosfE /' ‘\\
1 \\\
004F /
L/ N,
s
0.03F S
002
\\ ~
001 N < P()=pN-85=001
<~ y(1)=p1=0.006
02 02 06 08 o

exp(- (B/)a) = 0.040 - - - expl- (8/1D) = 1

Figure 3.3: Variations of P(u) := BN — BR + ((By)/u)D — pSeB/MPy 4 (v +
#)logu (dashed curve) and ¢(u) (solid curve) obtained by the numerical inte-
gration of the initial value problem (3.3), (3.4) for N = 1000, S = 950, £ = 20, [ =
30,R =D =0, =02/1000,7 = 0.056 = 02,4 = 0.01 and « = 160.2... In
this case we get e~ (F/1* = 0.040.. ., e~ (B/mWD =1, P(1) = BN — BS = 0.01 and
(1) = T = 0.006.

Proof. Let w(x) be a unique positive solution of the initial value problem (3.1), (3.2). We define
(u) by

P(u) :=w (—5logu>

and find that
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and hence
¥ (u)p(u) = — giw( logu> <Zlogu)
_ Kl ﬁ5+7+ﬂ> _H
-5l o (~fros)
+E2 (g - ﬁR+((ﬁ7)/u>D BSel¥/ 0w+ (1 + ) log )|
_ OBy BN BRY ((B1)/1)D — Sel¥’MPu + (7 + ) logu
u u

for e~ (B/me < 3 < o= (B/WD by means of (3.1). Hence ¢(u) satisfies (3.3). It is easily seen from
(3.2) that

p(e”P/17) = w(D) = pI
and therefore (3.4) is satisfied. The uniqueness of (1) follows from that of w(x). It can be
shown that

(1) > 0in (e (P/1)% o= (B/1)D] (3.5)
since (1) = w(—(pu/p)logu) and w(x) > 0in [D, a). O

Lemma 3.5. The unique positive solution (u) of the initial value problem (3.3), (3.4) satisfies the
following relation

¥(u) = BN — BR + ﬁ:f) — BSeP/Dy 1 (7 4 ) log u
o (B/1)
- B (Ee‘s"’ + SelB/1)Dp—09 () / F eéﬁ”(”)dv> (3.6)

for e~ B/ <y < e*(ﬁ/V)D, where

- e~ (B/m)D dC
p(u) = / G (3.7)

Conversely, the function (u) satisfying (3.5), (3.6) is a solution of the initial value problem (3.3),
(3.4).

Proof. We note that (3.6) is some kind of integral equation of ¢(u), in light of (3.7). Let y(u)
be the unique positive solution of the problem (3.3), (3.4), and define z(u) by

z(u) :==p(u) — P(u), (3.8)

where
P(u) = BN — BR + ﬁ:f) — BSeP/ 1Dy ¢ (4 u) log u. (3.9)

Dividing (3.3) by (1), we obtain

/ S+y+u P(u) YT H P(u) —p(u)
Yu) = u =0 up(u) ~ u 0 up(u)
y+u z(u)
w ° up(u) 10
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On the other hand, differentiating (3.8) yields
' (u) = —pSelP/MD 4 WTW +2'(u). (3.11)

Combining (3.10) with (3.11), we get

Z(u) — ul/f(u)z(u) = BSe(P/1D
or ]
2'(u) + 8¢ (u)z(u) = pSelB/1D (3.12)

which is a linear differential equation of first order. It is clear that

Z(e*(ﬁ/V)D) :¢( —(B/w)D ) (,BN ,BR—i—'B;;YD ﬁS ,B('Y‘:' ‘u)D>

= — BE. (3.13)
Now we solve the initial value problem (3.12), (3.13). Multiplying (3.12) by o) yields

(eé(p(u)z(u))/ — BSelP/1D do(x)

and then integrating the above on [u, e~ (#/1P] gives

e*<ﬁ/ﬂ)D

z(e~(B/MD) _ 00()z(y) = BGelB/1D / 220) 4.
Taking account of (3.13), we obtain
. gf(ﬁ/V)D
z(u) = —p (Ee‘s"’ +S~e(ﬁ/")De’5q’(“)/ e‘s"’(”)dv> : (3.14)

Combining (3.8) with (3.14), we observe that y(u) satisfies (3.6) for e —(B/ma <y < = (B/W)D If
u=e (F/1D then Ple” (F/1)D) = BI by (3.4) and the right hand side of (3.6) with u = ¢ ~(p/1)D
is equal to BN — BR + ((By)/u)D — BS — (B(y + 1) /) D — BE = BI. Therefore (3.6) holds for
u=e (ﬁ/]‘)D

Conversely we suppose that the function ¢ (u) satisfies (3.5), (3.6), and let em B/ <y <
e~ (B/mD_ Differentiating (3.6) with respect to u yields

y(u) = — pSelp/wD 4 TTH : E _ BEe090) (—5¢/ (u))

B —(B/u)D
— ‘Bge(ﬁ/y)D <e—‘54’(”) (_5(Pl(u)) /e ; ea(P(v)dv — 1>

u

_ + H o F,—0¢(u) 1
= BoEe ()
g*( )_
- 555}(5/”)15#6’54’(“) / o e*?)dy (3.15)
utp(u) u ' '

It follows from (3.6) that

- ef(‘B/l")D
— B3elB/1)D =09 / ) dy = () — P(u) + pEe—09W), (3.16)
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We combine (3.15) with (3.16) to obtain

") = m_ Neféq)(u) 1 ¢(“) — ( )+:BE6_54) )
Pl = PRy wp(u)
oyt P~ )
u up(u)
_ o+t i P(u)
u up(u)

and consequently, 1(u) satisfies (3.3) for e~ (B/M)* < y < ¢=(B/ MWD Tt is easy to see from (3.6)
that

(e P/MP) = BN — BR+ ((By)/1)D — BS — (B(y + )/ u)D — BE
_5N—5R—ﬁD—ﬁ§—5E
=B(N-R-D-S—-E)=8

in view of qo(e*(ﬁ/ m)D ) = 0, and therefore (3.4) is satisfied. O

~

Proposition 3.6. Let (1) be the unique positive solution of the initial value problem (3.3), (3.4), then
we obtain the following inequalities:

BN — BR + TD — BSeB/MPy 4 (y + ) logu > p(u) > 0, (3.17)

BN — BR + '[ZYD - ,Bge(ﬁ/y)bu%— (v +u)logu

g*(/j/.u)D

> B <Ee—‘54’ + SelB/mDp=dp(u) / 6‘59”(”)010) >0 (3.18)

for 67(5/1‘“)“ <u< ef(ﬁ/?*)[)_

Proof. Since (1) > 0in (e~ (B/#)2, ¢=(B/1)D] the relation (3.6) in Lemma 3.5 means
BN — BR + 'B]]D - ﬁge(ﬁ/”)bu + (y+p)logu

- —(B/7R
> B (Ee_&” + Ge(B/ 7R p=0¢(u) /e e&go(v)dv>

for e~ (B/ma <y < e~ (B/#D Tt is clear that
. —(B/w)D
Ee0?() 4 GelB/1)Dp=09(u) /e e*?@dy > 0 (3.19)

u

for e=(B/ma < 3 < ¢=(B/WD and therefore (3.18) follows. Since (3.19) holds, the relation (3.6)
implies that

BN — BR + ﬁ:f) — BSelP/MPy 4 (4 4 ) logu > p(u) > 0

for e~ (B/ma <y < e*(ﬁ/”)b, which is the desired inequality (3.17). O
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Proposition 3.7. Let {(u) be the unique positive solution of the initial value problem (3.3), (3.4), then
we see that

Lim  (u) =0, (3.20)
u—se~(B/maq
5 5 _ e (B/m)
lim | Ee 00 4 Selp/mPe-tol) [© 0 oholilgo | — 0 (321)
u—se (/e 40 u
(cf. Figure 3.4).
0.07 LT
0.06 // \\s P(u)
/ ¥(u) N
0.05 / S
[ ~,
1 \\
004f ~
|/ S
003 f \\
0.02f, PE(W) \\\ ~
oo \\ — P(1)=pN fES =0.01
~ y(1)=p41=0.006
02 04 06 08 1‘,0\ BE =0.004
exp(- (8/1)a) = 0.040 - - - exp(- (3/u)D) = 1

Figure 3.4: Variations of P(1) = BN — BR + ((By)/pu)D — pSeB/mPy 4 (v +
u)logu (dashed curve), BE(¢(u)) (green curve), and ¥ (u) (solid curve) ob-
tained by the numerical integration of the initial value problem (3.3), (3.4)
for N = 1000,S = 950,E = 20, = 30,R = D = 0,8 = 0.2/1000,7 =
0.056 = 02,4 = 0.01 and & = 160.2... In this case we have e~ (F/Mx —
0.040..., e"B/WP = 1, P(1) = BN — BS = 0.01, (1) = BI = 0.006 and
BE = 0004 Moreover, im,, - g/ua o P(#) = 0, lim,, /a1 o () = 0, and
m,, /e o BE(@(u)) = limy, e yo (P(11) — 9(u)) = 0.

Proof. Since

lim <5N — BR+ Prp BSeP/MPy 1 (7 + 1) log u)
u%e‘(ﬁ/ﬂ>”‘+0 ‘u

= lim B < —R+ ZD — GelB/mDg(B/p)x _ Wx) =0

x—a—0

by Lemma 3.1, Proposition 3.6 implies that (3.20) and (3.21) hold by taking the limit as u —
e~ (B/Wx 4 0 in (3.17) and (3.18). O

Lemma 3.8. Let (u) be the unique positive solution of the initial value problem (3.3), (3.4). Then
there exists the inverse function ¢~ 1(t) € C'(0, o) of the function

e~ (B/u)D dé
t= o(u) = / 5 (3.22)

for e= B/ <y < o= (B/ID such that ¢~ '(t) is decreasing on [0,00), ¢~ 1(0) = e~ (/1D gnd
) =

limy_ye0 @1 (£) = e~ (B/0)2,
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Proof. We easily see that ¢(u) € C!(e~(#/1)%, e~ (/D) p(u1) is decreasing in (e~ (F/1)¢, ¢~ (B/1)D]
and ¢ (e~ (#/1P) = 0. We divide (3.3) by (6 + v + p)¢(u)? to obtain

1 ) P(u) 1 ¢(u)
wp(u) Sty +pup(u? oyt p )’ (3.29)
and therefore
e~ (B/m)D dg
o= [
5 e~ (B/mD P(Cf,) 1 e~ (B/mD lP’(C)
= d d
5+’Y+V/u $Y(g)? §+5+7+V/u ¥(2) ¢
1 3
> 5y 1 108 (BD) ~ log p(u)), (3.24)

where P(u) is defined by (3.8). We see that lim,, ,, (/1. log $(u) = —oco in view of (3.20),
and that lim,,_,, s/, o @(1) = oo by taking the limit as u — e~ (B/1& 10 in (3.24). Hence there
exists the inverse function ¢! (¢) which has the desired properties. O

The following is our main theorem.

Theorem 3.9. The function (S(t), E(t),I(t), R(t), D(t)) defined by

~ 3 _ e /D

E(t) = Ee~ 1 Ge(B/mD o=t / » 90 gy, (3.26)
o (t
I(t)=N—-R+ Zf) — GelB/WDp=1(5) 4+ T ; Hlog o1 (t) — Ee~
i ¢~ (B/1D
— ge(ﬁ/")De_‘”/ 2@y, (3.27)
971 (t)

R(t) = — g logp 1(t) + R — ZD, (3.28)
D(t) = — 5 log g™ (1) (329)

is a solution of the initial value problem (1.1)~(1.6), where ¢(u) and ¢~'(t) are given in Lemma 3.8.

Proof. First note that

1) = L _
070 = @ lumpr9 = T acpi
= =9 '(Op(e' (1) = =B (NI(1) (3.30)

by taking account of (3.6) and (3.27). We see from (3.25) and (3.30) that
S'(t) = §e(ﬁ/u)5(¢—1(t )’

= — pSelP/MPp H(D)1(1)
= — BS(t)I(t) (3.31)
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and therefore (1.1) follows. A direct calculation yields
E'(t) = —6Ee™

+ GelB/mD <—5e“5t/ " e54’(”)dv—I—e_&(—e‘st(q)_l(t))/))
(¢t

= — §Ee % — §Ge(B/1)Dp0t /6 2?0 dy — ge(ﬁ/y)b(q)—l(t))/
o' ()

= —SE(t) + BS(H)I(1) (3.32)

in view of (3.26) and (3.31), and hence (1.2) is satisfied. An easy computation shows that

. ~(B/w)D !
— Ee"St—i—ge(ﬂ/")De"St/e eé¢(v)dv> (3.33)
.

in view of (3.30)—(3.32). Thus, (1.3) holds. It is easily seen from (3.30) that

1 !
R = -2 00— 2 i) =100

which is the equation (1.4). Similarly we obtain

-1 /
D'ty = -5 2L b piey) =

which is the desired equation (1.5). It is easy to see that

E(0)=E+ §e(ﬁ/”)b/ e*?@dy = E,
¢~ 1(0)
I(O)ZN—R+7D—S~+W<—’BD>—E‘
Z p 1z
=N-R-S-D-E=],
_ 7( /3~> 5P — R
R(0)= -~ (-ED)+R--"D =R,
) B\ Z
B
K

in light of ¢1(0) = ¢~ (B/1D_ Therefore, (1.6) is satisfied. O
& ¢
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Theorem 3.10. Let (S(t), E(t), I(t), R(t), D(t)) be the exact solution (3.25)-(3.29) of the initial value

t
problem (1.1)~(1.6). Then, (S(u), E(u), [(u), R(u), D(u)) defined by

), 1(u)
(S(u), E(u), I(u), R(u), D(w)) := (S(g(u)), E(p(u)), I(9(u)), R((w)), D(g(u)))

dS(u)  S(u)
du  u’
dE(u) 5 .~ . S
du ulp(u)E<u> - ou
di(u) ~v+pul _ 5 4
du B u ulp(u)E(u)
dR(u) 1
du — Bu
dD(u)  p1l
du — Bu
foru € (e~ (B/me, e~ B/ and the initial condition
S (e’(ﬁ/")D> =5,
3 (e—(ﬁ/u)D> — £
j(e*(ﬁ/ﬂ)D) -y
R (e’(ﬁ/")D) =R.
D (e—w/mD) —D.
Proof. 1t follows from (3.30) that
R 1
[(u) = I(g(u)) = Bl/)(u)

Since S(t) satisfies (1.1), we obtain

S'(p(u)) = —BS(@(u)I(p(u)) = —pS(u)I(u).

Therefore we arrive at

dS(u)  ds() o 1
du dt‘t—q?(u)q) (1) = Se(u)) < u1/1(u)>
A o 1
— (-p8w1) (- 57
S
u

in light of (3.44), and hence (3.34) holds. Using (1.2) and (3.44), we get

dlil(uu) - dlilit) ‘t=¢(ll)¢/(u) = Elp(u) <_1>

uip(u)
= (BS(u)i(u) — 6E(u)) <_ul/)1(u))
N (C) S Y

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
(3.40)
(3.41)
(3.42)

(3.43)

(3.44)
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which is equal to (3.35). We observe, using (1.3), that
dl(u) _dI(t)

du T‘t:(p(u)q)/(u)
= (6E(u) = I (u) = ul(w)) (‘mpl(u)>
_ 55/}(2) + (v +n) uI:IS](/lI/)l)
- m/f(wé(u) ’ 7;}13‘

and therefore (3.36) follows. We are led to
dR(u) _ dR(t)

du dt ‘t:q)(u)(P up(u)
R 1
=0 (- 95
_ 1l
= "

by use of (1.4) and (3.44). Thus (3.37) is obtained. Similarly we have

D) dD(t)’
du  dt =g

=1l (= )
ul

S b

which is the desired equation (3.38). It is easily seen that

5 (e—(ﬁ/u)15> S <(P <e—(ﬁ/y)f>)> = 5(0) = §,

¢'(u) = D'(g(u)) <_”’v’}(”)>

Hence, (3.39)—(3.43) are satisfied. O

Theorem 3.11. Solving the initial value problem (3.34)—(3.43), we obtain the parametric solution
(2.5)—(2.9) for e~ B/m* < 4y < ¢~ (B/1)D,

4
du

S(u) = ku

Proof. Since (3.34) is equivalent to

S| =

§(u)> =0,

we have
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for some constant k. We see from (3.39) that
1 (e*(ﬁ/u)ﬁ) — ke~ (B/WD _ §

which implies
k = Se(B/mD,

Therefore we obtain ~
S(u) = SelB/mDy, (3.45)

It follows from (3.45) that

u
and hence (3.35) reduces to
dE(u) ¢ E(u) = —8el6/1D (3.46)
du up(u)
which can be rewritten as
diiu) +6¢' (u)E(u) = —S5elP/1D (3.47)

Multiplying (3.47) by e??(*) gives
4 (oW B (1)) = —GelB/WDeipln)
" (e E (u)) = —Se e\,
and an integration of the above on [u, e~ (F/7)R] yields

(/D
E(u) = e~%9W <E—|—§e(5/")D / o e5<ﬂ<v>dv>,
u

which is equal to (2.6). Multiplying (3.36) by B, we have

dBIl(w)) y+u P64
e B _—W(u)E(u). (3.48)

Define z(u) by
z(u) := BI(u) — (BN — BR+ ((By)/p)D — BSeB/MPu + (v + p) logu),

then we obtain

dz(u) _ d(BI(w)) | o p/wp Y I
S = e pSeP/D T (3.49)

Combining (3.48) with (3.49), we get

dz(;) — BSelP/mD _ mf((su)é(”)
_ g (_ge(ﬁ/ﬂ)l? o (u)m)) . (3.50)
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It follows from (3.46) and (3.50) that

d2(u)
du =—F du '’

and therefore

for some constant k. Since

z(e~(P/1P) = pl(e~¥/mP) — (BN — BR — BS — D)
= pI— (BN — pR— pS — D) = —pE

N

and —BE (e~ (B/1D) = —BE, we see that k = 0, and therefore z(u) = —BE(u), i.e.,
BI(u) = (BN — BR+ ((B7)/u)D — pSeP1Pu + (7 + ) log u) — BE(u),

which is equivalent to (2.7). Solving (3.37) yields

R(u) = —g logu +k

for some constant k. The initial condition (3.42) implies

R (e*(ﬁ/%‘ﬂj) = _Zloge“”")’j k= ZD tk=R

and hence k = R — (y/u)D. Hence we obtain

Similarly we find that

Remark 3.12. Let I(t) be given by (3.27). Then I(t) can be represented in the simple form

10 = 59(o'(0)

by taking account of (3.6) and (3.27).

4 Various properties of solution

This section is devoted to various properties of solution by investigating the exact solution of
the initial value problem (1.1)—(1.6).

Theorem 4.1. Let D(t) be given by (3.29). Then we find that D(c0) = a,

Do) = N = Rt 1D — Se#/mPe #1000 _ I p(co) (1)

and that D(t) is an increasing function on [0, co) such that

D < D(t) < a = D(c0).
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Proof. We easily see that

T s _E 1
D(e0) = lim D(t) = lim 5105590 (t)
= lim —Zlog u
u—e=(B/ma 40 ﬁ &
= a.

Since & = D(c0), the identity (4.1) follows from the definition of « (see Lemma 3.1). In light of
e~ B/ < o=1(t) < e~ (B/MD, we obtain

D < D(t) < a = D().

It is easy to check that D(t) is increasing on [0, %) in view of the fact that ¢ ~!(¢) is decreasing
on [0, o). O

Theorem 4.2. Let S(t) be given by (3.25). Then we deduce that
S(c0) = SelP/1De=(B/p)D(x) (4.2)
and that S(t) is a decreasing function on [0, 00) such that
S > S(t) > SelP/1De=(B/1e — g(c0).
Proof. The identity (4.2) follows from

S(c0) = lim S(t) = lim S~e(ﬁ/”)bq0_l(t

t—o0 t—o0 )

= lim  Sel/1Dy
u—e~(B/ma 40

— ge(ﬁ/ﬂ)Def(.B/V)a

— Ge(B/1)D o= (B/1)D(e0)
Since e~ B/ < o=1(t) < ¢~ (B/MD we have

Therefore we get
SeB/mDe=(B/mx ~ g(4) < &.

Since ¢~1(t) is decreasing on [0, ), we observe that S(t) is also decreasing on [0, o). O

Theorem 4.3. Let R(t) be given by (3.28). Then we conclude that

R(oo) = ID(c0) + R~ 1D, 43
(c0) ” (00) + ” (4.3)

and that R(t) is an increasing function on [0, c0) such that

R < R(t) < R(c0).
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Proof. We obtain

(o]}

R(c0) = lim R(t) = lim (—glog o 1(t)+R - Z

t—oc0 t—o0

. Y 5 Tg
= lim ——1lo u—l—R—D)
( p 8 Iz

u—e~(B/maQ

=Y+ R-ID
I

H

i}

_ e
= D() +

Since e~ (B/mx < e 1(t) < e~ (B/1D e get

_Tp
H

+R- o+

= |
)}
==

D <R(t) <

==
=
|
==
)}

or

=

gmﬂ<lmmﬂﬁ—ZD:mmy O

Theorem 4.4. Let E(t) be given by (3.26). Then we find that

E(o0) =0,
E(t) >0 on|0,0),

and E(t) has the maximum max;>o E(t) at some t = Ty € {T; E'(T) = 0}, where

Proof. We easily check that
E(o0) = lim E(#)

t—o0

= lim (Ee—&P(M) + Ge(B/1)D o —dg(n) /

u—e—(B/ma4Q u

gf(ﬂ'/l’)lj
290 o

=0

in light of of (3.20) in Proposition 3.7. Since e~ (B/1)* < ¢~1(t) < e~(B/mWD (t > 0) and E(u) > 0
for e~ B/mx <y < e=(B/MD (cf. (3.19)), it is easily seen that E(t) = E(p~'(t)) > 0 on [0, 0).
The hypothesis (A,) implies that the right differential derivative E’, (0) is positive because

E(0) = lim E'(t) = lim (BS(t)I(t) — SE(t)) = pSI —oF > 0.

Since the definition of E/, (0) implies
. E(t) —E(0) . E(t)—E
/ = _— —_—
0<E(0)= t1—1>n420 t t1—1>I-ir-10 t
we see that for e = (1/2)E/_(0) > 0 there exists a number J; > 0 such that

E(t)-E

= —EL(0)] < 5E40)

2
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holds for 0 < t < ., and hence

1

1 0) < E(t) — E

t

or

|
E(t) > E+ EE;(O)t > E

holds for 0 < t < &. Since E(c0) = 0, there exists a number T such that E(T) = E and
E(t) < E for t > T. Therefore there exists maxy,;.7 E(t) = E(T1) (> E) atsome t =Ty (< T).
Since E(t) < E for t > T, we observe that max;q E(t) = maxy.,.7 E(t) = E(Ty). It is obvious
that E'(T;) = 0. It can be shown from (3.25)~(3.27) and (3.44) that

E'(t) = — 8E(t) + BS(t)I(¢)
= —OE(t) + SeBMRp 1 (Hp (o (1))
- s <N R+ ZD — GelB/mD o1 (1) 7;” log ¢~ (1) — I(t))>
+SeB/1P o7 (1) (97 (1))
= (5+80971() plo (1)

¢
—5 <N Z — GelB/WDp-1(p) 4+ X ; K log (p—l(t)> . (4.4)

Remark 4.5. If u; is a unique solution of the equation

(; + ge(ﬁ/ﬂ)’ju> P(u) =06 (N —R+ ZD — SelP/I0Dy 4 Tlogu) ,

then we get
e (Bd
n-e) = [ g

in view of (3.22) (cf. Figure 4.1).
In case E'(T;) = 0, we obtain BS(T1)I(T1) = 6E(Th1) by (1.2), and therefore E(Ty) =
(B/6)S(T1)I(Ty). Hence, in Theorem 4.4 we see that

max E(t) = E(Ty) = Es(n)1(T).

Letting
¥ (1) = (g + Sew/#)%) p(u),
we observe that ¥ (u) is a solution of the initial value problem for the Abel differential equation
gg(.B/l")D

YY)~ G T gewmEn T W(ﬁ”e(ﬁ/m )Y(’”

5 . 2

o BN — BR+ ((B7)/1)D — pSelP/19Pu + (7 + ) log u
u

(4.5)
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for e~ (B/Me < 4 < e_(ﬁ/V)D, with the initial condition

(4.6)

L L L
0.2 0.4 0.6

exp(- (B/w)e) = 0.040 - - - SE(p(u)) expl- (8/1) D) 1

Figure 4.1: Variations of (6/B)P(u) = &(N — R + (7/u)D — SelP/1Dy 4
((y +n)/B)logu) (dashed curve), E(¢(u)) (green curve) and ¥(u) (solid
curve) obtained by the numerical integration of the initial value problem (4.5),
(4.6) for N = 1000, § = 950, F = 20,1 = 30,R = D = 0, 8 = 0.2/1000,v = 0.05,
0 = 0.2 and p = 0.01. In this case we see that there exists a unique u; such that
(6/B)P(u1) = ¥ (u1), and that T; is calculated by Ty = ¢(u1) = full %, where
¥(u) is a unique positive solution of the initial value problem o'y — 226y =
—0.2 2200061081 (0,040... < u < 1), (1) = 0.006.

Theorem 4.6. Let I(t) be given by (3.27). Then we see that
I(c00) =0,
I(t) >0 on0,0),
and 1(t) has the maximum max;>o I(t) at some t = T, € {T; I'(T) = 0}, where

d+v+u
p

Proof. It follows from (3.20) and (3.30) that

I'(T) = — P(p N (T)) +6 <N R+ ZD — Gelb/mP (1) £ X0 (p—l(T)) .

p

I(0) = lim I(f) = lim 11[J(g0*1(t))

f—00 f—00 ‘B
= lim ! —(u)
u—e~(B/maQ ﬁ
=0.
Since e*(ﬁ/P‘) () < e B/WP (t > 0) and P(u) > 0 for e B/M* <y < (/1D we
find that I(t) 1/ B) l[J( (£)) > 0 on [0,00). The hypothesis (A3) implies that the right

differential derlvatlve I' (0 ) is positive because

1L.(0) = lim 1'(t) = Jim (SE(t) = I(t) — pI(1)) = F — (7 + )T

t—+0 t—+0
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and therefore there exists a number d; > 0 such that I(t) > [ in (0,4;) as in the proof of
Theorem 4.3. Since I(o0) = 0, we can use the same arguments as in the proof of Theorem 4.3
to conclude that there exists the maximum max;>o I(t) = I(T2) for some T,. Then I'(T,) =0,
and we obtain

1(e) = 5600 (1) — T (o7 (1) ~ E'()

= S 09 (e7 (1) ~ TrEp (o7 ()

(3200 ) (g (0)

) <N —R+ID— GeB/mDp-1(p) 4+ T i log (pl(t))]

" p
0
= - +;+ SNa0)
+6 (N - R+ ZD — SelP/IP =1 (1) i ; u log (p_l(t)>
in light of (3.30), (3.33), (3.44) and (4.4). 0

Remark 4.7. In case u; is a unique solution of the equation

wlp(u) -4 <N —R+ Tp_ SelB/mDy 4 wlogﬂ) ,
B Z P
then we get
e~ (B/mD e
T = @(u2) = / ENVESY
A A T6)

(¢f. Figure 4.2). If I'(T») = 0, (1.3) implies that 6E(Tz) = (v + #)I(T2), and in Theorem 4.6 we

see that

0

Theorem 4.8. The function E(t) + I(t) has the maximum

max (E(t) +1(1)) :S~+E+T_VZV <1+10g5~—log7;ﬂ>

at
e*<.8/.u)D
b= Ty [ IR :/ - dézsl<'r+ﬂ>-
BSe(P/mD (r+0)/ (BSe®/100) Ep(E) p
Moreover, E(t) + 1(t) is increasing in [0, T3) and is decreasing in (T3,00).
Proof. We see from (3.26) and (3.27) that

E(H)+1(t)=N—R+ ZD — GeB/mD 1) 4 7 ; K log o~ 1(1). 4.7)
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((+y+u)/p) wlu)

exp(- (8/)a) = 0.040 - - expl- (B/u)D) = 1

Figure 4.2: Variations of (6/B8)P(u) = 6(N — R+ (y/u)D — SelB/WPy 4 ((4 +
1)/ B)logu) (dashed curve), ((6 + v+ u)/B)(u) (solid curve), and (6/B)p(u)
(green curve) obtained by the numerical integration of the initial value problem
(4.5), (4.6) for N = 1000, 5 = 950,E =20, =30,R = D =0, = 0.2/1000, =
0.05, 6 = 0.2 and y = 0.01. In this case we find that there exists a unique
uy such that (6/B)P ( 2) = ((6+ v+ u)/B)Y(uz), and that T; is calculated by
T, = ¢(up) = fulz (7, Where P(u) is the unique positive solution of the same
initial value problem as in Figure 4.1.

Differentiating (4.7) with respect to t gives

E'(8) + I'(t) = — SelB/mD (g1 (1)) 4 T (¢~'()’

B e (t)
_(_apmp g Y (@710)
(-sermeomin + 751 oy
_ (. y+u\ (¢7'(1)
= (~sw+T51) e
Since
_1 !
(q;l((i))) = —9(p7(t)) <0

by (3.30), we observe that E'(t) + I'(t) = 0 for

T Tt _ 1 (7 tH
t_T3_¢<ﬁ§e(ﬁ/u)D>_S ( B )

—(B/u) YR _YTH—(p/wD o (/WD
e < ,BSe (/0D ,BS <e

Note that

in view of (A7) and Remark 3.2. In light of (3.22) we obtain

—(B/m)D
o {te) i (57)
BSe(B/m)D (y-+0) /(BSe®/mD) E(E) p

It is easy to check that E'(t) + I'(t) > 0 [resp. < 0] if and only if t < T3 [resp. > T3], because
@~ 1(t) is decreasing on [0, c0). Therefore we conclude that E(t) + I(t) is increasing in [0, T3)
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and is decreasing in (T3, 00). It can be shown that

N
max (E(t) +I(t)) = N—R+ yD
N R YPGB _YTH YT THH
~N-R+Ip— 1 i
N R D ge@mn g %8 | pge@imp
s Tr  THH vﬂt( i p
~N-R+ID- + lo ~log$—PD
e BB \5 g Ty
O

v+ﬂ< 7+V>
P (14+logS—1o )
B §2708 g

I
Un
_|_
upll
+
—~
|

Remark 4.9. Since uz = (7 + p)/ (B3e®/1P) = ((y + u)/(BS))e~#/1P is a unique solution
of the equation

/
<N — R+ LD — GelP/mD Wlogu> =0,

“:\\2

we obtain
g’(ﬁ/}‘)D dé’

Tz = ¢(uz) = /((Hm /(BS))e-®/mD EP(&)

(cf. Figure 4.3).

350 T
300 ; i
’

50 /
200
150

100
N |— (1/8)P(1) = 50

50

Il
!
]
i
i
1
]
]
)
]
]
]
1
I
1
1

0 \
DI(]T D‘Z 1 D‘4 DIG D‘S Ib
exp(- (8/u)a) = 0,040 . .. 12 =6/19 exp(- (/D) = 1

— 5eB/WDy 4+ (( +

Figure 4.3: Variation of (1/8)P(u) = N — R+ (v/u)D

)/B)logu (dashed curve) for N = 1000,S = 950,1 = 30,E = 20,R = 0 B =
= 0.2. In this case we observe that there exists a

0.3/1000,7 = 0.1 and ¢
unique u3 = 6/19 such that (1/B)P'(u3) = 0, and that T3 is calculated by
, where ¢(u) is the unique positive solution

T3—(pM3 f6/19§¢ )—419
of the same initial value problem as in Figure 4.1

Theorem 4.10. The following relation holds:
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Proof. Since E(o0) = I(o0) = 0, we obtain

by use of (4.2) and (4.3). O

Theorem 4.11. We find that

§'(00) = — BS(e0)I(e0) =0,

E'(0) = BS(c0)I(o0) — SE(c0) =0,

I'(c0) = 0E(00) — yI(c0) — pl(c0) =0,

R/(c0) = 71(e0) =0,

D'(o0) = pl(o0) = 0. O

Remark 4.12. The hypothesis (As) is satisfied if D =0,since N > S+ R.

Remark 4.13. It follows from Theorems 4.1-4.6 that S(t) > 0,E(¢) > 0,I(t) > 0 for t > 0 and
R(t) > 0,D(t) > 0 for t > 0 (cf. Figure 4.4).

~ 1000
$=950 —>
800 ~—R(e°) =801.2---
—— S{t):Susceptible
g 600 Eit):Exposed
= = |{t)-Infectious
2 ~—— R(t):Recovered
_ & 400 E(t)+{(t) —— D(t):Deceased
max E(t)+I(t) =354.2 - ——— - --------- It BB
200
~— D(e°)=160.2"--

S T si]'\\ab_m'o o T
T, ETz ime
T=419 - g
Figure 4.4: Variations of S(t), E(t), I(t), R(t), D(t) and E(t) + I(t) obtained
by the numerical integration of the initial value problem (1.1)-(1.6) for N =
1000, S = 950, E = 20,1 = 30,R = 0,D = 0,8 = 0.2/1000, = 0.05, § = 0.2 and
u = 0.01.
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Remark 4.14. We note that
E'(0) + I4.(0) = BST — (v + w)I,

and that E’, (0) + I'.(0) < 0is equivalent to S < (y+ u)/p. Let E', (0) + I'.(0) < 0 be satisfied,
and let P(u) be given by (3.9). Then we see that

L) = —geterwp Y I % —0

B

u = ((y+u)/(BS))e /WP (> (/WD) and that (1/B)P(u) is increasing  in
(e~ B/, o=(B/1)P] lim - (ﬁ/MJFO(l/ﬁ)P( u) = 0and (1/B)P(e” ﬁ/wf’) = E+1> 0. Since
e Lt ) is decreasmg on [0,00), ¢ 1(0) = e~ (/1D and lim; e ¢~ 1(t)
clude that E(t) + I(t) = (1/B)P(¢ (1)) is decreasing on [0, ), E(0)
E(o0) + I(o0) = 0 (cf. Figure 4.5).

at

= ‘B/H,WGCOH-
+ ()—E-i-I and

1000
= S(t):Susceptible
Eit):Exposed
800 T = I(t):Infectious
- R(t):Recovered
= D(t):Deceased
g 600 S(t) — Eit)+lit)
g
=2
5 400
R(t)
E(t)+(t >
(O+1() 500 o
B0 P —

610'[203042)50507'05'0

Figure 4.5: Variations of S(t), E(t), I(t), R(t), D(t) and E(t) + I(t) obtained
by the numerical integration of the initial value problem (1.1)-(1.6) for N =
1000, S = 700, E = 100,I = 200,R = 0,D = 0,8 = 0.3/1000,7 = 0.3, 6 = 0.2
and p = 0.1. In this case we find that E/_(0) =22 > 0, I (0) = —60 < 0 and
E' (0)+ I’ (0) = —38 < 0.

Remark 4.15. The function D(t) given by (3.29) is a positive and increasing solution of the
initial value problem for (2.1) with the initial conditions D(0) = D and D’, (0) = ul. In fact,
it follows from Theorem 4.1 that D(t) is an increasing function such that D(¢) > 0 for t > 0.
Since

/ M (§071<t>)/ M K
D (t) - ﬁ (P_l(t) - IB( 4’((!’ (t))) - [311[7(4) (t)),
D"(t) = — Z<p1<t>¢’<¢1(t>>¢<<p1<t>>
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in light of (3.30), we arrive at
D"(t) + (0 +v+u)D'(t)

Z(Pl(t) ¢ (o7 (1)p(e () — O+ + Ww>

=1 (t)

>< BN — BR+ ((B1)/1)D ﬁge(ﬁ/”>5¢1<t)+(7+u)10gfp1(t)>
+

D —Se (5/")D<P1(t)+7;;y10g¢1(t)>

T
H
= éu <N — R+ ZD Ge(B/W)D = (B/m)D(t) _ 'VZI'VD(t))

in view of (3.3). It is easy to check that D(0) = —(u/B)log ¢ 1(0) = —(u/B)loge /D =D
and

D) (0) = lim D'(e) = lim Lyp(g7'(e)

e—+0 e—+0 B
— Puto 10 = Fuwe—B/wDy — Fgi— f
— 0)) = e I.
g P (0) = gul )= 5/5 =¥
Remark 4.16. Let D(t) be given by (3.29). Then the functions S(t), E(t), I(t) and R(t) given by

(2.23)—(2.26) reduce to (3.25)—(3.28), respectively, since

e PIPO = o7U(t),  t=D"'(—(u/B)log~'(t)) and ¢(v) =D (~(u/p)logo).
Remark 4.17. If we suppose the hypothesis
(A})) R > 0and R satisfies

then the transcendental equation

y= T N—— T pr P r T GeB/mRe— By (4.8)
TtHH T H YU YU

has a unique solution y = &, such that

R<a, <N

(see Yoshida [18, Lemma 3]). Since the equation (4.8) reduces to the transcendental equation in
Lemma 3.1 by the transformationy = R — (/) (D — x), we find that a,. = R — (7/u)(D — a).

We define Bk
e~ P/ dé’
«(w) =
=[G
for e~ (B/M < g < e~ (B/TR wwhere P.(¢) is a unique positive solution of the initial value
problem

P90~ @
_ BN = BD+ ((Bu)/7)R — pSelP" MR + (u + 1) log§

¢

(e=(B/Mues < & < o= (B/MRY,
. (e B/MRY = pI.
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It follows from the transformation

é’ — e_(.B/’Y)Re(.B/V)Du

that

e~ (B/u)D du
(P*(w):/w/ Re—(B/1)D —(B/7)R Dy’
eB/MRe=(B/mDw uth, (e (B/7)Re(B/ 1) u)

where e~ (F/1& < p(B/TRe=(p/1)Dyy < ¢~ (/1D It is easy to check that t, (e~ (B/VRe(B/1Dy) js
a solution of the initial value problem (3.3), (3.4), and therefore

. (e~ B/VRE(B/ID YY) — ()
by the uniqueness of solutions of the initial value problem (3.3), (3.4). Hence we obtain

¢ (w) = (P(e(ﬁ/v)ﬁe*(ﬁ/u)liw)_ (4.9)
Let ¢ !(t) and ¢~1(t) be the inverse functions of

t=g.(w), t= q)(e(/ﬂ/v)ﬁe—(ﬁ/u)f)w),
respectively, then we see that
g (1) = e P/MRBMDH71() (0 <t < ). (4.10)

It is easy to see that the hypothesis (A7) is equivalent to

(Ag) § < ?‘Jﬁfnus/v)(a*—m_

Let (S« (t), E«(t), L(t), R«(t), D«(t)) be the exact solution of the initial value problem (1.1)(1.6)
by starting our arguments utilizing (1.4) instead of (1.5). Then we get

S.(t) = Se/ MRy (1),

- ~(B/1)R
E.(t) = Ee7% + S~e(ﬁ/7)Re*5t/ 09:(0) 4,
0]
L(t)=N-D+ %R — GelB/MRG=1 (1) 4 BTV 100 o-1(1)
g_( / )R
Ee 0t — §e(ﬁ/7)ﬁe_5t/ ' 209+ (0) 4y
()
_ 1
Ri(t) = — g los . (£),
K 1 ~ M
D.(t) = — % logg, (t) + D — =R.
() g o8 (t) p

S, () = SelP/MRp-1(4) = ge(ﬁ/v)f?(ef(ﬂ/v)ﬁe(ﬁ/u)D(Pfl(t))
S
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It follows from (4.9) and (4.10) that

e*(ﬁ/’}')R g*(ﬁ/’)')[{

50, - & 5
/go*l(t) e09:(0) gy = /ﬂﬂ/w)%(ﬁﬂ)%l(g exp(&qo(e(ﬁ/v) o (B/m) v))dv
N . —(B/w)D
— o~ (B/7)R,(B/m)D /e 50() gy
71(t)
and hence
- —(B/7)R
E.(t) = Ee %t + S~e(ﬁ/7)Re*‘5t/ 209:(0) g
o' (b)
—(B/m)D
= E@iét + ge(’B/y)Deiét /e 65¢(w dw = E(t)
(b
Since

R.(1) = = 5 log g (1)
Y (_Br Br -1
= /3< 7R+}t +log ¢ (t))
= —glog¢_l(t)+R—ZD=R(t),
and that
D, (t) = —Zloggo*l(t)—i—D—zR

— —“Z (—ryﬁ—kif)—l—logqol(t)) +D— %R
- —;log(pl(t) = D(t)

Consequently we conclude that

(S«(t), Ex(t), L(£), Ri(t), Di(t)) = (S(t), E(t),I(t),R(t),D(t)) on [0,00).

Remark 4.18. The hypotheses (A])) and (As) are equivalent to

(A9 0= R < glog (1+(E/3) + (I/5));

(A9 0= D < Glog (1+(E/3) + (1/5)),

respectively.

(4.11)
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5 Uniqueness of positive solutions

This section is devoted to the uniqueness of positive solutions of the initial value problem
(1.1)-(1.6). As a consequence we conclude that the exact solution (3.25)—(3.29) is the unique
solution in the class of positive solutions.

A solution (S(t), E(t), I(t),R(t), D(t)) of the SEIRD differential system (1.1)-(1.5) is said to
be positive if S(t) > 0, E(t) > 0,1(t) > 0,R(t) > 0 and D(t) > 0 for t > 0.

Theorem 5.1. Let (S;(t), E;(t), Ii(t),Ri(t), Di(t)) (i = 1,2) be solutions of the initial value problem
(1.1)—(1.6) such that S;(t) > 0, E;(t) > 0, L;(t) > 0,R;(t) > 0 for t > 0. Then we find that

(S1(£), Ex(#), i(8), Ra(t), D1(8)) = (Sa(t), Ea(t), Ia(#), Ra(t), Da(t)) - on [0, 00). (5.1)

Proof. First we note that D;(t) > 0 for t > 0 (i = 1,2) since D/(t) = ul;(t) > 0 for t > 0 and
D;(0) = D > 0. It follows from Lemma 2.1 that D;(t) (i = 1,2) satisfies (2.1) and the initial
condition
D;(0) = D, lim Di(e) = ul
e—+0

in view of (1.5) and (1.6). It is easy to see that
zi(t) == (D;(t), Di(t)) (i=1,2)
are positive solutions of the initial value problem

y'(t) =fy), t>0

y+(0) = lim y(e) = (D, 1),

where f(y) is a function defined by

for y = (y1,y2) such that y; > 0 and y, > 0. Since

Py . .
l(y) = (0, ﬁgge(ﬁ/ﬂ)De—(ﬁ/u)yl —5(y + m) ,

8y1
of 1
EE@”_@ (6+v+mn),
we obtain
gyj;(y)‘ < max {ﬁ&ge(ﬁ/”)b +o(y+u),1+ (5+’Y+V)} (=K) (k=1,2)

for y = (y1,y2) such that y; > 0 and y, > 0, where the magnitude of a vector y, denoted by
ly|, is defined by

[yl = [yal + |va| - for y = (y1,52) € R
Therefore, f(y) satisfies a Lipschitz condition on (0,00) x (0,00) with Lipschitz constant K
(see Coddington [7, p.248, Theorem 1]). Since

zi(t) = f(zi(t), t>0 (i=12),
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integrating the above on [¢, t| (¢ > 0) and then taking the limit as ¢ — +0 yield

() — lim z(e) = /0 Flals)ds,  t>0,

e—=+0

Therefore we obtain

a(t) - =) = [ (F(=16) - F=E) s +>0
and hence
21() — 22 (8)| gK/O 21(s) — za(s)|ds,  t>0

since f(y) satisfies a Lipschitz condition with Lipschitz constant K. Defining

t
W(t) ;:/0 I21(s) — 2a(s)| ds,
we obtain
W'(t) — KW(t) <0, t>0,

or
e ®wm) <o,  t>o0.

Since e KW (t) < W(0) =0 (t > 0), we see that W(t) <0 (t > 0). Hence
|z1(t) — z2(t)| < KW(t) <0, t>0,

which yields
Zl(t) = Zz(t), t> 0.

Therefore we conclude that
D (t) = Da(t) on (0, 0).

Since D1(0) = D,(0) = D, we observe that
D;(t) = Dy(t) on [0, 00).
It follows from Corollary 2.4 that S;(t) (i = 1,2) can be represented by
Si(t) = SelP/1De=(B/m)Di(t)
for t > 0. Since Dy (t) = Dy(t) for t > 0, we deduce that S1(t) = Sx(t) for t > 0. Similarly we

find that E1(t) = Ex(t) (t > 0), [1(t) = Ix(t) (t > 0) and Ry (t) = Ra(t) (t > 0). Consequently
we conclude that (5.1) holds. O
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Theorem 5.2. Assume that the hypotheses (A1)-(A7), (Al) hold. The function (S(t),E(t),I(t),
R(t),D(t)) given by

S(t) = SelB/MD =11y = GelB/MR -1 (),
- —(B/wD
E(t) = Ee% 4 GelB/mD =0t /e 90 gy
(1)
i ~(B/M)R
e~ 4 GelB/MRp—0t /6 ' 090y
i (1)

I(t) = N—-R+ Zf) — SelP/P =1 (1) TrE log ¢ (t)

Il
T

_ ~(B/mD
_ Ep0t _ §p(B/1)D p—dt /e 0-(0) gy
()

R — S/ MRo1(1) + V};v log ¢, (t)

is a positive solution of the initial value problem (1.1)—(1.6), and is unique in the class of positive
solutions.

Proof. Combining Theorem 3.9, Remarks 4.13 and 4.17, we see that (S(t), E(t), I(t), R(t), D(t))
given above is a positive solution of the initial value problem (1.1)—(1.6). Uniqueness of posi-
tive solutions follows from Theorem 5.1. O
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