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Abstract. In this article, the following Kirchhoff-type fractional Laplacian problem with
singular and critical nonlinearities is studied:

(a+blju|®72) (=A)° u=M(x)u®= "1+ h(x)u™7, inQ,
u>0, in ),
u=0, in RN\ Q,

where s € (0,1), N > 2s, (—A)* is the fractional Laplace operator, 2; = 2N /(N — 2s)
is the critical Sobolev exponent, O C RN is a smooth bounded domain, I € L®(Q)

%

is a non-negative function and max {I(x),0} # 0, h € L=+ 1(Q) is positive almost
everywhere in 3, v € (0,1),a > 0,b > 0, u € [1,2}/2) and parameter A is a positive
constant. Here we utilize a special method to recover the lack of compactness due to
the appearance of the critical exponent. By imposing appropriate constraint on A, we
obtain two positive solutions to the above problem based on the Ekeland variational
principle and Nehari manifold technique.

Keywords: fractional Laplacian problem, singular, critical nonlinearity, Kirchhoff-type
problem.
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1 Introduction

This paper is concerned with the existence and multiplicity of positive solutions for the fol-
lowing Kirchhoff-type problem with singular nonlinearity and critical exponent driven by
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fractional Laplacian operator:

(ff]RZN W‘I\I-ﬂs‘dj‘jdy) ( ) u = Al(x)uZ:*l + h(x)u*')’, in Q,
u>0, in Q, (1.1)
u=0, in RN\,

where 0 < s < 1, N > 25, 2¥ = 2N/(N — 2s) is the fractional critical Sobolev exponent,
M(t)=a+0bt'"1,a>0b>0,u€cll, 2*/2) I(x) is non-negative and I(x) € L®((}) satisfies

I(x) #0in O, 0 <y <landh € LZ"H 1(Q) is positive almost everywhere in (), parameter
A > 0and (—A)’ is the fractional Laplace operator which defined up to normalization factors
as

. Y(x)—-Y
(—A)° ¥(x) = 2 lim B Mdy, x € RN, (1.2)
for any ¥ € CP(RYN), where B.(x) is the ball with radius T and center x € RN. For more
details, we can refer to [25] and references therein. The fractional elliptic problem appeared in
many different practical applications and phenomena, such as resilience, phase transformation
and minimal surface problems, etc. For more related introduction, see [1,2,6,20,29].

Above all, let us review the relevant progress on Kirchhoff-type equation. The Kirchhoff-
type equation is a generalization of the classical D’ Alembert wave equation, which was raised
by Kirchhoff to describe the lateral vibration of stretched strings in [17]. The basic model for
problem (1.1) can be summarized as follows:

L
puy — M </0 uidx) Uyy = 0,

where p, a,b, L are constants, M ( fOL u2dx) :=a+b( fOL u2dx)#~1 describes the tension changes
arise from changes in string length during the vibrations. Concerning the Kirchhoff term M,
we consider a specific version of M,

M(t)=a+0bt"1, a,b>0 1<u<2/2. (1.3)

Where, a represents the initial tension while b is related to the inherent properties of string
(such as Young’s modulus). In particular, in the case of M(0) = 0 while M(t) > 0 for all
t € RT, Kirchhoff-type equation is often referred as degenerate. If M(t) > ¢ > Oforall t € R
and some constant ¢, equation is commonly known as non-degenerate. For some advance
of degenerate Kirchhoff-type problems, see for instance [3,7,32]. In addition, we refer to
[8,10,13,31,33] about some existence results of non-degenerate Kirchhoff-type problems.

Next, let us present some progress of Laplacian equations involving singular terms. A
general version of this type of problem can be formed as follows:

—Au = Am(x)u=" +h(x)u?, inQ
u>0, in O (1.4)
u=20, in 0Q).

In the early days, when A = 1 and h(x) = 0, the existence and regularity results of the
solutions to problem (1.4) were studied by Boccardo et al. in [5]. The difference in results
depends on the summability of m in some Lebesgue function spaces and on the value range
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of 7 (which can be smaller, equal or larger than 1). When 0 < ¢ < 1, in the case of m(x) =1
and h(x) = 0, Crandall et al. solved problem (1.4) in [9] and learned that it has a unique weak
solution. Subsequently, the multiplicity of solutions to such problems was obtained by Sun et
al. in [28]. Moreover, Liu and Sun solved the Kirchhoff equation involving singular terms and
Hardy potential in [23]. For equations involving the critical case, we may refer to [12,15,16].
To be specific, the author in [12] solved the Kirchhoff equation involving the critical exponent
and obtained two different solutions. In [15], when m(x), h(x) = 1, the authors obtained that if
A is less than a positive constant, then problem (1.4) has two positive solutions. Furthermore,
Yang in [16] studied the multiplicity and asymptotic behavior of positive solutions to problem
(1.4), where 0 < v < 1 < q < (N+2)/(N —2). By applying variational method and sub-
supersolution technique, the author learned what happens to the number and properties of
solutions for the equation with different values of A. In the setting of v = 1, minimization
theory is used by the authors in [31] to obtain a unique positive solution in the subcritical case.
Regarding v > 1, in the case of i(x) = 0 and A = 1, the authors in [18] also got the unique
solution. It is worth mentioning that Wang et al. used Ekeland’s variational principle and the
Nehari method to prove the existence of a unique positive solution for a Kirchhoff equation
involving strong singularity in [30]. Besides, there are equations for (1.4) with Kirchhoff terms
that we can refer to [19,21,22]. In [19], the authors obtained two different positive solutions
through the variational and perturbation methods. Liao et al. in [22] studied the solutions of
equation (1.4) in the weak singular case under different constraints. On the basis of [22], they
solved the critical case in [21] and got the unique positive solution.

In the above context, the following class of singular Kirchhoff problem with fractional
Laplace operators has been extensively studied:

M([q IVu(x)]?)(=A)Yu = Af(x)u=7 4+ g(x)u*"1, inQ
u>0, in O (1.5)
u=0, in RN\ Q,

in the setting of M = 1. Mukherjee and Sreenadh in [24] studied a singular problem with
critical growth and obtained two solutions, where 7 can be equal to 1. In the case of v > 0,
Barrios et al. discussed the existence of solutions to the equation 1.5 in two cases: g(x) = 0 and
g(x) = 1. Besides, the authors in [14] solved a variant of problem (1.5) in which A is multiplied
to the critical term. Through the variational method, they learned about the existence and
multiplicity of solutions to the equation when A takes different values. For such problems
with different Kirchhoff terms, we may consult [11-13] and the references therein. Equation
(1.5) was discussed in [12], where there is no weight function and the Kirchhoff term may
be degenerate, the variational method and appropriate truncation theory were used to obtain
two solutions. In [13], Fiscella et al. proved that equation (1.5) of the non-degenerate type has
two distinct solutions by using the Nehari method. At last, the authors in [11] considered a
critical degenerate Kirchhoff problem with strong singularity, and the only positive solution
was obtained.

In view of the aforementioned works, in particular, according to [11-13,30], we are inspired
to investigate the existence and multiplicity of solutions to problem (1.1) under appropriate
assumptions. The most significant difficulty lies in the lack of compactness caused by the
presence of critical term. For this, we use the method of [13] to recover compactness. Es-
pecially, we are interested in a natural problem: whether problem (1.1) can be solved in the
strong singular case? We will try our best to study this situation in the future.

Here is the main result we obtain.
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%
Theorem 1.1. Let s € (0,1), N > 25,0 < 7y < 1, a be small enough and h € L=+1-1(Q)) be positive
a.e. in Q). Then there exists I'g > 0, when 0 < A < T, then problem (1.1) has at least two positive
solutions with negative energies.

Remark 1.2. Compared to the fundamental conclusion in [11], there are three main differences:
(i) The range of M(t) is different, in this paper we only consider non-degenerate case. (ii) We
utilize a different method to recover the lack of compactness caused by the critical term. (i)
By controlling the range of A in the weak singular case, we obtain two positive solutions.

Remark 1.3. Compared to [13], our result refines and improves the main result of [13] from
the following aspects: (i) We do not need to control b to be as small as possible but we need to
control 2 > 0 small enough to ensure that A is positive in order to obtain the second positive
solution. (i7) Our nonlinearities do not involve sign changing functions and we don’t need to
control [(x) = [|l[|e in By, (0) for some py > 0.

2 Variational setting

Regarding problem (1.1), we mainly solve it in fractional Sobolev space, which is specifically
defined by

M = {cp | ®: RN — R is measureable, ®|n € L*(QQ), w € LZ(G)}, (2.1)
xX—y

where G = R?N\ (Q° x O)F), with Q¢ = RN\ Q). Moreover, M is defined as the linear subspace
of M, which is
M := {CDGIM:CD:O a.e. in ]RN\Q}.

As for the norm of two spaces, the norm of the space M is given as shown below:

®(x) — D(y)? 12
@l = 19l + (/[ Tt i dvay) @2

Besides, we confirm the following norm on My:

®(x) — D(y)? 12
1@l = (/[ T e vy 23)

|x

According to Lemma 6 in [26], it is easy to know that (2.2) and (2.3) are equivalent. In addition,
it is standard to verify that (IMy, ||.||n,) is a Hilbert space and the form of scalar product in
My is as follows:

(1] // ]x — y‘%ﬁs ](y))dxdy, for 1,7 € My, (2.4)

see for example Lemma 7 in [26]. The embedding My — L"7(Q}) is compact and continuous
for 2 <15 < 2}, see [26, Lemma 8]). Then, an appropriate selection linked to the best Sobolev
constant can be defined as

P dxd
G xX— * S y
Ss= inf S4(®) = ff ‘ y‘N 2

2.5
Mo\ {0} ([, 1@ (x)[2d )2/2s (2.5)
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In what follows, for the sake of simplicity of notations, we shall denote | - |[m, and || - || s
by |||l and || - |, for any 5 € [2,0].

In the process of obtaining multiple solutions, we will use Nehari manifold method and
fibering maps. Before this, let us first introduce the definition of weak solutions to problem
(1.1).

Definition 2.1. u € M is a weak solution of problem (1.1) if for all / € My the following
weak formulation is satisfied:

alu, €) + bl|u]| 22 (u, 0) —A/ Z(x)\u|2?—1edx—/ h(x)|u|~¢dx = 0.
Q Q
The energy functional associated to problem (1.1): Z : My — R is defined as
A 1

_Tire b 2p _ 7/ %y — / -y
Z(u) = 5 |lull +2VHMH 2 ) |ul>dx 1=+ ) ful . (2.6)
3 Fibering maps analysis

For any u € M, we first introduce the fibering map: ¢, (t) : (0,00) — R, defined as

a b tZ: * tl_ry _
bult) = Z(tw) = ZPNull + Pl = A [ 10— g [ Gl

Through simple calculation, we get
oL (1) = at|ul? + b |ul|2 — A2 /Q () ulFdx — £ /Qh(x)|u|1—’rdx,
where in particular
#1(0) = alul 4+ bl = A [ 1Ge) ufdx— [ nluf~dx @)

From this, we may define the constrained set as

X = {ueMO:a||u|\2+buuy|2ﬂ—A/QZ(x)mZs*dx—/Qh(x)wde:o}. (3.2)

Furthermore,

$ult) = allul?+ g = D02l = A2 =12 [ 1)l dx e [ nGolul' T
Q Q

Apparently,

#u(1) = allulP+ 2= Dbl =225 = 1) [0 uFdx [ nGuld 63)

As a matter of fact, the two weak solutions we want are in X. In order to better explore the
existence of solutions, X can be further decomposed into X+, X~ and X%

X+:{uex:a(1+'y)]|u||2+b(2y—1+')/)Hu]|2”—A(Z:—1+')/)/ l(x)|u|22‘dx>o}, (3.4)
QO
x—:{uex;a(1+7)y|u||2+b(2y—1+7)|yuy|2%*—A(zg—1+7)/Ql(x)|u|22‘dx<o}, (3.5)

xoz{uex sa(T4+ ) ull® +b2u — 1+ ) ||Jul* — A2 -1 +7)/01(x)yu|2?dx = 0} . (3.6)
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4 Technical lemmas

In this section, we shall present several relevant lemmas in this section, which will be helpful
for the proof of Theorem 1.1.

Lemma 4.1. When 0 < A < I'1 hold, where

25 +9-1
1_|_ 02*—2 1y 28 —1+y 2-2% B
= (5s) (Fo k) 7 s

2F =2 2F + 2*+71

there exist unique to = to(u) > 0, t— =t_(u) >0, t; =t (u) > 0, with t_ < to < t, such that
tiue Xt tueX .

Proof. For any u € My, we may write ¢, (t) in the form

Pu () = at> % |[u]|2 + 22 a2 — 02 / h(x)u|'~7dx, ¢ >0, 4.1)
JQO
It is noticeable that if ¢, (f) = A [, [(x)|u|>dx, that is
at? =% ||u|? + b2 ]uHZV—tl’"”2§/ h(x) |u|'~ mx—A/ (x)|u|% dx, 42)

multiplying t* on the both sides of the equation, one has
al|tu]|? + b bul|2 — / h(x)|tu|' = Tdx = /\/ ¥)|tu|% dx, 4.3)
Q

then we can deduce that tu € X.
We can easily infer from (4.1) that lim; .o+ ¥, () = —oo and lim_, ¥, (t) = 0. Further-

more, one step derivative calculation can get
P (t) = a(2 = 20) 8 7% [Jul? + b(2p — 20) 22 ||
o 1 (4.4)
+ 2+t / h(x)|u|"~7dx.
Q

Based on the fact that 1 < 2y < 2¥ and 0 < 7 < 1, one can obtain that lim; o+ ¢}, (f) > 0 and
Rewrite ¢, (¢ ) = 12#1=2% ¢, (t), where

(1) = a(2 = 202l b(2 = 20) P+ (25 + = DA [ )luf .
Q
If
gult) = a(2=20) 2 =22l = (1= = 2) (1 =y =207 | hx)|ul' Tdx =,

then it could be seen that there exists a unique

L

(28 =1+7)2u —1+7) [ h(x)|u|~7dx

t = » 5 >0
a(23 —2)(2p — 2)|ull

such that ¢/, (1) = 0. Similarly, since 1 < 2y < 2 and 0 < v < 1, we have lim;_,+ g, (t) = 400
and lim;_, o g (t) = b(2u — 27)||ul|?* < 0. Also, lim,_g+ g),(t) < 0 and lim;_, 10 g, () > 0.
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Subsequently, we infer that there is only one t; > 0 that satisfies g,(fp) = 0. Actually, it
follows from o) (t) = #7172 ¢, (t) that ty is a unique critical point of 1, (t), which is the
global maximum point. In another word, this means that when 0 < t < to, ,,(t) is increasing.
P, (t) is decreasing in the range greater than ty and ¢, (to) = 0. We define

— — 2u 2u—23% >
Pu(to) rngXlPu(t) rgaOX(bllth + @u(t)) rpggfpu() (4.5)

where

pu(t) = af F Jul — 772 [ () uf~dx,
Q

With respect to ¢,(t), there holds

Pult) =a(2 = 28 ul? = (1= =2 [ n(x)lul'd,

we observe that lim; o+ ¢/,(t) > 0 and lim;— 1« ¢, (t) <0,

25 +9—1

28 +9-1
max g, (t) = <1+7>< e ) - . (4.6)
£>0 2;-2)\2z+7-1 (o ()l —dz) T

Hence by (4.5) and (4.6), we obtain

1+ -2\ (afu)

0% - 7 a||lu 7 i

> < — ) < i ) —/\/ (x) |u|% dx
2 —2)\2r+y—1 I N o

(Jo () u*=7dx) T

2§ +7-1 254292
S <1+7> <ﬂ(2§—2)) T ]| T
- 2; -2 2; + 7 — 1 2* 2§F—2§1+7 7 212;7—72 (47)
() o]
—A[fleSs *
28 +y-1 * ‘
L1+ a(2x —2 “1ry (=71)25-2) 2-2¢ 2 )
>l (50 ) (22 s T~ afies: ¥l
25 -2 25 +7r- 1 25491
>0,
i 214y 2-2%
forall 0 < A < (5%) (gffi;_zi) i S T Al “l |llls! = Ty. From (4.7), we can observe
2*+7 1

that there are unique t, =t (u) < fpand t_ = t_(u) > tg satisfying

W(£2) /\/ () |ul%dx = pult).

Similar to (4.2) and (4.3), we confirm that t;u € X and t_u € X. Since ¢} (t+) > 0 and
P, (t-) <0, wecan get t,u € XT and t_u € X~ Specifically,

Pt =alu2@ =28 bl 2n—2) R F — (1= q =287 [ n)lul7dx>0
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multiplying t%f“ on the both sides of the inequation, one has
alltyull*(2 = 20) + bl u|? (2p - 2) — (1 -7 - 2) /Qh(X)It+u|1‘7dx >0. (48
As to the definition of X7, the prerequisite is u € X,
91 (1) = allull® + (21 = Dblul* — (2 - 1) /Q () || * dx + 7/ () u[ '~ 7dx
I+ (2 = D)bllul — (25 = 1) (aflu|® + bul*
— [ nul1dx) + [ nGoful - 7dx

— alul2 ~ 25) + b2y — 20) P — (1=~ 22) [ h(x)Juf' .

= allu

Therefore, another expression of X can be written as

X*z{u EX:a]|u||2(2—2§)+b(2]/t—2;k)HuH2”—(1—7—2;‘)/Qh(x)|u|1_7dx>0}. (4.9)

Similarly,

X_:{MEX:a||u|\2(2—2;‘)+b(2y—2§)||u||2?‘—(1—7—2:)/()h(x)|u]1_7dx<0}, (4.10)

on{u EX:aHuH2(2—2;‘)—|—b(2y—2:)HuH2"—(1—7—2;‘)/Qh(x)]u\1"de:O}. (4.11)

Because (4.8) is established, we know that t,u € X'. At the same time, t_ u € X~ can be
obtained using the same method. ]

Lemma 4.2. There is Ty > 0 satisfies X0 = {0} for all 0 < A < Ty, where

()25 +7v-1)
Ss 2(u+7)

NI—=

2[(1+ ) (2u — 1+ 7)ab]

I =
25+ 7 =Dl

25 —p-1"

@z+r=DR] 2 1+
2 —1+9
T
2

[(2:-2)(2: —2p)ab] ?

Proof. We can prove it in two cases.

Case 1: u € X\ {0} and [, (x)[u|>dx = 0.
According to the definition of X, it follows that (3.2) that

allu])? + bl|ul? —/ h(x)|u"7dx = 0.
Q
On account of 0 < ¢ < 1, we extrapolate that
(1) = el + b2~ D)l + 3 [ h)ul

= allul® + b(p = Dl|ulP +y(alul]® + b]ul?*) (4.12)
= a(1+)|[ul®> + (2u — 1+ 7)b[|u* > 0.

From this, we can learn that u ¢ X°.



Kirchhoff-type fractional Laplacian problems with critical and singular 9

Case 2: u € X\ {0} and [, [(x)[u|>dx # 0.
We may paradoxically assume there exists # € X" and u # 0. On the basis of (3.2) and (3.3),
we obtain

a(L+ ) lull® +b2p =1+ ) [l — (2 - 1+7?\/ x)[ul*dx =0 (4.13)

and
a(2 = 25) lull® + b2p — 20 ul* — (1 — v - 2?)/ h(x)|ul"""dx = 0. (4.14)
Q

Inspired by (4.13), we may define H : X — R as

_a(l+ ) |Jull + b(2p — 1+ ) Jul?* _/ 2
H(u) = R | H)|ul*dx.

Obviously, if u € X then H(u) = 0. Using (2.5) and the basic inequality (¢ + x) > Z(QK)%,
for any ¢, x > 0, we conclude that

NI

2[(1+7)(2u — 1 + 7)ab] 1 1

> N 2
H(w > = oS5 ]
1
o (2[A+7)2p—1+7)ab]* 1 s
Gr+r— DA et~ Mo )

Besides, by (2.5), (4.14) and the Holder inequality, we know

1+'y

</ [ dx> El

1 2%
2[(28 —2p) (22 —2)ab}fuuy|f‘“ <2 +9-1) </Q h(x)z;—mdx)

7-1
<@+ =Dl xS ful.

71+7
Therefore,
(2 +7—1)HhH Ss”
[Jul] < e i
2[(2: —2p) (2 - Z)Hb] :
We control )
2[(1+7)(2u — 1+ y)ab]? 1 -t ng =0
(2:+7-1A T '
which leads to the following conclusion
1 z
2[(1+7)(2u —1+7)ab]’ S
A < * 2% —u—1
(25 +,)/_1)HlH°° -1 S;Hr#"y
@i+r=1lnll 5 Ss?
2% —1+9
1
2[(2:-2)(2; —2u)ab] 2
1 )5 +y-1)
2[(1+7)(2p — 1+ y)ab]* s 7

=1TI5.

25 —1+v

@+ =Dl Qrr-vll g 1R
1
2

[(2:-2)(2: —2p)ab] ?
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Since 2¢ > 2u, H(u) > 0 for all u € X%\ {0} can be confirmed. This causes the desired
contradiction. O

Lemma 4.3. Z, in addition to being coercive, is bounded from below on X.
Proof. For all u € X, we can deduce that
1

_ay o b 2;1_7/ I 2 2]4_/ 1—ry
Z(”)—ZHL‘H +2VH”H 1=+ Qh(x)\u] dx 2 (aljull® + bfu]| Qh(x)\u\ dx)

_(1_1 2 1 1 2u 1 1 / 1=y
= (55 ) ol + (55— 3 ) ol = (52 = 57 ) ol

1 1 1 1
>\ 5= au2—<—> hi| 2 2|l
> (35l = (52 = ) Ibl_=_ sl

from the condition that 2y < 2} and (2.5). Based on the fact of 1 — ¢ < 2, it can be determined
that Z is coercive. In addition, we may define

1 1 1 rlog
Gula) = (350 ) o= (705 — 5 ) = _s7'q™,
S =14

then
2; -2 2i—1+79 1
Gala) = P ~ag == hl_x_S.7 7",
S 1+'y
25 -2 25 —1+ o
Gilq) = g et =] x ST g
25 25 25 —1+v
We can obtain a unique stationary point g,,;,, where
1
=1\ Ty
(Z =1+ lkl 2 Ss*
min = 1+7 ’
(23 —2)
e 2 -2)(1+1)
a(2; — +
G;/(qmin) = : o i > 0.
S
Then G,(q) attains its minimum at ¢, Accordingly,
-1 2
2¥ —2)a) ! -1\ THy
16 > G2V (v s®)
22; iy
2
1 L =1\ T+
———((25 = 2)a) "™ [ (25 =1+ )|k Sz>
sy (@ =207 (@ -1+ lkl = s
2
v+1 . v( . w)m
= ————((25 —=2)a) """ { (25 =1+ ) |h|| 2 Ss° > —C
22:(,)/_1) (( s ) ) ( 7)” H 2>1+W s 0
for some constant Cyp > 0. This proof is completed. ]

Lemma 4.4. Let A € (0,I2), assume that -y € (0,1), then ||u| > p for all u € X~, where

2

(28 +7 = DAlSs *

_ (2\/(1+7)(2V1+7)ab)m
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Proof. If u € X~ C X, from (3.3), then we are sure that

a|\uH2+bHuH2"—)\/QZ(x) uzs*dx—/oh(x)|uylwx:o

and
allull®+ 2 = Dol — (2 = VA [ 1G0) P dx+ [ h(x)ludx <o,

which yields
a1+ )l[ull® + (2p = 1+ 7)bljul*
2 .
<@y = DA [0 uFdr < @+ y = DA S: T %,
Hence, we infer that p < ||u]]. O

Lemma 4.5. Assume that u, — u in My, then

- 2% g 2
dim [ 1) % /Q 1(x) u|% dx, (4.15)
and
i 174y — 1-y
nl_lgloo Qh(x)\un] dx_/Qh(x)]u\ dax. (4.16)

Proof. Let {u,} C My and u, — u in My. Due to | € L*(Q)) and u, — u, we deduce that
there must be C; > 0 and C; > 0 satisfying ||u,|| < C; and |I(x)| < C; ae. in Q. Set

k(%) = 1(x) % 1, k(x) = 1(x)% 1, then

(/ Ik (x Z*dx) (/Ql(x)

It can be clearly determined from this that

1
3

* s 1 * s 1 1
n = dx) 2 < CZZ;F (/ ’u”’2s dx) 2 < C22; Ss 2Cl- (417)
Q

{k,} is bounded in L% (Q),
k, — k a.e. in Q.

Moreover,

[ V() = k() P = [ 10) = e < Co [ Juey = ¥y
o a (4.18)
< C2||un - ”sz« — 0,

for n large enough. All prerequisites have been met, and the Brézis-Lieb lemma can be used
to obtain

lim (/ Ik ()| dx> (/ k()% dx) + lim (/ Ik () — k() |2 dx) .
n——+o0 n—+00

On account of (4.18), we obtain (4.15). Using the same method, we can prove that (4.16) is
valid. O

Lemma 4.6. Forall 0 < A < T, X* U X and X~ are closed sets in Go-topology.
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Proof. We prove this lemma in two parts. Let us first prove that X™ U X is a closed set.

Part 1: Suppose {u,} € XTUX? and u, — uy in My, we need to prove that uy € X U X°.
Since {u,} C XT UX’, we get

a(1+ ) |[uall® + 020 = 1+ ) Jun > = (25 +v = 1) 7\/ x)|u % dx > 0.

Since |||u,|| — [Juol|| < ||un —ugl| — 0 as n — oo, we obtain
lim ([ = [Juol?,  Lim [fu | = [Juo]|*".
n—o00 n—o0

Then, letting n — oo, it follows from Lemma 4.5 that
(1 -+l +b2p 1+ ) ol — 24y~ DA [ 1luoax >0

Therefore, X+ U XU is a closed set.

Part 2: Suppose that {u,} C X~ such that u, — g in My. We infer that 1y € X~ = X~ U {0}.
By using Lemma 4.4, we have

= i >
Juol| = lim [l > p > 0. (419)
Therefore ug # 0, which implies 1y € X™. This proof in completed. O

%
Lemma 4.7. Let u € X (respectively X~) with u > 0,0 < v < land h € LZ"1(Q). Subse-
quently, there exist € > 0 and the continuous function ¢ : B.(0) — R™ satisfying

6(z) >0, c(0) =1, c(z)(u+z) € X*
for any z € B,(0), where B¢(0) = {z € My : ||z|]| < €}
Proof. With regard to any u € Xt C X, define Q : My x RT — R as follows
Qz w) = wl”ﬂlHu +2ff? + T b+ 2
1+"Y/\/ () |u+z|% dx—/oh(x)|u—|—z]1’”’dx.
Differentiating the above equation, we determine that

2
%9 — a1+ P+ 2l 4 b2 — 1 )P 4 2]

— (2 =1+ 9)AwB 2 / ()| + 2% dx.
Q

Due to u € XT C X, it is clear that

Q(0,1) :aHqu—f—bHuﬂzf‘—/ x)|ul - mx—A/ (x)|uZdx =0 (4.20)
and
aQ 2 2u _ (o* 2%
22(0,1) = a(1+ p)|ullP + b(2p = 147 ul# - (2 —1+7) /\/ W)ulFdy > 0. (4.21)
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The implicit function theorem applies to Q at the point (0,1). A continuous function w =
¢(z) > 0 can be got, it can be seen that g(0) = 1 from (4.20). There is ¢* > 0. So Q(z,6(z)) =0
for any z € My with ||z|| < ¢*.

Qz,w) = Q(z,6(2))
=¢"(@allu+z|? + ¢ (2)bllu + 2|

_‘52;71”(2”/0’(9()\“+Z!2§dx— /Qh<X)\u+z!1*”fdx
= [alle(2)(u+2) |2+ blle(2)(u +2)|>

A [ 1@l u+2)Fdx— [ h@)le(z)(u+2)'dx] /67(2)
=0,

(4.22)

that is ¢(z)(u + z) € X for any z € My with ||z|| < &*.

9 c(2)

dw
Ca(y+)|lg(2) (u+2) [|P+b2u—=1+7)llg(2) (u42) | — (25 =14+7)A o 1(x)[(2) (u+2) > dx
B ¢ (z) '

Taking sufficiently small e > 0 so that ¢ < &*, we determine that
¢(z)(u+z) e Xt, Vz € My, ||z]| < e.

As for u € X7, we can proceed similarly to arrive at the same conclusion. O

5 Proof of Theorem 1.1

At present, let us show that problem (1.1) has a positive solution on each of X' and X7,
respectively. From Lemma 4.1, when 0 < A < I'j, one has X* # @. We complete this proof in
two steps.

Step 1: We analyze problem (1.1) on X" U XC.

According to Lemma 4.6, for 0 < A < I';, we know X U XY must be a closed set in M.
In the light of Lemma 4.3, Z can be determined to be coercive and bounded below, ¢t =
inf, cx+ux0 Z can be clearly defined. Then, this minimization problem can be handled by
Ekeland’s variational principle. Then, a sequence {u;} C X U X exists and satisfies the
following properties:

1 1

() T(ug) < inf ZT(u)+=, (i) T(ug) < Z(u)+ —|lup —ul, VueX uX (5.1)
ueX+UXO k k

By means of Z(u) = Z(|u|), we know that u;(x) > 0 almost everywhere in Q). Significantly,

{ux} must be bounded in My, going to a subsequence if necessary, let us represent the subse-

quence in terms of {u,}. There exists uy satisfies

U, — ug in My,

U, — ug a.e.in Q,

IR .ok (5.2)
Uy ug in L%,

Uy, = up inL'(Q) for2 <r <2,
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as n — oo. For all u € X7, it follows from (3.4) and 2u < 2} that

I:fuu||2 2u il ”2;4_2*)‘/ x_llv/g () [u '~ "dx

e e LI s ;bn P LB | aofuia

< ;8+1§|| 1?2 - 2#?7 )1b]|u||2ﬂ+2*((14;7))|’ 2+ %bnu”zy (5.3)
- a((11+’)’/)/))( 2 )H”HZ

< 0.

So we are sure that inf,cx+ Z(#) < 0. Thus, c* = inf,cx+ Z(u) < 0, which in particular implies
we might as well consider a subsequence {u,} C X*. As to this fact, in terms of Lemma 4.7
with u = u,, a series of functions ¢, satisfying ¢,(0) = 1 can be obtained. Meanwhile, for
¢ € My with ¢ > 0 and p > 0 sufficiently small, the fact that ¢,(p¢@)(u, + pg) € Xt holds
can be established. With these basic facts in mind, it is easy to know

allta | + bl |2 — A / x) || % dx — /Q () || = 0 (5.4)

and

2
ac (p9)|[un + p@|1> + bgid (0@) lun + pol|*

2 1 1y 5.5)
¥ (o) [ 1)l +poldx = ¢ (pg) [ h)lus + pol' Tdx = 0.

It should be noted that ¢,(0) is treated by us as the derivative of ¢, at zero, and its specific
representation is as follows:

&, (0) = () 9) o= lim (WP =1

€ [—oo, +00],
p—0 £

for all ¢ € My. Now let us prove when A < Ty, {u,} C X* satisfies (5.1). Then, (¢}, )
must be uniformly bounded for all ¢ € My with ¢ > 0. In particular, here we just consider
{un,} C X, the case on X~ can be proved in the same way.

It follows from (5.4) and (5.5) that

0 = al(c3(pg) = Dllun + 9@l + 1+ 9gl> = 1]
+ (S (99) = Dl + 99l + s + 9] — sl
— (61 (p9) = 1) ?\/ () |un + o> dx—A/ x) (|t + 9% — |un[*)dx
— (e (p9) = 1) [ n(x) i+ 09" 7 = [ 1) (o + ppl T = s )

< al(gh(pe) — 1)|lun + p@|* + a(||un + p@||* — [[ua]*)
2
+b(ci' (@) — )||un + 0|7 + b(|lun + o — [Jun]|**)

— (i (pg) — 1) 7\/ () |un + po|*dx — A/ )(Jtn + p@|* — |un|*)dx

~ (oi "(o9) = 1) [ 1)+ ol .
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Afterwards, dividing the above inequation by p > 0, we get

6al0?) =110 ¢ (0g) + 1)llun + ool + (W))nun + gl

p gn(w

/\/ Uy + ZLdx — W/ Uy + =7dy
gn W _1 x)|tn + 0ol gn( op) T Jo M) tn + gl da]

2 2 2u 2u 2 g2
it o0l Pl ot ool P 7 bt ool = P
12 Q ©
Letting o — 0, we extrapolate that
(chr ) [20l10a 2+ 2000 [ =200 | 166) ¥ — (1= ) [ (o)l 7]
* o (5.6)
+ 2a(uuy, @) + 2ub||un || (uy, @) — 2§A/ 1(x)|un|> pdx > 0.
Q
According to {u,} € X, using (5.4) in (5.6), we have
(6hr ) AL+ ) P @1 = 1 )P = (25 =1+ 1)A [ 1) g ]
(5.7)
+2a{tty, @) + 2ub||uy || (uy, @) — 22 A/ X)|un|* tedx >0,
that is
—(2a{un, @) + 2pb | un| | (n, @) — 20N f, 1(2) 1 |* " pd2)
(6 @) =

(14 7)un|l* + (2p = 1+ )bllunlP = (28 = 1+ 7)A Jo 1(x) [un]*dx”

Since {u,} is bounded in My, the above inequality means that (g/,, ¢) is bounded from below
uniformly for any ¢ € My with ¢ > 0, that is (¢}, ¢) # —oo.
Now we have to prove that (¢}, ¢) is bounded from above. By (5.1)-(ii), we have

It = ex(00) i £ 00 7(4,) — i, (09) n + o0 55)
and
[ttn — 6n(9@) (un + p@)|| _ |1 = 6u(p@))un — cn(pe) 0ol
< A =gnlpe)unll | | = 6n(pe)pel (5.9)

< lgn(pe) — 1\” di +p§n(@¢)Hq)H

which implies

antop) — 11120+ e (00) 12 > 7(0,) — T, (09 0 + 09)

= 20D (G o9) 1)l + 0+ (i + 007 — )
’W[( "(09) = Dl + 0@l + (ln + ol — [lual*)]
2N 00 - 1) [ 1@l + o9l + [ 100+ o0l — 1)l dx].

(5.10)
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Dividing (5.10) by p > 0, and letting o — 0, we deduce

Uy |
](g;,qv)\u +hmgn(goqv)H¢H

1+
> ag - [ @)l + (0n, 9)]
1+ _
D2 e ) a2+ |2 e, )
2t -1+
B U (o) [ 10lnEdx [ 100l g
-
So
ol lol
(< \ +
2 1+ 1+
(o) [t 24+ 62 = E 0 [ 1)
+ 2u—1+
+a1_’;<un,¢>+b”—/nu 22 11n, 9)
2*114_7/\/ x) |y Lodx.
If (¢}, ¢) >0, then
gy < (15 )+ P P 9) B fo 600 g
S @) > *
" [ 2+ O g -4 EEEA ) ] — D]
2u—1 _
U o G )+ O P, ) — LA J )
- 2u—1 x "
R 2 D2 20+ ZEEN 1)t ] — L]
(5.11)
If (¢, ¢) <O, that is
2u—1
(! ><'n'—(ﬂi+z<un,<o>+b” By |22 (0, ) = BN fy 1) % gl
S ®) < . -
[ a2 4+ D2 a2 BTN fo ()] - L
A o G )+ O P, ) — EEEEEA J )
[T a2 + B2 gy |2 ZEEEDA [ 1) 2] 4 Ll
(5.12)
Combining (5.11) and (5.12), we deduce that
</ ><n'+\“%*3<un,qo>+b2’* P 22 0, ) — EEEFIA fiy 1) % i
g’q) — *
' [ a2 2 a2 EEEEA [ 1) | — L)

By the boundedness of {u,}, the above inequality can already explain (g}, ¢) # +oo

. In
summary, there is a positive constant C3 such that |(g},, ¢)| < Cs.
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At present, again we use (5.8) and (5.9) in combination and divide by o > 0.

G M’ ‘H n|| M))HfPH
I(“n) - [gn(w)(un + 99)]
- o
_ _6ulpg) —1Taleulpp) +1), 2 ( op)—1) 2
-5 [ DD 1y, 4 ppl? + o) )H 2+ ool
i () — B
~ SO [0l + pol = S DT )+ gl 7]
_[ (||Mn+@fPHz—Hun|| )+ b(llun + poll* = llual*)
20 2pp
N !un+gﬂ¢|2 ) [ua> [ B + @™ — () a7
A/ o /Q A d } (5.13)

Based on the above inequality, now we let ¢ — 0. With the help of Fatou’s lemma, we infer

un u?’l
!(9%,90)}“ ”+hm€n(T¢)H(PH |(chs )\L ”+HZH

~(en >[a||un||2+buun||2V—A 1t = [ )]

—[<un,(p>+buu 242, ) = [ 1) a2 g

11—y _ 1—y
e )t gl = () i) dx]
Q =0 (1-7)p

oo )+ Bl 2, ) = [ 163)

2:’1godx—/ h(x)|un\7godx},
0

owing to u, € X and |(¢},, ¢)| < C3 uniformly for large n. Consequently,

/
(ﬂ+b|\unHZ”72)(un, Q) — /Ql(x)|un\2;71q)dx—|— |(€nr€0)””;|| + llell]

> [ 1)l s, (5149
(@]
which implies that as n — oo
(i, @) + B[ |72 (11, @ A/‘ x) i[5~ qﬂx—/hwﬂmwﬂwmzodn, (5.15)
(@]

for any ¢ € M, with ¢ > 0.

After that, our purpose is to prove that (5.15) applicable to any arbitrary ¢ € IM,. We set
Y. = u, + el with e > 0 and ¢ € M. Denoting Q, = {x € RN : ¢ (x) < O}. Afterwards,
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letting ¢ = ¢ in (5.15), we confirm

0n(1) < (@ blla|22) o, 9) = A [ 1) g dx = [ n) a1 dx
= (2 Ol 2, e+ 9) = A [ 10 a7 (4 9 )
= [ Bl (e + )
= (@ + bl[1n] 272 (14, 1 + €€) + (@ + b[an]|#72) (11, 77
— (L= ) G ) + B 1|7 10+ 20)] i
_ 2 2u _ 2 dy — 1-
= [alun][2 + bllua ] A/ ()| |% dx /Qh(x)\un\ x|

[ (@ bl |22) (0, € /\/ %) | Vedx — /Qh(x)|un|—wx]

(a4 bl[un|2572) (g, 7)) +/ AL [t %~ (1t + £0) + () 0|7 (i + £0)]dlx
[HwW+MWM”—A/ ) g ¥ = [ ()|
e (@t bl [272) € /\/ %) 1[5 dx — /Qh(x)|un|—Wx]
(ot bl P72 G ) 4 10 (el
+/ x) [ un| 7T (uy + €f)dx.
Note that u,, € X and u,, + ¢ < 0 in (), thus
/Q h(x)|un| =" (up + €l)dx < 0.
Considering these facts, we deduce that
0n(1) < e[ (a+ bl |*2) utn, € /\/ (x) |t |5~V — /Qh(x)|un|*wx]
(a4 b 72) (g, ) +A/ )10 [E 7 (1 + £0)dx
+ / x)|tn| "7 (uy + ef)dx (5.16)
< e[(@+ bl 72) G, ¢ /\/ %) 1t | Vedx — /Qh(x)|un|_7£dx]
(a4 D[22 (i, 7 +A/ ) [t % 1 (11 + £0)dx.

Then, denote

(n(x) — un(y)) (P (¥) — ¥ (y))

Se(ry) = x — y|N+2s

and

(ttn (x) — 1n (1)) (£(x) = £(y))

%(x,y) = ]x— ‘N+25
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The definition of scalar products and the symmetry of the fraction kernel can be used here.
Therefore, we may write

(1, 97 // (un (%) — un(y)) (Ye (x) — ¢E(y))dxdy

|x _y’N+25
= ,y)dxd
//(IRNX]RN)\(QEXQE) \Ss(x ]/) X]/

B (//m +//Q T // o Q) Se(x, y)dxdy

= // (x,y dxdy—kZ//QX ') Se(x, y)dxdy.

It is worth noting that ¢, = 0 in the case of . is not in (),. From this, we

3 dxd 2// dxd
//de(xy)xw o (RY\0) Se(x, y)dxdy

2// S, (x, 1) dxd
ogmg <0\og>Jr o (RN\O)) Selx,y)dxdy

2
//Qx Q. o(xy)dxdy + //(IXRN\Q)\Ss( % y)dxdy.

Next,

// (n(¥) = (W) (W () =9 1)) 55,
O x Q)

‘X _ y‘N-i-Zs

/A U B A O R0
e X (e

’X _ y|N+ZS

[ ) )G b)) g,
Qe x0)

|x_ |N+25

A% u” _un l(x)—/¢
:—//WQE( |§c)_ ,NHS X vy - //Q |x£y;|)l<v+(2s> ®)) gy

< — (x,y)dxdy.
< 8//£x05\9xy xay

In the same way,

2// dxdy < 2// dxd
RO Se(x, y)dxdy e ) o rrmian S(x, y)dxdy.

In combination with the above, we can obtain

(tn, ;) __£<//an 2//Q><]RN\Q> xydxdy<2€//QX S(x,y)|dxdy.  (5.17)

Apparently, S(x,y) € L}(RN x RYN). Besides, for any ¢ > 0, there exists R, sufficiently large.
From the basic definition of (), we infer () C supp /.
Since

Jaxdy = [ axdy+ [[ dxdy,
JJ oSGty = [ Sy landy + [ 8y ldxdy

for the first item, we may obtain

(%
S(x,y)|dxd <// S(x,y)|dxdy < —.
/I o |SE Iy < [ Sylxdy <
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Also, we know that |Q)e X Bg,| — 0 as ¢ — 07. The absolute continuity of the integral can be
used, so there exists J, and ¢, such that for any ¢ € (0, &,],

|Q X Br,| < 6y, and // S(x,y)|dxdy < —

QXRU.

Accordingly, for all € € (0,¢,],
S(x,v)|dxdy < o,
//Sx N|\s(xy)|xy o

1i // S(x,y)|dxdy = 0.
Lim, QNRNIJ(X y)|dxdy

Thus, according to (5.17), we get

1
lim — . ) =0. 1
o0 € {itn, e ) =0 (.18)
With respect to [, I( ) [ty |5y + ef)dx, since {u, + el < 0} — 0 as e — 0, we obtain
lim [ 1(x)|un|> L (uy +eg)dx = 0. (5.19)

e=0.JQ,

Finally, dividing by ¢ and letting ¢ — 0 in (5.16), for n large enough, we get from (5.18) and
(5.19) that

0, €) + B |t |2 2 (11, £ /\/ %) 14 |5 L edx — / () |un|Tdx > 0,(1).  (5.20)
O
Replace ¢ in (5.20) with —/, and the inequality is also true. Thus it can be seen that

a (i, 0) + bt ]|2F 2 (1t £) /\/ %) 14 |5 Vedx — /h(x)|un|’7£dx:on(1) (5.21)
@)

as n — oo.
Step 2: We analyze problem (1.1) on X .
We have learned that 7 is bounded from below on X~ and coercive from Lemma 4.3. And it

turns out that X~ is a closed set. Ekeland’s variational principle can also be used. We may
define ¢~ = inf,cx- Z accordingly. There exists a { € X~, we deduce that

a1+ &P +b2u —1+9)|EI* — A2 —1+7) /QZ(x)\gFé‘dx < 0.
From (3.5) it follows that

2i—1+y

bl|E|IP* < A
S]] _1+70

[(x)]g]% dx — 1.

o252 2, w2 +y—1 / 1—

22 %o 2144

e+ = 1Mo
2;+ -1

) /Qh(X)\é‘\l’W

2 (B2 (214
< gl ) (o) [l

25 +y-1 1y
e [ nle s,

V 1+7

Iz

- 1+
25 — . —
Ql(x)|<§| dx a2y—1—|—’y

% dx
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Let
L 2 —2u\(2;-1+7v / 2
sl A () (BT ) [ iwleia
_2:—1-77_1 1—
Sy el <o, 622

Then (5.22) implies that

2:+’Y—1/ 1 2> 2u2;(2p —1+7)

e x dx— —1 4 _
21— 7) Jo" P 117 ) G 2 - 1) LI
:r*.

O<A<<

In order to guarantee that A is positive, we have to make a sufficiently small. Hence, when
0 < A<T, Z(¢) <0. Furthermore, we know that ¢~ < 0.

Based on what is explained above, there exists a sequence {v, } C X satisfies the following
properties

(l) I(Uk) <c + 1,

L () I(o) <T(0) + %Hvk —o,  Veex. (.23

Similarly, let us assume that v;(x) > 0 for all x € (). Because X~ does not contain {0}. So
vk(x) > 0 for all x € Q. Apparently, {v;} is bounded in M, we use {v,} to represent its
subsequence, so there will be vy > 0 such that

Uy, — v in My,

N
vy, — vy In L7, (5.24)
Uy — v a.e.in Q,

v, — vy InL7(Q) for2 <ny <2,

owing to X~ is a closed set. Applying Lemma 4.7 with u = v,, ¢ € My, ¢ > 0 and p > 0 small
enough. A series of continuous functions satisfying ¢,(0) = 1 and ¢, (p¢) (v, + p¢) € X~ can
certainly be obtained. The proof procedure in Step 1 can be used again to obtain

a(vy, 0) +b||v, Hz” 2 (0, ¢ /\/ x)|v, |2 s~ Lpdx — / h(x)|v,|~7ldx > 0,(1) (5.25)
0
as n — oo.

Lemma 5.1. For 0 < A < I'y, let {uy} C XT in Step 1 and {vy} C X~ in Step 2 respectively
satisfying (5.1) and (5.23) and simultaneously satisfying T — ¢ < C, as k — oo, where

ok Dk SL;l p—1+y

* 2 - .

s N[at \EZ 2 2u—14q 054”Y )HHF%js )

Cy= =S| — AT . ; L .
N 1l 0 2:(1—)2u b — 20

Then, both {uy} and {vy} have strongly convergent subsequences in M.

Proof. Let us just think about {u;} C X, the case {vy} C X~ can be obtained in the same
way. Note that {u;} is bounded in M and u; > 0. Furthermore, there is a subsequence {u, }



22 Q. Duan, L. Guo and B. Zhang

that satisfies
un — 1/[0

Uy — U

in My,

. *
in L% ,

U, — ug a.e.in Q,
u, <h
un — uO

[unl| = C,

as n — oo, with i € L"(Q) for a fixed r € [1,2}) and uy > 0. If { = 0, that is |ju, — 0| — 0

as n — 0, which implies u,, — 0 in My as n — oo. The situation of { > 0 will be considered

below.
According to (5.26), we get

5.26
a.e. in O, ( )

inL"(Q) for2 <r<2;,

2(uy, up) = 2{(ug, up) + o(1)
= (Up, Up) — (Un, tn) + 2(ug, ug) +0(1),

as n — oo, which implies

ol [* = Nt — wo||* + [[uo]|* + 0(1) (5.27)
as n — oo. Applying the Brézis-Lieb lemma and the process in Lemma 4.5, we have
/ I(x) —/ 1(x)|uy —uo\zzdx—i—/ 1(x) |uo| % dx 4 0(1) (5.28)
0 o) O

as n — oo. We infer from (5.21), (5.27) and (5.28) that, as n — o

0(1) = (@ + blutn | 2) (ttn, t — ug) — A / )|t (1t — o) dx
— [ ) a7 1 = o)
= (3403 )&~ o) = A [ 1) uaf¥dx
+A/ |u02*dx—/Q () it =7 (1t — 119)dx + 0(1)
= (0 + b8y — w0l = A [ 1)l — ofex = [ 1) la| 7 (1 — mo)dx +0(1).
Consequently,

(a+bg*#=2) nlim [

= lim A ( Vi — uol? dx+11m/

(2) [ |V T dx — ()| U] Tugdx.
n—oo

(5.29)

By (5.26), we have ui_ﬂy < 77 ae. in Q. Then, the dominated convergence theorem can be
used, that is

lim [ h(x)[un|"Tdx = / h(x) uo| '~ dx. (5.30)
n—oo /O @)
In the light of (5.20), we know that h(x)u, "uodx € L'(Q)). Then Fatou’s lemma yields
liminf [ h(x)u;  uodx > / h(x)ul "dx. (5.31)
n—o0o (@) O
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For convenience, we define

NZ= = lim [ I(x)|u, — up|>dx.
n—oo JO

Combining (5.29), (5.30) and (5.31), we get

(a+bg%2) Tim 1ty — ug||* < AR,

23

(5.32)

(5.33)

which means that 0 < X. If X = 0, we can immediately infer that u, — 1o in My owing to
¢ > 0. Let us paradoxically say that X > 0 to complete this proof. From (5.32), as n — oo, we

obtain

2
NE < 1]|eoSs 7 hm |7 —u0||2*

which implies that

_2
1125 < Tim [Juy — >

Combining (5.33) and (5.34), we have

—2
N%"2 > (a+ b7 2) 1] SsA ™
As n — oo, it is easy to get
NE > (a4 b0 2) (g% — uo| A

from (5.33). Using (5.34) and (5.35) in (5.36), we have

22 221

> (a4 50225 (2~ uolP) A
— (a+ b2 (lim I~ ol A

(%)%

> (a+ b2 2) " (HlHoo TS50
> (a+ b2 D) FsF 1) a .
At the same time, according to (5.34) and (5.35), we get

%2

(2% — |luo? ) > [1]]eo = R 25 o
> (a+b3 2|1 H;}sz A1

as n — co. Consequently, we have

22 _ P
()5 > (2~ wlP) 2 > (a+ 021253 A,

that is

2

__2 __2
02> 57 |l (a +bg 2 EATH > 5P| T e AT,

We define

Fitn, ¢) = (a + bl|tn]|%~2) (11, ¢ A/ %) 1t |Z 1 pdx — /Qh(x)|un|_7¢dx

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)
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for any ¢ € M. Subsequently,

Define

1 1 1 1Y\ .o
P(t)= (- — — bt2ﬂ—<—>52 h| o 77,
(* <2u 2;“) Ty )50 M=

—1
Pm>:<1——1)ww”1—(i—1)sﬁnm . (-,

25 +9-1

When p/'(t) = 0, we can get

1
_ 2: - 1 + ’)/ =y S 2(2u— 11+w ||I’l|| 2u 11+“Y
b(2; —2p) ° '

2*+7 1

Hence we have

S

2u ’
P(t) > 2: _2‘ub 2;( _1+r)/ -ty SZ(; 1141]‘7"]/1"2;42}1+7
To2p2p o [b(2—2p)

25 —-1+7v
— 50 s Eln])
(1 ’)’)2 Z*H

2*+'y 1

11—y 2 B
2: _ 1 + ’Y =y S (Z;ﬁﬁvl HhH 2}41 117
b(25 —2u)

(5.43)

2 +W 1
2u

@ +y-Dlkl_x s> )"
*_|_ _ *
2V—1+’)’( ! ziwls >

2:(1—7)2u [b(2: — 2p)] et

Then, from (5.42), we have

1 1

1
Flun ) 2 (= 50 ) ol

T(uy) — 5

2u
=1\ 2u—T+7y 5.44
0%+7—UWH25&2> (544)

2% +y-1

C 2u—1+y
2:(1—)2u [b(25 — 2p)] 7 T

Letting n — co, we get

2u

0% *L (2*+')/—1)HhH 2* 7T 2u—1+y
7525 75 2572Aﬁ_ 2;,{—1—'—’}/ 25+’)’*
2*(1 - ’)/)2;1/{ * _ 2‘1:11
| [b(25 —2p)] T

I!

7

oo

which contradicts the assumption ¢ < C,. This proof is completed. ]
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Let us fix A < Ty = min{T'y, T, I'3, T}, with T'; and T given respectively in Lemma 4.1
and Lemma 4.2, and

22

2% 252 1y

az (s J20(1—)2p 2 [b(28 —2p)] 7
R T e &
: ! =1+l 2 8™

28 +r— 2F+y-1
which shows that C) > 0. From (5.3) and (5.22), we know that c™ <0 < Cy and ¢~ < 0 < C,.
Applying the Lemma 5.1, the minimization sequence {u,} will satisfy 1, — 19 in My, and
the minimization sequence {v, } will satisfy v, — vg in IMj. According to (5.20) and (5.25), we

can separately obtain

a{uto, €) + bl|uo|| 22 (g, £) A/ %) o] %~ Ledx — /Qh(x)yuorwczxzo,

and
a (00, £) + b| oo [#~2 (vg, £) A/ (x) oo % " edx — /h(x)|vo|—wdxzo
Q

for any ¢ € My. From the two inequalities above, we know h(x)|ug|~ "¢ and h(x)|vg| "¢ are
integrable, which imply that 1y # 0 and vg # 0 in (), then the strong maximum principle (see
Proposition 2.2.8 in [27]) yields that up > 0 and vy > 0 in (). According to the arbitrariness of
¢, we know that (5.20) fits any ¢ € M. It follows that

a{ug, £) + b||uol|* > (ug, £ A/ x)|ug

Zlpdx — / h(x)|ug|~"dx =0,
0

and
a{vg, £) + b||vo| [ 2 (v, £ A/ x)|vo|*

as n — oo. This indicates that problem (1.1) has a positive solution on both Xt and X,
respectively.

Z-lpdx — /h(x)\v()r”fdx:o
0
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