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Abstract. In this paper, we study the following fractional Kirchhoff type equation
(

a + b
∫

RN

∫
RN

|u(x)− u(y)|p
|x − y|N+ps dxdy

)
(−∆)s

pu = |u|q−2u ln |u|2 + λ
uγ , in Ω,

u > 0, in Ω,
u = 0, in RN\Ω,

where Ω ⊂ RN is a bounded domain with Lipschitz boundary, 0 < s < 1 < p, 0 <

γ < 1, a > 0, b ≥ 0, N > ps, 2p < q < q + 2 < p∗s , p∗s = Np
N−ps is the fractional critical

exponent, λ > 0 is a real parameter. By using the critical point theory for nonsmooth
functionals and analytic techniques, the existence and multiplicity of positive solutions
are obtained.
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1 Introduction and main result

We consider the following fractional Kirchhoff type equation involving singular nonlinearity
(

a + b
∫

RN

∫
RN

|u(x)− u(y)|p
|x − y|N+ps dxdy

)
(−∆)s

pu = |u|q−2u ln |u|2 + λ
uγ , in Ω,

u > 0, in Ω,

u = 0, in RN\Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary, 0 < s < 1 < p, 0 < γ < 1,
a > 0, b ≥ 0, N > ps, 2p < q < q + 2 < p∗s , p∗s = Np

N−ps is the fractional critical exponent, λ > 0
is a real parameter.
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Problem (1.1) was proposed by Kirchhoff in [12] as an extension of the classical
D’Alembert’s wave equation for free vibrations of elastic strings, which have the following
stationary analogue of the Kirchhoff equation

−
(

a + b
∫

Ω
|∇u|2dx

)
∆u = f (x, u).

Recently a great attention has been focused on studying the fractional problems, which
are derived from the study of optimization, finance, phase transitions, stratified materials,
anomalous diffusion, ultra-relativistic limits of quantum mechanics, water waves and so on,
we can see [19] for more details. Many authors are interested in the existence of solutions for
the fractional Kirchhoff type equation with logarithmic or singular terms. In [6], the authors
dealt with the fractional p-Laplacian Choquard logarithmic equation involving critical and
subcritical nonlinearities, they proved the existence and multiplicity of nontrivial solutions by
using genus theory and the mountain pass lemma. Fan et al. in [7, 8] studied the fractional
critical Schrödinger equation with logarithmic nonlinearity, by applying the Nehari manifold
and the variational methods, the existence of positive ground state solutions and ground state
sign-changing solutions were showed. Truong studied the fractional p-Laplacian equation
with logarithmic nonlinearity on whole space, by the Nehari manifold method, the author
obtained the existence of nontrivial solutions in [23].

In particular, the authors considered the following fractional Kirchhoff equation with log-
arithmic and critical nonlinearities{

M([u]ps,p)(−∆)s
pu = λh(x)|u|q−2u ln |u|2 + |u|p∗s −2u, in Ω,

u = 0, in RN\Ω,
(1.2)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary, N > ps with s ∈ (0, 1), p > 1
and

[u]ps,p =
∫

RN

∫
RN

|u(x)− u(y)|p
|x − y|N+ps dxdy.

When M([u]ps,p) = a + b[u]ps,p and h(x) = 1, by using constraint variational methods, Liang
and Rădulescu in [15] dealt with the existence and least energy sign-changing solutions of
(1.2). Under some assumptions on M and p ≥ 2, the authors [14] obtained the existence of
solutions in the case of high perturbations of (1.2) for λ sufficiently large. When h(x) > 0, Lv
and Zheng in [17] showed the existence of a nontrivial ground state solution for λ sufficiently
small. When M([u]ps,p) = [u](θ−1)p

s,p with θ ≥ 1, the authors [24] established the least energy
solutions for (1.2) with θp < q < p∗s and h(x) > 0 and two local least energy solutions with
1 < q < θp and h(x) is a sign-changing function by the Nehari manifold approach.

In [9], Fiscella and Mishra studied the following fractional Kirchhoff type equation with
singular and critical growthsM

(∫
RN

∫
RN

|u(x)− u(y)|2
|x − y|N+2s dxdy

)
(−∆)su = λ f (x)u−γ + g(x)|u|2∗s −2u, in Ω,

u = 0, in RN\Ω,
(1.3)

where N > 2s with s ∈ (0, 1), 0 < γ < 1, 2∗s = 2N
N−2s is the fractional critical Sobolev exponent,

by the Nehari manifold method, they proved that (1.3) has at least two positive solutions for λ

sufficiently small. In [21], by the variational methods and truncation arguments, the authors
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obtained the existence of multiple positive solutions for (1.3) with singular and Choquard crit-
ical nonlinearities. In addition, the existence of positive solutions for the fractional problems
involving singular nonlinearity has been paid much attention by many authors, we can see
[1, 3, 10, 11, 22, 25, 26] and so on.

Recently, Lei et al. in [13] investigated the following logarithmic elliptic equation with
singular nonlinearity 

−∆u = u log |u|2 + λ
uγ , in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 3), γ ∈ (0, 1), by using the variational
methods and the critical point theory for a nonsmooth functional, they obtained the existence
of two positive solutions. In [20], the authors proved the existence of positive solutions for a
logarithmic Schrödinger–Poisson system with singular nonlinearity.

Define the fractional Sobolev space Ws,p(Ω) is given by

Ws,p(Ω) =

{
u ∈ Lp(Ω) :

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x − y|N+ps dxdy < ∞

}
,

with respect to the norm

∥u∥Ws,p(Ω) =

(
∥u∥p

Lp(Ω)
+
∫

Ω

∫
Ω

|u(x)− u(y)|p
|x − y|N+ps dxdy

) 1
p

.

Let Q = R2N \ (CΩ × CΩ) with CΩ = RN \ Ω, we define

X =

{
u : RN → R measurable, u|Ω ∈ Lp(Ω) and

∫
Q

|u(x)− u(y)|p
|x − y|N+ps dxdy < ∞

}
.

The space X is endowed with the norm

∥u∥X = ∥u∥Lp(Ω) +

(∫
Q

|u(x)− u(y)|p
|x − y|N+ps dxdy

) 1
p

,

where the norm in Lp(Ω) is denoted by ∥ · ∥p. The space X0 is defined as X0 = {u ∈ X : u =

0 on CΩ}, for all p > 1, it is a uniformly convex Banach space endowed with the norm

∥u∥ := ∥u∥X0 =

(∫
RN

∫
RN

|u(x)− u(y)|p
|x − y|N+ps dxdy

) 1
p

. (1.4)

The dual space of X0 will be denoted by X∗
0 . Since u = 0 in RN \ Ω, the integral in (1.4) can be

extended to RN × RN . We denote by Sρ (respectively, Bρ) the sphere (respectively, the closed
ball) of center zero and radius ρ, i.e. Sρ = {u ∈ X0 : ∥u∥ = ρ}, Bρ = {u ∈ X0 : ∥u∥ ≤ ρ}.

Let S be the best fractional Sobolev constant

S = inf
u∈X0\{0}

∫
RN

∫
RN

|u(x)− u(y)|p
|x − y|N+ps dxdy( ∫

Ω
|u|p∗s dx

)p/p∗s
.
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The energy functional associated with (1.1) has the form

Iλ(u) =
a
p
∥u∥p +

b
2p

∥u∥2p +
2
q2

∫
Ω
|u|qdx − 1

q

∫
Ω
|u|q ln |u|2dx − λ

1 − γ

∫
Ω
|u|1−γdx.

Since the energy functional fails to be finite and loses C1 smoothness on its natural Sobolev
spaces, the classical critical point theory can not be applied directly, we overcome this hur-
dle by the critical point theory for nonsmooth functionals. Moreover, logarithmic nonlinear-
ity is sign-changing, it becomes much more difficult than usual to obtain estimates of the
energy functional. Our difficulties are as follows: (i) The singular term leads to the non-
differentiability of the energy functional Iλ corresponding to (1.1) in [13]; (ii) The appearance
of logarithmic and singular nonlinearities makes it more difficult for us to prove the con-
vergence of the (PS) sequence; (iii) The fractional p-Laplacian operators also cause great
difficulties for the existence of positive solutions.

Now we state our main result.

Theorem 1.1. Assume that 0 < γ < 1 and 2p < q < q + 2 < p∗s hold, there exists Λ0 > 0 such that
for all λ ∈ (0, Λ0), equation (1.1) has at least two positive solutions.

2 Preliminaries

In this section, we first recall some concepts adapted from critical point theory for nonsmooth
functionals in [4, 16].

Definition 2.1. Let (Y, d) be a complete metric space, f : Y → R be a continuous functional in
Y. Denote by |D f |(u) the supremum of κ in [0, ∞) such that there exist δ > 0 and a continuous
map σ : Bδ(u)× [0, δ] → Y satisfying{

f (σ(z, t)) ≤ f (z)− κt, (z, t) ∈ Bδ(u)× [0, δ],

d(σ(z, t), z) ≤ t, (z, t) ∈ Bδ(u)× [0, δ].
(2.1)

The extended real number |D f |(u) is called the weak slope of f at u.

Definition 2.2. A sequence {un} of Y is called (PS) sequence of the functional f , if |D f |(un) →
0 as n → ∞ and f (un) is bounded. We say that u ∈ Y is a critical point of f if |D f |(u) = 0.
Since u → |D f |(u) is lower semicontinuous, any accumulation point of a (PS) sequence is
clearly a critical point of f .

Since we are looking for positive solutions of (1.1), we consider the functional Iλ as defined
on the closed positive cone P of X0

P = {u | u ∈ X0, u(x) ≥ 0, a.e. x ∈ Ω}.

P is a complete metric space and Iλ is a continuous functional on P. Then we have the
following lemma.

Lemma 2.3. Suppose that |DIλ|(u) < +∞ holds, then for all v ∈ P such that

(a + b∥u∥p)
∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))[(v − u)(x)− (v − u)(y)]
|x − y|N+ps dxdy

−
∫

Ω
|u|q−2u(v − u) ln |u|2dx + |DIλ|(u)∥v − u∥ ≥ λ

∫
Ω

(v − u)
uγ

dx.
(2.2)
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Proof. Let |DIλ|(u) < µ, δ < 1
2∥v − u∥, v ∈ P and v ̸= u. Define the mapping σ : Bδ(u) ×

[0, δ] → P by

σ(z, t) = z + t
v − z

∥v − z∥ .

Thus, we have ∥σ(z, t)− z∥ = t, by (2.1), there exists a pair (z, t) ∈ Bδ(u)× [0, δ] such that

Iλ(σ(z, t)) > Iλ(z)− µt.

Consequently, we assume that there exist sequences {un} ⊂ P and {tn} ⊂ [0, ∞), such that
un → u, tn → 0+, and

Iλ

(
un + tn

v − un

∥v − un∥

)
≥ Iλ(un)− µtn,

that is
Iλ(un + sn(v − un)) ≥ Iλ(un)− µsn∥v − un∥, (2.3)

where sn = tn
∥v−un∥ → 0+ as n → ∞. Divided by sn in (2.3), we have

a
p
∥un + sn(v − un)∥p − ∥un∥p

sn
+

b
2p

∥un + sn(v − un)∥2p − ∥un∥2p

sn

+
∫

Ω

f (un + sn(v − un))− f (un)

sn
dx + µ∥v − un∥

≥ λ

1 − γ

∫
Ω

|un + sn(v − un)|1−γ − |un|1−γ

sn
dx,

where
f (un) =

2
q2

∫
Ω
|un|qdx − 1

q

∫
Ω
|un|q ln |un|2dx.

Notice that

lim
n→∞

∫
Ω

f (un + sn(v − un))− f (un)

sn
dx

= lim
n→∞

2
q2

∫
Ω

|un + sn(v − un)|q − |un|q
sn

dx

− lim
n→∞

1
q

∫
Ω

(|un + sn(v − un)|q − |un|q) ln |un + sn(v − un)|2
sn

dx

− lim
n→∞

1
q

∫
Ω

|un|q(ln |un + sn(v − un)|2 − ln |un|2)
sn

dx

=
2
q

∫
Ω
|u|q−2u(v − u)dx −

∫
Ω
|u|q−2u(v − u) ln |u|2dx − 2

q

∫
Ω
|u|q−2u(v − u)dx

= −
∫

Ω
|u|q−2u(v − u) ln |u|2dx.

In fact, from [15], for all r ∈ (q, p∗s ) and 2p < q < p∗s , we have that

lim
t→0

|t|q−1 ln |t|2
|t|p−1 = 0, and lim

t→∞

|t|q−1 ln |t|2
|t|r−1 = 0.

Then, for any ε > 0, there exists Cε > 0 such that

|t|q−1 ln |t|2 ≤ ε|t|p−1 + Cε|t|r−1. (2.4)
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It follows from un(x) → u(x) a.e in Ω and un → |un|q ln |un|2 is continuous that

|un(x)|q ln |un(x)|2 → |u(x)|q ln |u(x)|2, a.e. in Ω.

Thus, by the Lebesgue dominated convergence theorem and (2.4), we get

∫
Ω
|un|q ln |un|2dx →

∫
Ω
|u|q ln |u|2dx, as n → ∞.

Set

I1,n =
∫

Ω

|un + sn(v − un)|1−γ − |(1 − sn)un|1−γ

sn(1 − γ)
dx,

and

I2,n =
(1 − sn)1−γ − 1

sn(1 − γ)

∫
Ω
|un|1−γdx.

Notice that

I1,n =
∫

Ω

ξ
−γ
n snv

sn
dx =

∫
Ω

ξ
−γ
n vdx,

where ξn ∈ (un − snun, un + sn(v − un)), which implies that ξn → u (un → u) as sn → 0+.
Since I1,n ≥ 0 for all n, by the Fatou lemma, we obtain that

lim inf
n→∞

I1,n ≥
∫

Ω

v
uγ

dx,

for all v ∈ P. For I2,n, by the Lebesgue dominated convergence theorem, we have

lim
n→∞

I2,n = −
∫

Ω
u1−γdx.

From the above information, we get

(a + b∥u∥p)
∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))[(v − u)(x)− (v − u)(y)]
|x − y|N+ps dxdy

−
∫

Ω
|u|q−2u(v − u) ln |u|2dx + µ∥v − u∥

≥ lim inf
n→∞

(I1,n + I2,n) ≥ λ
∫

Ω

(v − u)
uγ

dx,

for every v ∈ P. Since |DIλ|(u) < µ is arbitrary. The proof is complete.

Lemma 2.4. Let 2p < q < q + 2 < p∗s , there exist constants α, ρ, Λ0 > 0, for all λ ∈ (0, Λ0). Then
the functional Iλ satisfies the following conditions:

(i) Iλ|u∈Sρ
≥ α > 0; infu∈Bρ

Iλ(u) < 0;

(ii) There exists e ∈ X0 with ∥e∥ > ρ such that Iλ(e) < 0.
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Proof. (i) Since ln |u|2 ≤ |u|2, by the Hölder and Sobolev inequalities, we have

Iλ(u) =
a
p
∥u∥p +

b
2p

∥u∥2p +
2
q2

∫
Ω
|u|qdx − 1

q

∫
Ω
|u|q ln |u|2dx − λ

1 − γ

∫
Ω
|u|1−γdx

≥ a
p
∥u∥p − 1

q

∫
Ω
|u|q+2dx − λ

1 − γ

∫
Ω
|u|1−γdx

≥ a
p
∥u∥p − 1

q
|Ω|

p∗s −q−2
p∗s

(∫
Ω
|u|p∗s dx

) q+2
p∗s − λ

1 − γ
|Ω|

p∗s −1+γ

p∗s

(∫
Ω
|u|p∗s dx

) 1−γ
p∗s

≥ a
p
∥u∥p − 1

q
|Ω|

p∗s −q−2
p∗s S− q+2

p ∥u∥q+2 − λ

1 − γ
|Ω|

p∗s −1+γ

p∗s S− 1−γ
p ∥u∥1−γ

= ∥u∥1−γ

(
a
p
∥u∥p−1+γ − 1

q
|Ω|

p∗s −q−2
p∗s S− q+2

p ∥u∥q+1+γ − λ

1 − γ
|Ω|

p∗s −1+γ

p∗s S− 1−γ
p

)
.

Set

h(t) =
a
p

tp−1+γ − 1
q
|Ω|

p∗s −q−2
p∗s S− q+2

p tq+1+γ

for t > 0, thus, there exists a constant

ρ =

 aq(p − 1 + γ)S
q+2

p

p(q + 1 + γ)|Ω|
p∗s −q−2

p∗s

 1
q+2−p

> 0,

such that maxt>0 h(t) = h(ρ) > 0. Let

Λ0 =
h(ρ)(1 − γ)S

1−γ
p

|Ω|
p∗s −1+γ

p∗s

,

thus, Iλ|u∈Sρ
≥ α > 0 for all λ ∈ (0, Λ0). Moreover, for u ∈ X0\{0}, we get

lim
t→0+

Iλ(tu)
t1−γ

= − λ

1 − γ

∫
Ω
|u|1−γdx < 0.

Therefore, we obtain that Iλ(tu) < 0 for t small enough. Consequently, for ∥u∥ small enough,
we have

d ≜ inf
u∈Bρ

Iλ(u) < 0. (2.5)

(ii) For all u ∈ X0\{0} and t > 0, we have

Iλ(tu) =
atp

p
∥u∥p +

bt2p

2p
∥u∥2p +

2tq

q2

∫
Ω
|u|qdx − tq

q

∫
Ω
|u|q ln |tu|2dx

− λt1−γ

1 − γ

∫
Ω
|u|1−γdx

=
atp

p
∥u∥p +

bt2p

2p
∥u∥2p +

2tq

q2

∫
Ω
|u|qdx − 2tq

q

∫
Ω
|u|q ln |u|dx

− 2tq

q

∫
Ω
|u|q ln tdx − λt1−γ

1 − γ

∫
Ω
|u|1−γdx → −∞

as t → +∞, which implies that Iλ(tu) < 0 for t > 0 large enough. Thus, we can find e ∈ X0

with ∥e∥ > ρ such that Iλ(e) < 0. The proof is complete.
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Lemma 2.5. Suppose that 2p < q < p∗ and 0 < γ < 1 hold, the functional Iλ satisfies the (PS)
condition.

Proof. Let {un} ⊂ P be a (PS) sequence for Iλ at the level c, that is

Iλ(un) → c, and |DIλ|(un) → 0 as n → ∞. (2.6)

It follows from (2.2) and (2.6) that

(a + b∥un∥p)
∫

RN

∫
RN

|un(x)− un(y)|p−2(un(x)− un(y))
|x − y|N+ps

× [(v − un)(x)− (v − un)(y)]dxdy

−
∫

Ω
|un|q−2un(v − un) ln |un|2dx + |DIλ|(un)∥v − un∥

≥ λ
∫

Ω

(v − un)

uγ
n

dx.

(2.7)

Choosing v = 2un ∈ P in (2.7), we obtain that

(a + b∥un∥p)∥un∥p −
∫

Ω
|un|q ln |un|2dx + |DIλ|(un)∥un∥ ≥ λ

∫
Ω

u1−γ
n dx. (2.8)

Combining with (2.6), (2.8) and the Hölder inequality, there exists a constant C > 0, we get

c + 1 + o(∥un∥) ≥ Iλ(un) +
1
q
|DIλ|(un)∥un∥

≥ a
(

1
p
− 1

q

)
∥un∥p + b

(
1

2p
− 1

q

)
∥un∥2p +

2
q2

∫
Ω
|un|qdx

− λ

(
1

1 − γ
− 1

q

) ∫
Ω
|un|1−γdx

≥ a
(

1
p
− 1

q

)
∥un∥p − λ

(
1

1 − γ
− 1

q

)
|Ω|

p∗s −1+γ

p∗s S− 1−γ
p ∥un∥1−γ.

Since 1 − γ < 1 < p, we deduce that {un} is bounded in X0. Therefore, we may assume up to
a subsequence, still denoted by {un}, there exists u ∈ X0 such that

un ⇀ u, weakly in X0,

un → u, strongly in Lr(Ω) (1 ≤ r < p∗s ),

un(x) → u(x), a.e. in Ω,

(2.9)

as n → ∞. Taking v = um in (2.7), we have

(a + b∥un∥p)
∫

RN

∫
RN

|un(x)− un(y)|p−2(un(x)− un(y))
|x − y|N+ps

× [(um − un)(x)− (um − un)(y)]dxdy

−
∫

Ω
|un|q−2un(um − un) ln |un|2dx + o(1)∥um − un∥

≥ λ
∫

Ω

(um − un)

uγ
n

dx.

(2.10)
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By changing the role of um and un in (2.10), we have a similar inequality. By adding the two
inequalities, we get

∫
RN

∫
RN

[|un(x)− un(y)|p−2(un(x)− un(y))− |um(x)− um(y)|p−2(um(x)− um(y))]
|x − y|N+ps

× [(un − um)(x)− (un − um)(y)]dxdy

≤
∫

Ω

(
|un|q−2un ln |un|2

a + b∥un∥p − |um|q−2um ln |um|2
a + b∥um∥p

)
(un − um)dx

+ λ
∫

Ω

(
u−γ

n

a + b∥un∥p − u−γ
m

a + b∥um∥p

)
(un − um)dx + o(1)∥um − un∥

≤
∫

Ω

(
|un|q−2un ln |un|2

a + b∥un∥p − |um|q−2um ln |um|2
a + b∥um∥p

)
(un − um)dx + o(1)∥um − un∥.

(2.11)

With the help of (2.4), (2.9) and {un} is bounded in X0, for all r ∈ (q, p∗s ), we have∣∣∣∣∫Ω

|un|q−2un ln |un|2
a + b∥un∥p (un − um)dx

∣∣∣∣
≤ C

∣∣∣∣∫Ω
|un|q−2un ln |un|2(un − um)dx

∣∣∣∣
≤ Cε

∫
Ω
|un|p−1|un − um|dx + Cε

∫
Ω
|un|r−1|un − um|dx

≤ Cε

(∫
Ω
|un|pdx

) p−1
p
(∫

Ω
|un − um|pdx

) 1
p

+ Cε

(∫
Ω
|un|rdx

) r−1
r
(∫

Ω
|un − um|rdx

) 1
r

≤ Cε∥un − um∥p + Cε∥un − um∥r → 0,

(2.12)

as n → ∞. By a similar calculation in (2.12), one has∣∣∣∣∫Ω

|um|q−2um ln |um|2
a + b∥um∥p (un − um)dx

∣∣∣∣ ≤ Cε∥un − um∥p + Cε∥un − um∥r → 0, (2.13)

as n → ∞. It follows from (2.12) and (2.13) that

lim
n→∞

∫
Ω

(
|un|q−2un ln |un|2

a + b∥un∥p − |um|q−2um ln |um|2
a + b∥um∥p

)
(un − um)dx = 0. (2.14)

Therefore, by (2.11) and (2.14), we have

lim
n→∞

∫
RN

∫
RN

[|un(x)− un(y)|p−2(un(x)− un(y))− |um(x)− um(y)|p−2(um(x)− um(y))]
|x − y|N+ps

× [(un − um)(x)− (un − um)(y)]dxdy = 0. (2.15)

Let us now recall the well-known Simon inequalities, for all ξ, ζ ∈ R such that

|ξ − ζ|p ≤
{

cp(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ), for p ≥ 2,

Cp[(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ)]
p
2 (|ξ|p + |ζ|p)

2−p
2 , for 1 < p < 2,

(2.16)
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where cp, Cp > 0 depending only on p. From which we distinguish two cases:
Case (i): if p ≥ 2, it follows from (2.15) and (2.16) as n → ∞ that

∥un − um∥p

=
∫

RN

∫
RN

|(un − um)(x)− (un − um)(y)|p
|x − y|N+ps dxdy

≤ cp

∫
RN

∫
RN

[|un(x)− un(y)|p−2(un(x)− un(y))− |um(x)− um(y)|p−2(um(x)− um(y))]
|x − y|N+ps

× [(un − um)(x)− (un − um)(y)]dxdy → 0.

Case (ii): if 1 < p < 2, since ∥un∥p and ∥um∥p are bounded in X0, by the subadditivity
inequality, for all ξ, ζ ≥ 0, we have

(ξ + ζ)
2−p

2 ≤ ξ
2−p

2 + ζ
2−p

2 .

Letting ξ = un(x)− un(y) and ζ = um(x)− um(y) in (2.16) as n → ∞, we obtain

∥un − um∥p

≤ Cp

[ ∫
RN

∫
RN

[|un(x)− un(y)|p−2(un(x)− un(y))− |um(x)− um(y)|p−2(um(x)− um(y))]
|x − y|N+ps

× [(un − um)(x)− (un − um)(y)]dxdy
] p

2

(∥un∥p + ∥um∥p)
2−p

2

≤ Cp

[ ∫
RN

∫
RN

[|un(x)− un(y)|p−2(un(x)− un(y))− |um(x)− um(y)|p−2(um(x)− um(y))]
|x − y|N+ps

× [(un − um)(x)− (un − um)(y)]dxdy
] p

2

(∥un∥
p(2−p)

2 + ∥um∥
p(2−p)

2 )

≤ C
[ ∫

RN

∫
RN

[|un(x)− un(y)|p−2(un(x)− un(y))− |um(x)− um(y)|p−2(um(x)− um(y))]
|x − y|N+ps

× [(un − um)(x)− (un − um)(y)]dxdy
] p

2

→ 0,

where the constant C > 0. Thus, we can deduce that un → u in X0. The proof is complete.

Lemma 2.6. If |DIλ|(u) = 0, then u is a weak solution of (1.1). That is, u−γ φ ∈ L1(Ω) for all
φ ∈ X0 such that

(a + b∥u∥p)
∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)− φ(y))
|x − y|N+ps dxdy

=
∫

Ω
|u|q−2uφ ln |u|2dx + λ

∫
Ω

u−γ φdx.
(2.17)

Proof. Since |DIλ|(u) = 0, by Lemma 2.3, for all v ∈ P, we have

(a + b∥u∥p)
∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))[(v − u)(x)− (v − u)(y)]
|x − y|N+ps dxdy

−
∫

Ω
|u|q−2u(v − u) ln |u|2dx ≥ λ

∫
Ω

(v − u)
uγ

dx.
(2.18)
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Letting t ∈ R, φ ∈ X0, and taking v = (u + tφ)+ ∈ P in (2.18), for any φ ∈ X0, we get

0 ≤ (a + b∥u∥p)
∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))
|x − y|N+ps

× [((u + tφ)+ − u)(x)− ((u + tφ)+ − u)(y)]dxdy

−
∫

Ω
|u|q−2u((u + tφ)+ − u) ln |u|2dx − λ

∫
Ω

((u + tφ)+ − u)
uγ

dx

≤ t
[
(a + b∥u∥p)

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))[φ(x)− φ(y)]
|x − y|N+ps dxdy

−
∫

Ω
|u|q−2uφ ln |u|2dx − λ

∫
Ω

φ

uγ
dx
]

− (a + b∥u∥p)
∫

u+tφ<0

∫
u+tφ<0

|u(x)− u(y)|p−2(u(x)− u(y))
|x − y|N+ps

× [(u + tφ)(x)− (u + tφ)(y)]dxdy

+
∫

u+tφ<0
|u|q−2u(u + tφ) ln |u|2dx + λ

∫
u+tφ<0

u + tφ

uγ
dx

≤ t
[
(a + b∥u∥p)

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))[φ(x)− φ(y)]
|x − y|N+ps dxdy

−
∫

Ω
|u|q−2uφ ln |u|2dx − λ

∫
Ω

φ

uγ
dx
]

− t(a + b∥u∥p)
∫

u+tφ<0

∫
u+tφ<0

|u(x)− u(y)|p−2(u(x)− u(y))[φ(x)− φ(y)]
|x − y|N+ps dxdy

+
∫

u+tφ<0
|u|q−2u(u + tφ) ln |u|2dx.

Since u(x) = 0 for a.e. x ∈ Ω and

meas{x ∈ Ω|u(x) + tφ(x) < 0, u(x) > 0} → 0, as t → 0,

we have

(a + b∥u∥p)
∫

u+tφ<0

∫
u+tφ<0

|u(x)− u(y)|p−2(u(x)− u(y))[φ(x)− φ(y)]
|x − y|N+ps dxdy

= (a + b∥u∥p)
∫

u+tφ<0,u>0

∫
u+tφ<0,u>0

|u(x)− u(y)|p−2(u(x)− u(y))[φ(x)− φ(y)]
|x − y|N+ps dxdy

→ 0,

and ∫
u+tφ<0

|u|q−2u(u + tφ) ln |u|2dx =
∫

u+tφ<0,u>0
|u|q−2u(u + tφ) ln |u|2dx → 0,

as t → 0. Therefore, we have that

0 ≤ t
[
(a + b∥u∥p)

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))[φ(x)− φ(y)]
|x − y|N+ps dxdy

−
∫

Ω
|u|q−2uφ ln |u|2dx − λ

∫
Ω

φ

uγ
dx
]
+ o(t).
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Consequently, one has

(a + b∥u∥p)
∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))[φ(x)− φ(y)]
|x − y|N+ps dxdy

−
∫

Ω
|u|q−2uφ ln |u|2dx − λ

∫
Ω

φ

uγ
dx ≥ 0.

By the arbitrariness of the sign of φ, we can obtain that (2.18) holds. The proof is complete.

3 Proof of Theorem 1.1

Theorem 3.1. Suppose that 0 < λ < Λ0 (Λ0 is as in Lemma 2.4), then equation (1.1) has a positive
solution u∗ satisfying Iλ(u∗) < 0.

Proof. According to Lemma 2.4 and the definition of d in (2.5), there exists a minimizing
sequence {un} ⊂ Bρ ⊂ P such that limn→∞ Iλ(un) = d < 0. Obviously, {un} is bounded in Bρ,
up to a subsequence, still denoted by {un}, there exists u∗ ∈ X0 such that

un ⇀ u∗, weakly in X0,

un → u∗, strongly in Lr(Ω), 1 ≤ r < p∗s ,

un(x) → u∗(x), a.e. in Ω,

as n → ∞. Next, we prove that un → u∗ as n → ∞ in X0. Let wn = un − u∗, by the Brézis–Lieb
lemma, there holds

∥un∥p = ∥wn∥p + ∥u∗∥p + o(1).

Therefore, by Lemma 2.5, we have

d = lim
n→∞

Iλ(un)

= Iλ(u∗) + lim
n→∞

[
a
p
∥wn∥p +

b
2p

(∥wn∥2p + 2∥wn∥p∥u∗∥p)

]
≥ Iλ(u∗) ≥ d,

which implies that ∥wn∥ → 0 as n → ∞. Since Bρ is closed and convex, we have u∗ ∈ Bρ.
Thus, we can deduce that Iλ(u∗) = d < 0, which implies that u∗ is a local minimizer of Iλ and
u ̸≡ 0 in Ω. For v ∈ P and t > 0 small enough such that u∗ + t(v − u∗) ∈ Bρ, similar to the
proof of Lemma 2.6, we get

(a + b∥u∗∥p)
∫

RN

∫
RN

|u∗(x)− u∗(y)|p−2(u∗(x)− u∗(y))[(v − u∗)(x)− (v − u∗)(y)]
|x − y|N+ps dxdy

−
∫

Ω
|u∗|q−2u∗(v − u∗) ln |u∗|2dx

≥ λ
∫

Ω

(v − u∗)

uγ
∗

dx.

Therefore, u∗ is a critical point of Iλ, by Lemma 2.6, we obtain that u∗ ∈ P is a solution of (1.1)
with Iλ(u∗) = d < 0, which implies that u∗ ≥ 0 and u∗ ̸≡ 0. We claim that

g(t) = 2 ln t +
λ

tq−1+γ
.
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Notice that
lim

t→0+
g(t) = +∞, and lim

t→+∞
g(t) = +∞.

Therefore, g achieves its minimum at

t∗ =
[

λ(q − 1 + γ)

2

] 1
q−1+γ

,

which implies that

min
t>0

g(t) = g(t∗) =
2

q − 1 + γ
ln

λ(q − 1 + γ)

2
+

2
q − 1 + γ

≜ C.

Consequently, we obtain that

(−∆)s
pu∗ =

1
a + b∥u∗∥p

(
uq−1
∗ ln u2

∗ +
λ

uγ
∗

)
≥ Cuq−1

∗
a + b∥u∗∥p ≥ 0,

where a > 0, b ≥ 0. By using the strong maximum principle in [5, 18], we deduce that u∗ ∈ P
is a positive solution of (1.1). The proof is complete.

Theorem 3.2. Suppose that 0 < λ < Λ0, then equation (1.1) has a positive solution v∗ such that
Iλ(v∗) > 0.

Proof. Applying the mountain pass lemma in [2] and Lemma 2.4, there exists a sequence
{un} ⊂ X0 such that

Iλ(un) → c, and |DIλ|(un) → 0 as n → ∞,

where
c = inf

γ∈Γ
max
t∈[0,1]

Iλ(γ(t)),

and
Γ = {γ ∈ C([0, 1], X0) : γ(0) = 0, γ(1) = e} .

According to Lemma 2.5, we know that {un} ⊂ X0 has a convergent subsequence, still denoted
by {un}, we may assume that un → v∗ in X0 as n → ∞, we have

Iλ(v∗) = lim
n→∞

Iλ(un) ≥ α > 0,

which implies that v∗ ̸≡ 0. It is similar to Theorem 3.1 that v∗ > 0, we obtain that v∗ is
a positive solution of equation (1.1) such that Iλ(v∗) > 0. Combining the above facts with
Theorem 3.1 the proof of Theorem 1.1 is complete.
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