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Abstract. Let m ≥ 2 and a, b, c > 0. We consider the existence and uniqueness of
solutions for the fourth order iterative boundary value problem,

x(4)(t) = − f (t, x(t), x[2](t), . . . , x[m](t)), −a ≤ t ≤ a

where x[2](t) =x
(

x(t)
)

and for j = 3, . . . , m, x[j](t) = x
(
x[j−1](t)

)
, with solutions satisfy-

ing one of the following sets of conjugate boundary conditions:

x(−a) = −a, x′(−a) = b, x′′(−a) = c, x(a) = a,

x(−a) = −a, x(a) = a, x′(a) = b, x′′(a) = c.

The main tool used is the Schauder fixed point theorem.

Keywords: differential equations, iterative differential equations, boundary value prob-
lems.
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1 Introduction

In this paper we consider existence and uniqueness of solutions for the fourth-order iterative
boundary value problem,

x(4)(t) = − f (t, x(t), x[2](t), . . . , x[m](t)), −a ≤ t ≤ a (1.1)

where x[2](t) = x
(
x(t)

)
, and for j = 3, . . . , m, x[j](t) = x

(
x[j−1])(t), with solutions satisfying

one of the boundary conditions:

x(−a) = −a, x′(−a) = b, x′′(−a) = c, x(a) = a, (1.2)

x(−a) = −a, x(a) = a, x′(a) = b, x′′(a) = c. (1.3)
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We assume throughout that f : [−a, a]× R → R is continuous.
Iterative differential equations are a special case of state-dependent differential equations.

They have applications in a wide variety of fields, including climate change [12], economics
[6], electrodynamics [4], infectious diseases [8], mechanical models [9], neural networks [2],
and population dynamics [13].

One of the earliest works in iterative differential equations was by Petuhov [14] who,
in 1965, studied existence and uniqueness of solutions of x′′(t) = λx(x(t)) with the con-
dition x maps the interval [−T, T] into itself, and that x(0) = x(T) = α. Eder [5] then
studied the existence, uniqueness, and analyticity of solutions of x′(t) = x(x(t)), proving
that every solution is either monotonic or vanishes. In 1990, Wang [16] obtained a solu-
tion to x′(t) = f (x(x(t))), x(a) = a using Schauder’s fixed point theorem, and in 1993
Fečkan [7] used the Contraction Mapping Principle to show existence of local solutions of
x′(t) = f (x(x(t)), x(0) = 0.

More recently, Kaufmann [10] established existence and uniqueness results for the second-
order boundary value problem x′′(t) = f (t, x(t), x[m](t)), x(a) = a, x(b) = b using Schauder’s
fixed point theorem and the Contraction Mapping Principle. In 2020, Cheraiet, Bouakkaz,
and Khemis [3] studied the third-order equation x′′(t) + f (t, x(t), x[2](t) . . . , x[n](t)) = 0 with
conditions x(0) = x′′(0) = 0, α

∫ η
0 x(t) dt = x(T) with η ∈ (0, T). Meanwhile, in 2022, Kauf-

mann [11] considered the fourth-order equation x(4)(t) = f (t, x(t), x[2](t), . . . , x[m](t)) subject
to the Lidstone conditions x(a) = x(−a) = x′′(a) = x′′(−a) = 0, establishing conditions for
existence and uniqueness of solutions. The main goal of this paper is to further the results
of [11].

In Section 2, we will rewrite (1.1), (1.2) as an integral equation, and state conditions under
which the solution of the integral equation will be a solution of the boundary value problem.
We will also state properties of the Green’s function and of the norm of the difference of two
iterative functions. In Section 3, we will state and prove results concerning the existence and
uniqueness of solutions of (1.1), (1.2). In Section 4, we present the equivalent inversion of (1.1),
(1.3) and state, without proof, the analogous existence and uniqueness results. Examples will
be included to illustrate results.

2 Preliminaries

Our main goal of Section 2 is to invert (1.1), (1.2) into an integral equation. We will ac-
complish this by first inverting the non-homogeneous equation with homogeneous boundary
conditions, and then solving the homogeneous equation with non-homogeneous boundary
conditions. The inversion of (1.1), (1.2) will be the sum of the two expressions. We will end
the section with a lemma on the Green’s function and the norm of the difference of iterations,
and then a statement of Schauder’s fixed point theorem.

We will begin the inversion by considering

x(4)(t) = −g(t), −a ≤ t ≤ a, (2.1)

x(−a) = x′(−a) = x′′(−a) = x(a) = 0. (2.2)

Integrate x(4)(t) = −g(t)) from −a to t twice and apply the boundary condition x′′(−a) = 0.

x′′(t) = x′′′(−a)(t + a)−
∫ t

−a
(t − s)g(s) ds. (2.3)
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Integrating (2.3) and applying the condition x′(−a) = 0 yields,

x′(t) = x′′′(−a)
(t + a)2

2
−
∫ t

−a

(t − s)2

2
g(s) ds.

When we integrate once more and apply the condition x(−a) = 0, we obtain,

x(t) = x′′′(−a)
(t + a)3

6
−
∫ t

−a

(t − s)3

6
g(s) ds. (2.4)

The constant x′′′(−a) is found by applying the condition x(a) = 0,

x′′′(−a) =
∫ a

−a

(a − s)3

8a3 g(s) ds. (2.5)

When we plug (2.5) into (2.4) we get,

x(t) =
∫ a

−a

(a − s)3(t + a)3

48a3 g(s) ds −
∫ t

−a

(t − s)3

6
g(s) ds.

Finally, we can split the first integral and combine it with the second to obtain

x(t) =
∫ t

−a

(a − s)3(t + a)3 − 8a3(t − s)3

48a3 g(s) ds +
∫ a

t

(a − s)3(t + a)3

48a3 g(s) ds.

Thus, we have shown that if x is a solution to (2.1), (2.2), then x satisfies the integral equation

x(t) =
∫ a

−a
G(t, s)g(s) ds (2.6)

where

G(t, s) =
1

48a3

{
(a − s)3(t + a)3 − 8a3(t − s)3, −a ≤ s ≤ t ≤ a,

(a − s)3(t + a)3, −a ≤ t ≤ s ≤ a.
(2.7)

It is easy to show that if x is a solution of

x(4)(t) = 0,

x(−a) = −a, x′(−a) = b, x′′(−a) = c, x(a) = a,

then x is given by

x(t) = −a + b(t + a) +
c
2
(t + a)2 +

1 − b − ac
4a2 (t + a)3. (2.8)

Consequently, if x is a solution of (1.1), (1.2), then x will then be the sum of (2.7) and (2.8).
That is, x is a solution of the integral equation

x(t) =
∫ a

−a
G(t, s) f (s, x(s), x[2](s), . . . , x[m](s)) ds

− a + b(t + a) +
c
2
(t + a)2 +

1 − b − ac
4a2 (t + a)3,

where G(t, s) is given in (2.7).
In order for solutions to be well-defined, we also require the image of x be in the interval

[−a, a]; that is, in order for x(x[m])(t) to be defined, we need −a ≤ x(t) ≤ a for all t ∈ [−a, a].
Knowing this, we can show that if x ∈ C[−a, a], satisfies −a ≤ x(t) ≤ a for all t, and satisfies
the integral equation (??), then it satisfies (1.1), (1.2). This gives us the following lemma.
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Lemma 2.1. The function x ∈ C4[−a, a] is a solution of (1.1), (1.2) if and only if x ∈ C[−a, a]
satisfies −a ≤ x(t) ≤ a, and the integral equation

x(t) =
∫ a

−a
G(t, s) f (s, x(s), x[2](s), . . . , x[m](s)) ds

− a + b(t + a) +
c
2
(t + a)2 +

1 − b − ac
4a2 (t + a)3,

where G(t, s) is defined in (2.7).

In order to prove the existence and uniqueness of solutions of (1.1), (1.2), we will need to
have a bound for our Green’s functions. For that, we will use the following lemma.

Lemma 2.2. The Green’s function given in (2.7) satisfies the following inequality:

0 ≤ G(t, s) ≤ 4a3

3
.

Proof. First note that (a − s)3(t + a)3 is an increasing function of t, so (a − s)3(t + a)3 ≤
(a − s)3(s + a)3. Since maxs∈[−a,a](a − s)3(s + a)3 occurs when s = 0, and equals a6, then
(a−s)3(t+a)3

48a3 ≤ a3

48 .
Now consider the function (a − s)3(t + a)3 − 8a3(t − s)3, s ≤ t. Since (t − s)3 is positive

when s ≤ t, then (a − s)3(t + a)3 − 8a3(t − s)3 ≤ (a − s)3(t + a)3. Now, (a − s)3(t + a)3 is
an increasing function of t, so (a − s)3(t + a)3 ≤ 8a3(a − s)3. But, 8a3(a − s)3 is a decreasing
function of s for −a ≤ s, so 8a3(a − s)3 ≤ 64a6. That is, (a−s)3(t+a)3−8a3(t−s)3

48a3 ≤ 64a6

48a3 = 4a3

3 .
Finally, since a3

48 < 4a3

3 , we obtain that the upper bound on our Green’s function is 4a3

3 .
Similar procedures can be used to obtain the lower bound on our Green’s function, that

0 ≤ G(t, s).

We will use the Banach space Φ = (C[−a, a], ∥ · ∥) with the norm ∥x∥ = maxt∈[−a,a] |x(t)|.
Define the operator T : C[−a, a] → C[−a, a] by

(Tx)(t) =
∫ a

−a
G(t, s) f (s, x(s), x[2](s), . . . , x[m](s)) ds

− a + b(t + a) +
c
2
(t + a)2 +

1 − b − ac
4a2 (t + a)3

(2.9)

where G(t, s) is defined in (2.7).
We will also need the subspace

Φ(J, M) = {x ∈ Φ : ∥x∥ ≤ J, |x(t2)− x(t1)| ≤ M|t1 − t2|, t1, t2 ∈ [−a, a]}.

as well as the following lemma, which is proved in [17], [15].

Lemma 2.3. If x, y ∈ Φ(J, M), then

|x[m](t1)− x[m](t2)| ≤ Mm|t1 − t2|, m = 0, 1, 2, . . . ,

for all t1, t2 ∈ [−a, a] and

∥x[m](t1)− x[m](t2)∥ ≤
m−1

∑
k=0

Mk∥x − y∥.

We end this section by stating Schauder’s fixed point theorem [1].

Theorem 2.4 (Schauder). Let A be a nonempty compact convex subset of a Banach space and let
T : A → A be continuous. Then T has a fixed point in A.
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3 Existence and uniqueness results for (1.1), (1.2)

In this section, we will state and prove our existence and uniqueness results for (1.1), (1.2).
Let T : C[−a, a] → C[−a, a] be defined as (2.9). Throughout the section we will assume the
following conditions hold.

(H1) There exists an αℓ ∈ L[−a, a], ℓ = 1, 2, . . . , m + 1, such that

| f (t, x1, . . . , xm+1)− f (t, y1, . . . , ym+1)| ≤
m+1

∑
ℓ=1

αℓ(t)∥xℓ − yℓ∥

for all t ∈ [−a, a] and xi, yi ∈ R, i = 1, 2, . . . , m + 1.

(H2) There exists a K ∈ R such that 0 < K < 3(1−b−ac)
a3 and

−K ≤ f
(
t, x(t), x[2](t), . . . , x[m](t)

)
< 0

for all t ∈ [−a, a].

Notice that (H2) puts further conditions on b and c, namely that 1 > b + ac > 0.

Theorem 3.1. Suppose that condition (H1) and (H2) holds. Then there exists a solution to (1.1), (1.2).

Proof. Consider the convex, compact nonempty set Φ(a, M), where

M = |3 − 2b − ac|+ K
(

6a3 +
1
18

)
.

To use the Schauder fixed point theorem, we need for T : Φ(a, M) → Φ(a, M). We first show
that −a ≤ (Tx)(t) ≤ a for all t ∈ [−a, a].

(Tx)′(t) =
1

16a3

∫ a

−a
(a − s)3(t + a)2 f (s) ds − 1

2

∫ a

−a
(t − s)2 f (s) ds

+
3(1 − b − ac)

4a2 (t + a)2 + c(t + a) + b

≥ −K
16a3

∫ a

−a
(a − s)3(t + a)2 ds +

3(1 − b − ac)
4a2 (t + a)2 + c(t + a) + b

≥ −Ka
4

(t + a)2 +
3(1 − b − ac)

4a2 (t + a)2 + c(t + a) + b

=
−Ka3 + 3(1 − b − ac)

4a2 (t + a)2 + c(t + a) + b.

Since (H2) holds, then

−Ka3 + 3(1 − b − ac)
4a2 (t + a)2 + c(t + a) + b > 0

for all t ∈ [−a, a]. That is, (Tx)′(t) > 0 and hence (Tx)(t) is a strictly increasing function of t.
Since (Tx)(±a) = ±a, then −a ≤ (Tx)(t) ≤ a and furthermore ∥Tx∥ ≤ a.
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We need to show that for given t1, t2 ∈ [−a, a],
∣∣(Tx)(t2)− (Tx)(t1)

∣∣ ≤ M|t2 − t1|, where
M is defined as above. We may assume, without loss of generality, that t2 ≤ t1. To this end
we first note that

|(Tx)(t2)− (Tx)(t1)| =
∫ a

−a

∣∣G(t2, s)− G(t1, s)
∣∣| f (s, x(s), x[2](s), . . . , x[m](s)| ds

+ b
(
(t2 + a)− (t1 + a)

)
+

c
2
(
(t2 + a)2 − (t1 + a)2)

+
1 − b − ac

4a2

(
(t2 + a)3 − (t1 + a)3)

≤ K
∫ a

−a

∣∣G(t2, s)− G(t1, s)
∣∣ ds

+ b|t2 − t1|+ 2ac|t2 − t1|+
12a2(1 − b − ac)

4a2 |t2 − t1|

≤ K
∫ a

−a
|G(t2, s)− G(t1, s)| ds + (3 − 2b − ac)|t2 − t1|.

Now consider
∫ a
−a |G(t2, s)− G(t1, s)| ds. Since t2 ≤ t1, we can rewrite the integral as∫ a

−a

∣∣G(t2, s)− G(t1, s)
∣∣ ds ≤

∫ t1

−a

∣∣G(t2, s)− G(t1, s)
∣∣ ds +

∫ t2

t1

∣∣G(t2, s)− G(t1, s)
∣∣ ds

+
∫ a

t2

∣∣G(t2, s)− G(t1, s)
∣∣ ds.

Given that t1 ≤ t2, the first term on the right satisfies∫ t1

−a
|G(t2, s)− G(t1, s)| ds

≤ 1
48a3

∫ t1

−a

∣∣(a − s)3((t2 + a)3 − (t1 + a)3)∣∣+ 8a3∣∣(t2 − s)3 − (t1 − s)3∣∣ ds

≤ 1
48a3

((
4a4 − (a − t1)

4

4

)
(12a2)

)
|t2 − t1|+

1
48a3 (192a6)|t2 − t1|

≤ 5a3|t2 − t1|.

Also, due to the bound on our Green’s function,∫ t2

t1

∣∣G(t2, s)− G(t1, s)
∣∣ ds ≤ 1

48a3

(
8a3

3

)
|t2 − t1|

≤ 1
18

|t2 − t1|.

And finally,∫ a

t2

|G(t2, s)− G(t1, s)| ds ≤ 1
48a3

∫ a

t2

∣∣(a − s)3((t2 + a)3 − (t1 + a)3)∣∣ ds

≤ 1
48a3

(
(a − t2)4

4
(12a2)

)
|t2 − t1|

≤ a3|t2 − t1|.

That is, ∫ a

−a
|G(t2, s)− G(t1, s)| ds ≤

(
6a3 +

1
18

)
|t2 − t1|.
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Consequently,

|(Tx)(t2)− (Tx)(t1)| ≤
(
|3 − 2b − ac|+ K

(
6a3 +

1
18

))
|t2 − t1|

= M|t2 − t1|.

Therefore, T : Φ(a, M) → Φ(a, M).
Lastly, it can be shown through standard arguments that T is continuous. Hence, by

Schauder’s fixed point theorem, there is a fixed point x of T, (Tx)(t) = x(t), which by
Lemma 2.1 is a solution of (1.1), (1.2).

Example 3.2. Consider the following boundary value problem with parameter k.

x(4)(t) = kt2 cos(x[2](t)) (3.1)

x
(
−π

3

)
= −π

3
, x

(π

3

)
=

π

3
, (3.2)

x′
(
−π

3

)
=

2
3

, x′′
(
−π

3

)
=

1
π2 . (3.3)

Here, m = 2 and f (t, x, x[2]) = −kt2 cos(x[2]). Let α(t) = kt2. Then,

| f (t, x1, x2)− f (t, y1, y2)| ≤ α(t)|x2 − y2| (3.4)

for all t ∈ [−π
3 , π

3 ]. Also, −k ≤ f (t, x, x[2]) ≤ 0. So, for all 0 < k < 3(1−b−ac)
a3 = 27(π−1)

π4 ≈
0.5936099, there exists a solution to (3.1), (3.2), (3.3), according to Theorem 3.1.

We are now ready for our uniqueness result.

Theorem 3.3. Suppose that (H1) and (H2) hold and that

4a3

3

m+1

∑
ℓ=1

∫ a

−a
αℓ(s) ds

ℓ−1

∑
k=0

Mk < 1. (3.5)

Then, there exists a unique solution to (1.1), (1.2).

Proof. By Theorem 3.1 and Lemma 2.1, there exists a solution of (1.1), (1.2), which is a fixed
point of T. Assume x and y are two distinct fixed points of T. Then,

∥x − y∥ = |(Tx)(t)− (Ty)(t)|

≤ 4a3

3

∫ a

−a

m+1

∑
ℓ=1

αℓ(s)∥x[ℓ] − y[ℓ]∥ ds

≤
(

4a3

3

∫ a

−a

m+1

∑
ℓ=1

αℓ(s)
l−1

∑
k=0

Mk ds

)
∥x − y∥

< ∥x − y∥

This contradiction implies x = y, and our fixed point is unique.

It should be noted that the results in Theorem 3.3 can also be obtained using the Banach
fixed point theorem.



8 E. R. Kaufmann and Z. Whaley

Example 3.4. To illustrate our uniqueness result, again consider the boundary value problem
(3.1), (3.2), (3.3). Again, note that

| f (t, x1, x2)− f (t, y1, y2)| ≤ kt2|x2 − y2|

for all t ∈ [−π
3 , π

3 ]. So, α0(t) = α1(t) = 0 and α2(t) = kt2. The left side of (3.5) becomes

4a3

3

m+1

∑
ℓ=1

∫ a

−a
αℓ(s) ds

ℓ−1

∑
k=0

Mk =
4(π

3 )
3

3

∫ π
3

− π
3

ks2 ds
(
1 + M + M2)

=
4π3

81
2kπ3

81
(
1 + M + M2)

=
8π6

6561
(
1 + M + M2) k.

In our case, M < 5.8958889. So, whenever k < 6561
8π6(1+M+M2)

≈ 0.020478, there exists a unique
solution to (3.1), (3.2), (3.3) according to Theorem 3.3.

4 Other results

In this section, we give the corresponding results from Section 3 for (1.1), (1.3). The proof of
the results in this section are similar to those found in Section 3. As such, we only point out
the main differences. We begin by considering the boundary value problem (1.1), (1.3).

As in Section 2, we can show that if x is a solution of (1.1), (1.3), then x(t) satisfies the
integral equation

x(t) =
∫ a

−a
G(t, s) f (s, x(s), x[2](s), . . . , x[m](s)) ds

+ a − b(a − t) +
c
2
(a − t)2 − 1 − b + ac

4a2 (a − t)3,
(4.1)

where

G(t, s) =
1

48a3

{
(a − t)3(s + a)3, −a ≤ s ≤ t ≤ a,

(a − t)3(s + a)3 − 8a3(s − t)3, −a ≤ t ≤ s ≤ a.
(4.2)

The Green’s function G(t, s) in (4.2) satisfies Lemma 2.2.
In addition to (H1), we will need the following condition.

(H3) There exists an L ∈ R such that 0 < L < 3(1−b+ac)
a3 and

0 < f (t, x(t), x[2](t), . . . , x[m](t)) < L

for all t ∈ [−a, a].

Notice that (H3) puts further conditions on b and c, namely that 1 + ac > b > 0.

Theorem 4.1. Suppose that conditions (H1) and (H3) hold. Then there exists a solution to (1.1),
(1.3).

Proof. For this proof, the space Φ(a, M) where M = |b| + L
( 1

18

)
is needed. The rest of the

proof follows the sames steps as Theorem 3.1.
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Example 4.2. Consider the following boundary value problem with parameter k.

x(4)(t) = −kt2 cos(x[2](t)) (4.3)

x
(
−π

3

)
= −π

3
, x

(π

3

)
=

π

3
, (4.4)

x′
(π

3

)
=

1
2

, x′′
(π

3

)
=

1
π2 . (4.5)

Here, m = 2 and f (t, x, x[2]) = kt2 cos(x[2]). Let α(t) = kt2. Then,

| f (t, x1, x2)− f (t, y1, y2)| ≤ α(t)|x2 − y2|

for all t ∈ [−π
3 , π

3 ]. Also, 0 ≤ f (t, x, x[2]) ≤ L. So, for all 0 < k < 3(1−b+ac)
a3 = 243π+162

6π4 ≈ 1.583369,
there exists a solution to (4.3), (4.4), (4.5), according to Theorem 4.1.

Theorem 4.3. Suppose that (H1) and (H3) hold and that

4a3

3

m+1

∑
ℓ=1

∫ a

−a
αℓ(s) ds

l−1

∑
k=0

Mk < 1. (4.6)

Then, there exists a unique solution to (1.1), (1.3).

Example 4.4. To illustrate our uniqueness result, again consider the boundary value problem (4.3),
(4.4), (4.5). Again, note that

| f (t, x1, x2)− f (t, y1, y2)| ≤ kt2|x2 − y2|

for all t ∈ [−π
3 , π

3 ]. So, α0(t) = α1(t) = 0 and α2(t) = kt2. The left side of (4.6) becomes

4a3

3

m+1

∑
ℓ=1

∫ a

−a
αℓ(s) ds

ℓ−1

∑
k=0

Mk =
4(π

3 )
3

3

∫ π
3

− π
3

ks2 ds
(
1 + M + M2)

=
4π3

81
2kπ3

81
(
1 + M + M2)

=
8π6

6561
(
1 + M + M2) k.

In this example, M < .5879649. So, whenever k < 6561
8π6(1+M+M2)

≈ 0.4411629, there exists a unique
solution to (4.3), (4.4), (4.5) according to Theorem 4.3.
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