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Abstract. Consider the class QS of all non-degenerate planar quadratic differential sys-
tems and its subclass QSP of all its systems possessing an invariant parabola. This is an
interesting family because on one side it is defined by an algebraic geometric property
and on the other, it is a family where limit cycles occur. Note that each quadratic differ-
ential system can be identified with a point of R12 through its coefficients. In this paper,
we provide necessary and sufficient conditions for a system in QS to have at least one
invariant parabola. We give the global “bifurcation” diagram of the family QS which
indicates where a parabola is present or absent and in case it is present, the diagram
indicates how many parabolas there could be, their reciprocal position and what kind
of singular points at infinity (simple or multiple) as well as their multiplicities are the
points at infinity of the parabolas. The diagram is expressed in terms of affine invariant
polynomials and it is done in the 12-dimensional space of parameters.

Keywords: quadratic vector fields, affine invariant polynomials, invariant algebraic
curve, invariant parabola.
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1 Introduction and statement of main results

We consider here differential systems of the form

dx
dt

= P(x, y),
dy
dt

= Q(x, y), (1.1)

where P, Q ∈ R[x, y], i.e. P, Q are polynomials in x, y over R and their associated vector
fields

X = P(x, y)
∂

∂x
+ Q(x, y)

∂

∂y
.

We call degree of a system (1.1) the integer m = max(deg P, deg Q). In particular we call
quadratic a differential system (1.1) with m = 2. We denote here by QS the whole class of real
quadratic differential systems.
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Quadratic systems appear in the modelling of many natural phenomena described in dif-
ferent branches of science, in biological and physical applications and applications of these
systems became a subject of interest for the mathematicians. Many papers have been pub-
lished about quadratic systems, see for example [19] for a bibliographical survey.

Here we always assume that the polynomials P and Q are coprime. Otherwise doing a
rescaling of the time, systems (1.1) can be reduced to linear or constant systems. Quadratic
systems under this assumption are called non-degenerate quadratic systems.

Let V be an open and dense subset of R2, we say that a nonconstant differentiable function
H : V → R is a first integral of a system (1.1) on V if H(x(t), y(t)) is constant for all of the
values of t for which (x(t), y(t)) is a solution of this system contained in V. Obviously H is a
first integral of systems (1.1) if and only if

X(H) = P
∂H
∂x

+ Q
∂H
∂y

= 0,

for all (x, y) ∈ V. When a system (1.1) has a first integral we say that this system is integrable.

The knowledge of the first integrals is of particular interest in planar differential systems
because they allow us to draw their phase portraits.

On the other hand given f ∈ C[x, y] we say that the curve f (x, y) = 0 is an invariant
algebraic curve of systems (1.1) if there exists K ∈ C[x, y] such that

P
∂ f
∂x

+ Q
∂ f
∂y

= K f .

The polynomial K is called the cofactor of the invariant algebraic curve f = 0. When K = 0, f
is a polynomial first integral.

Let us suppose that f (x, y) = 0 is of degree n:

f (x, y) = c00 + c10x + c01y + · · ·+ cn0xn + cn−1,1xn−1y + · · ·+ c0nyn

with ĉ = (c00, . . . , c0n) ∈ CN where N = (n + 1)(n + 2)/2. We note that the equation
λ f (x, y) = 0 where λ ∈ C∗ = C\{0} yields the same locus of complex points in the plane
as the locus induced by f (x, y) = 0. So, a curve of degree n defined by ĉ can be identified
with a point [ĉ] = [c00 : c10 : · · · : c0n] in PN−1(C). We say that a sequence of degree n
curves fi(x, y) = 0 converges to a curve f (x, y) = 0 if and only if the sequence of points
[ĉi] = [ci00 : ci10 · · · : ci0n] converges to [ĉ] = [c00 : c10 : · · · : c0n] in the topology of PN−1(C).

We observe that if we rescale the time t′ = λt by a positive constant λ the geometry of the
systems (1.1) does not change. So for our purposes we can identify a system (1.1) of degree m
with a point in [a10, a10, . . . , b0m] in SM−1(R) with M = (m + 1)(m + 2).

We compactify the space of all the polynomial differential systems of degree m on SM−1

with M = (m + 1)(m + 2) by multiplying the coefficients of each systems with 1/
(

∑(a2
ij +

b2
ij)
)1/2.

Definition 1.1. We say that an invariant curve L : f (x, y) = 0, f ∈ C[x, y] for a polynomial
system (S) of degree m has multiplicity r if there exists a sequence of real polynomial systems
(Sk) of degree m converging to (S) in the topology of SM−1, M = (m + 1)(m + 2), such that
each (Sk) has r distinct invariant curves L1,k : f1,k(x, y) = 0, . . . ,Lr,k : fr,k(x, y) = 0 over
C, deg( f ) = deg( fi,k) = n, converging to L as k → ∞, in the topology of PN−1(C), with
N = (n + 1)(n + 2)/2 and this does not occur for r + 1.
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The motivation for studying the systems in the quadratic class is not only because of their
usefulness in many applications but also for theoretical reasons, as discussed by Schlomiuk
and Vulpe in the introduction of [20]. The study of non–degenerate quadratic systems could
be done using normal forms and applying the invariant theory.

Systematic work on quadratic differential systems possessing an invariant conic began to-
wards the end of the XX-th century and the beginning of this century. Quadratic systems hav-
ing an invariant ellipse as a limit cycle were investigated by Y.-X. Qin [18]; the necessary and
sufficient conditions on the coefficients of a quadratic system and also on the coefficients of a
conic so as to have the conic as an invariant curve of the system were presented by Druzhkova
[8]; Cairó and Llibre in [4] have investigated the Darboux integrability of the quadratic sys-
tems having invariant algebraic conics; Oliveira, Rezende and Vulpe [14] provided necessary
and sufficient conditions for a system in QS to have at least one invariant hyperbola in terms
of its coefficients and the necessary and sufficient affine invariant conditions for a system in
QS so as to have the ellipse as an invariant curve of the system were presented by Oliveira,
Rezende, Schlomiuk and Vulpe [16]. In [15] the authors classified the family of quadratic sys-
tems possessing an invariant hyperbola in terms of configurations of hyperbolas and presence
or absence of invariant lines. This is an invariant classification, independent of specific normal
forms. A similar classification in the case of an invariant ellipse is done in [13].

In this work we consider non-degenerate quadratic differential systems possessing an in-
variant parabola. We denote this family by QSP. Our goal in this paper is to obtain a char-
acterization of systems in QSP in terms of invariant polynomials. Thus our equalities and
inequalities in the bifurcation diagram splitting the parameter space into regions and subsets
with distinct dynamics, will not be expressed in terms of coefficients of a fixed normal form
or several such forms, coefficients which do not have any geometrical meaning and are rigidly
tied to these normal forms. They will be expressed in terms of invariant polynomials which
are very supple objects that can be easily be computed by a computer for any specific normal
form and allowing us also to easily pass from one normal form to any other.

It is known that the coordinates of an infinite singular point p of a quadratic system (S) are
defined by a linear factor in the factorization of the invariant polynomial C2(x, y) = yp2(x, y)−
xq2(x, y) over C. Here p2(x, y) and q2(x, y) are the corresponding quadratic homogeneous
parts of (S). The multiplicity m of the singularity p has two components (see the concepts
and notations introduced in [11]). If we denote them by (m∞, m f ) (i.e. m = m∞ + m f ) then m∞

(respectively, m f ) is the maximum number of infinite (respectively, finite) singularities which
can split from p, in small perturbations of the systems. In this case the number m∞ coincides
with the multiplicity of the linear factor of C2(x, y) which defines p.

Definition 1.2. By the direction of an invariant parabola of a quadratic system (S) we mean
the direction of its axis of symmetry which intersects the invariant line Z = 0 at an infinite
singular point p of (S) with the multiplicity (m∞, m f ). We say that this direction of the
invariant parabola is simple (respectively, double; triple) if m∞ = 1 (respectively 2; 3). We

denote this parabola by ∪ (respectively
2
∪;

3
∪). Moreover, if the infinite invariant line Z = 0

is filled up with singularities then we denote by
∞
∪ the invariant parabola which is tangent to

the line Z = 0 at a non-isolated singular point.

In order to distinguish the invariant parabolas that a quadratic system could have we use
the following notations:

• ∪ for a simple invariant parabola;
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• ⋓ for two simple invariant parabolas in the same direction (they could intersect);

• ∪⊂ for two simple invariant parabolas in different directions;

• ∪∪∪2 for one double invariant parabola;

•
2
∪ for one simple invariant parabola in double direction;

•
3
∪ for one simple invariant parabola in triple direction;

•
∞
∪ for one simple invariant parabola when the line at infinity is filled up with singulari-
ties;

•
2
∪⊂ for two simple invariant parabola: one in a double direction and one in a simple
direction;

• ⋓⊂ for three simple invariant parabolas: two in one direction and one in another
direction;

•
2
∪

2
⋓ for three real invariant parabolas in the same double direction;

•
2
∪

2
⋓c for one real and two complex invariant parabolas in the same double direction;

•
2
∪

2
∪∪∪2 for one simple and one double real invariant parabolas in the same double direc-

tion;

•
2
∪∪∪3 for a triple real invariant parabola in a double direction;

• ∞
2
∪ for a 1-parameter family of invariant parabolas in the same double direction;

• ∞
3
∪ for a 1-parameter family of invariant parabolas in the same triple direction.

Our main results are stated in the following theorem.
Main Theorem. (A) The condition χ1 = χ2 = 0 is necessary for a non-degenerate quadratic system
to possess at least one invariant parabola.

(B) Assume that for a non-degenerate quadratic system (S) the condition χ1 = χ2 = 0 holds.
Then this system possesses at least one invariant parabola if and only if the corresponding conditions
indicated below are satisfied, respectively. Furthermore in the case of the existence of an invariant
parabola this systems could be brought via an affine transformation and time rescaling to one of the
canonical forms presented below, correspondingly:

α)α)α) For η > 0 the system (S) could only possess one of the following sets of invariant parabolas:
∪, ⋓, ∪∪∪2, ∪⊂, ⋓⊂. Moreover (S) has one of the above sets of parabolas if and only if the
corresponding conditions provided by the diagram given in Figure 1 are satisfied. Furthermore
the system (S) with an invariant parabola could be brought via an affine transformation and time
rescaling to the following canonical form

ẋ = m + nx − 1
2
(1 + g)y + gx2 + xy, ẏ = 2mx + 2ny + (g − 1)xy + 2y2 (Sααα)

possessing the invariant parabola Φ(x, y) = x2 − y.
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β)β)β) For η < 0 the system (S) could only possess one of the following sets of invariant parabolas:
∪, ⋓, ∪∪∪2. Moreover (S) has one of the above sets of parabolas if and only if the corresponding
conditions provided by the diagram given in Figure 1 are satisfied. Furthermore the system (S)
with an invariant parabola could be brought via an affine transformation and time rescaling to
the following canonical form

ẋ = m +
2n − 1

2
x − g

2
y + gx2 − xy, ẏ = 2mx + 2ny − x2 + gxy − 2y2 (Sβββ)

possessing the invariant parabola Φ(x, y) = x2 − y.

γ)γ)γ) For η = 0 and M̃ ̸= 0 the system (S) could only possess one of the following sets of invariant

parabolas: ∪, ⋓, ∪∪∪2,
2
∪,

2
∪⊂,

2
∪

2
⋓,

2
∪

2
⋓c,

2
∪

2
∪∪∪2,

2
∪∪∪3, ∞

2
∪.

Moreover (S) has one of the above sets of parabolas if and only if the corresponding conditions
provided by the diagram given in Figure 1 are satisfied. Furthermore the system (S) with in-
variant parabola could be brought via an affine transformation and time rescaling to one of the
following two normal forms:

ẋ = m + nx − gy/2 + gx2 + xy, ẏ = 2mx + 2ny + gxy + 2y2, g ∈ {0, 1} (S1
γγγ)

possessing the invariant parabola Φ(x, y) = x2 − y, or

ẋ = 2mx + 2ny + (h − 1)xy, ẏ = n − (h + 1)x/2 + my + hy2 (S2
γγγ)

possessing the invariant parabola Φ(x, y) = y2 − x.

δ)δ)δ) For η = M̃ = 0 and C2 ̸= 0 the system (S) could only possess one of the following sets of

invariant parabolas:
3
∪, ∞

3
∪. Moreover (S) has one of the above sets of parabolas if and only if

the corresponding conditions provided by the diagram given in Figure 1 (the branch C2 ̸= 0) are
satisfied. Furthermore the system (S) with an invariant parabola could be brought via an affine
transformation and time rescaling to the following canonical form

ẋ = m + (2n − 1)x/2 − gy/2 + gx2, ẏ = 2mx + 2ny − x2 + gxy (Sδδδ)

possessing the invariant parabola Φ(x, y) = x2 − y.

θ)θ)θ) For η = M̃ = C2 = 0 the system (S) could only possess an invariant parabola
∞
∪. Moreover (S)

has this invariant parabola if and only if the corresponding conditions provided by the diagram
given in Figure 1 (the branch C2 = 0) are satisfied. Furthermore the system (S) with an invari-
ant parabola could be brought via an affine transformation and time rescaling to the following
canonical form

ẋ = m + nx − y/2 + x2, ẏ = 2mx + 2ny + xy (Sθθθ)

possessing the invariant parabola Φ(x, y) = x2 − y.

The paper is organized as follows. In Section 2 we construct the invariant polynomials
which are responsible for the existence of an invariant parabola and obtain the ten equations
relating the coefficients of a quadratic system with those of an invariant parabola. In Section
3 we give the proof of the Main Theorem constructing the conditions for the existence of
invariant parabolas as well as the corresponding canonical systems.
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Figure 1.1: Quadratic systems with invariant parabolas: the case η > 0.

Figure 1.2: Quadratic systems with invariant parabolas: the case η < 0.
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Figure 1.3: Quadratic systems with invariant parabolas: the case η = 0 ̸= M̃.
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Figure 1.4: Quadratic systems with invariant parabolas: the case η = 0 = M̃.
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2 The construction of the invariant polynomials

Consider real quadratic systems of the form

dx
dt

= p0 + p1(x, y) + p2(x, y) ≡ P(x, y),

dy
dt

= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),
(2.1)

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y:

p0 = a00, p1(x, y) = a10x + a01y, p2(x, y) = a20x2 + 2a11xy + a02y2,

q0 = b00, q1(x, y) = b10x + b01y, q2(x, y) = b20x2 + 2b11xy + b02y2.

It is known that on the set of quadratic systems acts the group Aff (2, R) of affine transforma-
tions on the plane (cf. [21]). For every subgroup G ⊆ Aff (2, R) we have an induced action of G
on QS. We can identify the set QS of systems (2.1) with a subset of R12 via the map QS −→ R12

which associates to each system (2.1) the 12-tuple ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01,
b20, b11, b02) of its coefficients. We associate to this group action polynomials in x, y and pa-
rameters which behave well with respect to this action, the GL-comitants (GL-invariants), the
T-comitants (affine invariants) and the CT-comitants. For their definitions as well as their
detailed constructions we refer the reader to the paper [21] (see also [1]).

2.1 Main invariant polynomials associated with invariant parabolas

We single out the following five polynomials, basic ingredients in constructing invariant poly-
nomials for systems (2.1):

Ci(ã, x, y) = ypi(x, y)− xqi(x, y), (i = 0, 1, 2),

Di(ã, x, y) =
∂pi

∂x
+

∂qi

∂y
, (i = 1, 2).

(2.2)

As it was shown in [23] these polynomials of degree one in the coefficients of systems (2.1)
are GL-comitants of these systems. Let f , g ∈ R[ã, x, y] and

( f , g)(k) =
k

∑
h=0

(−1)h
(

k
h

)
∂k f

∂xk−h∂yh
∂kg

∂xh∂yk−h .

The polynomial ( f , g)(k) ∈ R[ã, x, y] is called the transvectant of index k of ( f , g) (cf. [9, 17])).

Proposition 2.1 (see [24]). Any GL-comitant of systems (2.1) can be constructed from the elements
(2.2) by using the operations: +, −, ×, and by applying the differential operation (∗, ∗)(k).

Remark 2.2. We point out that the elements (2.2) generate the whole set of GL-comitants and
hence also the set of affine comitants as well as the set of T-comitants.
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We construct the following GL-comitants of the second degree with respect to the coeffi-
cients of the initial systems

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0, D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1, D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2, D2)
(1) .

(2.3)

Using these GL-comitants as well as the polynomials (2.2) we construct the additional
invariant polynomials. In order to be able to calculate the values of the needed invariant
polynomials directly for every canonical system we shall define here a family of T-comitants
expressed through Ci (i = 0, 1, 2) and Dj (j = 1, 2):

Â =
(
C1, T8 − 2T9 + D2

2
)(2)

/144,

D̂ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)
(1) + 6D1(C1D2 − T5)− 9D2

1C2

]
/36,

Ê =
[

D1(2T9 − T8)− 3 (C1, T9)
(1) − D2(3T7 + D1D2)

]
/72,

F̂ =
[
6D2

1(D2
2 − 4T9) + 4D1D2(T6 + 6T7) +48C0 (D2, T9)

(1)− 9D2
2T4+288D1Ê

− 24
(

C2, D̂
)(2)

+120
(

D2, D̂
)(1)

−36C1 (D2, T7)
(1)+8D1 (D2, T5)

(1)
]

/144,

B̂ =
{

16D1 (D2, T8)
(1) (3C1D1 − 2C0D2 + 4T2) + 32C0 (D2, T9)

(1) (3D1D2 − 5T6 + 9T7)

+ 2 (D2, T9)
(1)

(
27C1T4 − 18C1D2

1 − 32D1T2 + 32 (C0, T5)
(1) )

+ 6(D2, T7)
(1)[8C0(T8−12T9)− 12C1(D1D2 + T7) + D1(26C2D1 + 32T5) + C2(9T4 + 96T3)]

+ 6 (D2, T6)
(1) [32C0T9 − C1(12T7 + 52D1D2) −32C2D2

1
]
+ 48D2 (D2, T1)

(1) (2D2
2 − T8

)
− 32D1T8 (D2, T2)

(1) + 9D2
2T4 (T6 − 2T7)− 16D1 (C2, T8)

(1) (D2
1 + 4T3

)
+ 12D1 (C1, T8)

(2) (C1D2 − 2C2D1) + 6D1D2T4
(
T8 − 7D2

2 − 42T9
)

+ 12D1 (C1, T8)
(1) (T7 + 2D1D2) + 96D2

2

[
D1 (C1, T6)

(1) + D2 (C0, T6)
(1)

]
− 16D1D2T3

(
2D2

2 + 3T8
)
− 4D3

1D2
(

D2
2 + 3T8 + 6T9

)
+ 6D2

1D2
2 (7T6 + 2T7)

−252D1D2T4T9} /(2833),

K̂ = (T8 + 4T9 + 4D2
2)/72, Ĥ = (8T9 − T8 + 2D2

2)/72.

These polynomials in addition to (2.2) and (2.3) will serve as bricks in constructing affine
invariant polynomials for systems (2.1).

The following 42 affine invariants A1, . . . , A42 form the minimal polynomial basis of affine
invariants up to degree 12. This fact was proved in [2] by constructing A1, . . . , A42 using the
above bricks.

A1 = Â, A22 =
1

1152
[[C2, D̂)(1), D2

)(1), D2
)(1), D2

)(1)D2
)(1),

A2 = (C2, D̂)(3)/12, A23 = [[[F̂, Ĥ)(1), K̂
)(2)/8,

A3 = [[C2, D2)
(1), D2

)(1), D2
)(1)/48, A24 = [[C2, D̂)(2), K̂

)(1), Ĥ
)(2)/32,

A4 = (Ĥ, Ĥ)(2), A25 = [[D̂, D̂)(2), Ê
)(2)/16,

A5 = (Ĥ, K̂)(2)/2, A26 = (B̂, D̂)(3)/36,
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A6 = (Ê, Ĥ)(2)/2, A27 = [[B̂, D2)
(1), Ĥ

)(2)/24,

A7 = [[[C2, Ê)(2), D2
)(1)/8, A28 = [[C2, K̂)(2), D̂

)(1), Ê
)(2)/16,

A8 = [[D̂, Ĥ)(2), D2
)(1)/8, A29 = [[D̂, F̂)(1), D̂

)(3)/96,

A9 = [[D̂, D2)
(1), D2

)(1), D2
)(1)/48, A30 = [[C2, D̂)(2), D̂

)(1), D̂
)(3)/288,

A10 = [[D̂, K̂)(2), D2
)(1)/8, A31 = [[D̂, D̂)(2), K̂

)(1), Ĥ
)(2)/64,

A11 = (F̂, K̂)(2)/4, A32 = [[D̂, D̂)(2), D2
)(1), Ĥ

)(1), D2
)(1)/64,

A12 = (F̂, Ĥ)(2)/4, A33 = [[D̂, D2)
(1), F̂

)(1), D2
)(1), D2

)(1)/128,

A13 = [[C2, Ĥ)(1), Ĥ
)(2), D2

)(1)/24, A34 = [[D̂, D̂)(2), D2
)(1), K̂

)(1), D2
)(1)/64,

A14 = (B̂, C2)
(3)/36, A35 = [[D̂, D̂)(2), Ê

)(1), D2
)(1), D2

)(1)/128,

A15 = (Ê, F̂)(2)/4, A36 = [[D̂, Ê)(2), D̂
)(1), Ĥ

)(2)/16,

A16 = [[Ê, D2)
(1), C2

)(1), K̂
)(2)/16, A37 = [[D̂, D̂)(2), D̂

)(1), D̂
)(3)/576,

A17 = [[D̂, D̂)(2), D2
)(1), D2

)(1)/64, A38 = [[C2, D̂)(2), D̂
)(2), D̂

)(1), Ĥ
)(2)/64,

A18 = [[D̂, F̂)(2), D2
)(1)/16, A39 = [[D̂, D̂)(2), F̂

)(1), Ĥ
)(2)/64,

A19 = [[D̂, D̂)(2), Ĥ
)(2)/16, A40 = [[D̂, D̂)(2), F̂

)(1), K̂
)(2)/64,

A20 = [[C2, D̂)(2), F̂
)(2)/16, A41 = [[C2, D̂)(2), D̂

)(2), F̂
)(1), D2

)(1)/64,

A21 = [[D̂, D̂)(2), K̂
)(2)/16, A42 = [[D̂, F̂)(2), F̂

)(1), D2
)(1)/16.

In the above list, the bracket “[[” is used in order to avoid placing the otherwise necessary
up to five parentheses “(”.

Using the elements of the minimal polynomial basis given above we construct the affine
invariant polynomials

χ1 = 32A3 + 45A4 − 160A5;

χ2 = 32A8(14A8 − 48A9 + 37A10 + 24A11)

+ 16A5(76A17 + 74A18 + 313A19 − 80A20 − 167A21)

+ A4(160A2
2 + 368A18 − 3363A19 + 736A20 + 2109A21) + 32(17A2

10 + 27A10A11 + 24A2
11

− 48A9A12 + 51A10A12 + 24A11A12 + 288A6A14 − 96A7A14);

χ3 = 6520480A20(407A18 − 2253A21) + 24A18(1057715458A19 + 5944853225A21)

+ 28800A14(1872476A25 − 122259A26) + 144A12(3620283092A29 − 1554910481A30)

+ 1440A15(107225339A25 − 19561440A26)− 72A11(8198511476A29 − 2965514443A30)

+ 652048(4544A2
18 + 125A2

20 − 8955A2A42)− 9(264364688A2
19 + 39417454842A19A21

− 54474141921A2
21) + 3448898760A19A20;

χ4 = 62713A2
10 + 45787A10 A11 − 157928A2

11 + 81202A10A12 + 353474A11A12 − 145848A2
12

+ 64320A7A15 + 28600A5A17;

ζ1 = 13A4 − 24A5;

ζ2 = − A4;

ζ3 = 16A5 − 17A4;

ζ4 = 9A1 A4 − 7A1A5 − 2A16;
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ζ5 = 166A8 + 384A9 − 1120A10 − 512A11 − 62A12;

ζ6 = − A6;

ζ7 = 40(71436A7A20 − 640883A7A21 + 1008622A1A32) + 12A12(3585035A14 + 14919259A15)

− 5(8092193A10 + 15970731A11)A14 − (129780821A10 + 269944167A11)A15;

ζ8 = A2;

ζ9 = 1040(2256A7A15 + 143A3A21)− 264(162941A10 + 315202A11)A12

+ 3A11(25887132A10 + 24385177A11) + 20603609A2
10 + 24896016A2

12;

ζ10 = 250A2
1 + 34A11 − 41A12;

ζ11 = D2
2 + 28Ĥ − 32K̂;

ζ12 = D2
2 − 4Ĥ − 16K̂;

ζ13 = D2
2 − 18K̂;

ζ14 = D2
2 − 16K̂;

ζ15 = Ĥ;

ζ16 = A2(24A18 − 42A17 − 1024A19 − 2A20 − 213A21) + 5(420A1A25 − 199A38

− 225A39 + 60A40 + 8A41);

ζ17 = 3456(C0, T7)
(1)[(D2, T7)

(1)]2
+ 81D3

1(C1, T8)
(2)(C1, T9)

(2) − 36D1(D2, T7)
(1)×

×
[
8[[T8, C2)

(1), C1)
(2), C0)

(1) + [[C1, T5)
(2), 36T6 − 7D1D2)

(1)]
− 4[[C1, T5)

(2), D2)
(1)[[C1, T5)

(2), T6 + 309D1D2)
(1) + 70T4(D2, T7)

(1)[[C1, T5)
(2), D2)

(1);

ζ18 = A37;

ζ19 = (C2, D̃)(1);

ζ20 = (C2, D̃)(2);

ζ21 = (C2, Ẽ)(1);

ζ22 = A2(3A2
2 − 4A18) + 72A1(A25 + 2A26);

ζ23 = T4;

ζ24 = 6C2D2
1 + 9C2T4 − 4D1T5;

R1 = 531A2A4 − 1472A2A5 − 8352A1A6 + 320A22 − 3216A23 + 1488A24;

R2 = 15A10 − 10A8 − 6A9;

R3 = 4800(6650951968A14A15 − 2382132830A2
14 − 9860550485A2

15) + 1600(4765089473A11

− 7838161089A12)A20 + 640(15664652914A11 − 50944340271A12)A18

− 6(20392663986679A10 + 34357804389813A11 − 739275727012A12)A21

+ 3(46944212550227A10 + 83455057317969A11 − 22899810934956A12)A19;

R4 = 251A2
1 + 25A12;

R5 = [[C2, C2)
(2), C1)

(2);

R6 = 851A2A17 − 235A41 + 170A42;

R7 = 62250A2
1 + 8956A9 − 46223A10 − 50129A11 + 14766A12.
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2.2 Preliminary results involving the use of polynomial invariants

Considering the GL-comitant C2(ã, x, y) = yp2(ã, x, y)− xq2(ã, x, y) as a cubic binary form of
x and y we calculate

η(ã) = Discrim[C2, ξ], M̃(ã, x, y) = Hessian[C2],

where ξ = y/x or ξ = x/y. Following [23] (see also [21]) we have the next lemma.

Lemma 2.3. The number of distinct roots (real and imaginary) of the polynomial C2(ã, x, y) is deter-
mined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real (1 double) if η = 0 and M̃ ̸= 0;

(iv) 1 real (triple) if η = M̃ = 0 and C2 ̸= 0;

(v) ∞ if η = M̃ = C2 = 0.

Moreover, for each one of these cases the quadratic systems (2.1) can be brought via a linear transfor-
mation to one of the following canonical systems (SI)–(SIV):{

ẋ = a + cx + dy + gx2 + (h − 1)xy,

ẏ = b + ex + f y + (g − 1)xy + hy2;
(SI)

{
ẋ = a + cx + dy + gx2 + (h + 1)xy,

ẏ = b + ex + f y − x2 + gxy + hy2;
(SII)

{
ẋ = a + cx + dy + gx2 + hxy,

ẏ = b + ex + f y + (g − 1)xy + hy2;
(SIII)

{
ẋ = a + cx + dy + gx2 + hxy,

ẏ = b + ex + f y − x2 + gxy + hy2,
(SIV)

{
ẋ = a + cx + dy + x2,

ẏ = b + ex + f y + xy.
(SV)

Some important necessary conditions for a quadratic system to possess invariant parabolas
are provided by the next lemma.

Lemma 2.4. If a quadratic system (2.1) possesses an invariant parabola then the conditions χ1 = χ2 =

0 hold.

Proof. Assume that a quadratic system (2.1) possesses an invariant parabola. It is known that
via an affine transformation this parabola could be brought to the canonical form y = x2.
Then as it was proved in [5] this quadratic system can be written in the form

ẋ = c(y − x2) + (a + bx + gy) + ex, ẏ = d(y − x2) + 2x(a + bx + gy) + 2ey2,

where a, b, c, d, g, h, e are real parameters. A straightforward calculation gives χ1 = χ2 = 0 for
the above systems and this completes the proof of the lemma.
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Assume that a conic

Φ(x, y) ≡ p + qx + ry + sx2 + 2vxy + uy2 = 0 (2.4)

is an affine algebraic invariant curve for quadratic systems (2.1), which we rewrite in the form:

dx
dt

= a + cx + dy + gx2 + 2hxy + ky2 ≡ P(x, y),

dy
dt

= b + ex + f y + lx2 + 2mxy + ny2 ≡ Q(x, y).
(2.5)

Remark 2.5. Following [10] we construct the determinant

∆ =

∣∣∣∣∣∣
s v q/2
v u r/2
q/2 r/2 p

∣∣∣∣∣∣ ,

associated to the conic (2.4). By [10] this conic is irreducible (i.e. the polynomial Φ defining
the conic is irreducible over C) if and only if ∆ ̸= 0.

According to definition of an invariant curve (see page 2) considering the cofactor K =

Ux + Vy + W ∈ R[x, y] the following identity holds:

∂Φ
∂x

P(x, y) +
∂Φ
∂y

Q(x, y) = Φ(x, y)(Ux + Vy + W).

This identity yields a system of 10 equations for determining the 9 unknown parameters p, q,
r, s, u, v, U, V, W:

Eq1 ≡ s(2a20 − U) + 2b20v = 0,

Eq2 ≡ 2v(a20 + 2b11 − U) + s(4a11 − V) + 2b20u = 0,

Eq3 ≡ 2v(2a11 + b02 − V) + u(4b11 − U) + 2a02s = 0,

Eq4 ≡ u(2b02 − V) + 2a02v = 0,

Eq5 ≡ q(a20 − U) + s(2a10 − W) + 2b10v + b20r = 0,

Eq6 ≡ r(2b11 − U) + q(2a11 − V) + 2v(a10 + b01 − W) + 2(a01s + b10u) = 0,

Eq7 ≡ r(b02 − V) + u(2b01 − W) + 2a01v + a02q = 0,

Eq8 ≡ q(a10 − W) + 2(a00s + b00v) + b10r − pU = 0,

Eq9 ≡ r(b01 − W) + 2(b00u + a00v) + a01q − pV = 0,

Eq10 ≡ a00q + b00r − pW = 0.

(2.6)

According to [6] (see also [3]) we have the next lemma.

Lemma 2.6. Suppose that a polynomial system (1.1) of degree n has the invariant algebraic curve
f (x, y) = 0 of degree m. Let Pn, Qn and fm be the homogeneous components of P, Q and f of degree n
and m, respectively. Then the irreducible factors of fm must be factors of yPn − xQn.

3 The proof of the Main Theorem

Assuming that a quadratic system (2.5) has an invariant parabola (2.4) by Lemma 2.4 we
conclude that for this system the conditions χ1 = χ2 = 0 have to be fulfilled.

In what follows considering Lemma 2.3 we examine each one of the families of quadratic
systems provided by this lemma.
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3.1 Systems with three real infinite singularities

In this case according to Lemma 2.3 systems (2.5) via a linear transformation could be brought
to the following family of systems

dx
dt

= a + cx + dy + gx2 + (h − 1)xy,

dy
dt

= b + ex + f y + (g − 1)xy + hy2,
(3.1)

for which we have C2(x, y) = xy(x − y). Therefore the infinite singularities are located at the
intersections of the lines x = 0, y = 0 and x − y = 0 with the line Z = 0 at infinity. So by
Lemma 2.6 it is clear that if a parabola is invariant for these systems, then its homogeneous
quadratic part has one of the following forms: (i) kx2, (ii) ky2, (iii) k(x − y)2, where k is a
real nonzero constant. Obviously we may assume k = 1 (otherwise instead of conic (2.4) we
could consider Φ(x, y)/k = 0).

According to Lemma 2.4 for the existence of an invariant parabola for a system (3.1) the
condition χ1 = 0 is necessary. For the above systems we calculate

χ1 = 2(g − 2)(h − 2)(1 + g + h) (3.2)

and therefore the condition χ1 = 0 is equivalent to (g − 2)(h − 2)(1 + g + h) = 0.
On the other hand we have the following lemma.

Lemma 3.1. Assume that a system (3.1) possesses an invariant parabola. Then its quadratic homoge-
neous part is of the form x2 (respectively, y2; (x − y)2) only if the condition h − 2 = 0 (respectively,
g − 2 = 0; g + h + 1 = 0) holds.

Proof. Assume that a system (3.1) possesses an invariant parabola of the form Φ(x, y) = p +

qx + ry + x2 with r ̸= 0 (otherwise we get a reducible conic). Then considering equations (2.6)
we obtain

s = 1, v = u = 0, Eq2 = −2 + 2h − V = 0 ⇒ V = 2(h − 1).

Therefore we have Eq7 = (2− h)r = 0 and since r ̸= 0 this implies h − 2 = 0. So the statement
of the lemma is true in this case.

If the system possesses an invariant parabola of the form Φ(x, y) = p + qx + ry + y2 with
q ̸= 0 then considering equations (2.6) we obtain

s = v = 0, u = 1, Eq3 = −2 + 2g − U = 0 ⇒ U = 2(g − 1).

In this case we obtain Eq5 = (2 − g)q = 0 and due to q ̸= 0 we get g − 2 = 0.
Assume now a system (3.1) possesses an invariant parabola of the form Φ(x, y) = p+ qx +

ry + (x − y)2 with q + r ̸= 0. Then we have

s = 1, v = −1, u = 1, Eq1 = 2g − U, Eq4 = 2h − V

and therefore the equations Eq1 = 0 and Eq4 = 0 yield U = 2g and V = 2h, respectively. Then
we calculate Eq5 + Eq6 + Eq7 = −(1 + g + h)(q + r) = 0 and due to the condition q + r ̸= 0
we get 1 + g + h = 0 and this completes the proof of Lemma 3.1.
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Considering (3.2) it is clear that the condition χ1 = 0 implies either h = 2 or g = 2 or
h = −(1 + g). On the other hand for systems (3.1) we have

ζ1 = 2(g − 2)(3 + g) in the case h = 2;

ζ1 = 2(h − 2)(3 + h) in the case g = 2;

ζ1 = 2(g − 2)(3 + g) in the case h = −(1 + g)

and therefore we conclude that if χ1 = 0 then the condition ζ1 = 0 imposes the vanishing of
one more factor of the polynomial χ1.

Remark 3.2. If (h − 2)(g − 2)(1 + g + h) = 0 then without losing generality we may assume
h = 2. Furthermore if two of these factors vanish simultaneously (i.e. ζ1 = 0) then we may
assume h = 2 and g = 2.

Indeed assume h − 2 ̸= 0 and suppose first that g = 2. We observe that the change

(x, y, a, b, c, d, e, f , g, h) 7→ (y, x, b, a, e, d, f , c, h, g)

conserves systems (3.1) and hence the condition g = 2 is transformed into h = 2.
Admit now that the condition 1 + g + h = 0 is fulfilled. Then applying to these systems

the transformation
x1 = x − y, y1 = −y

and arrive at the systems

ẋ1 = a1 + c1x1 + g1x2
1 + (h1 − 1)x1y1, ẏ1 = b1 + f1y1 + (g1 − 1)x1y1 + h1y2

1

where (we are interested only in homogeneous quadratic parts)

g1 = g, h1 = 1 − g − h, ⇒ g = g1, h = 1 − g1 − h1.

Therefore we obtain 1 + h1 + g1 = 1 + (1 − g − h) + g = 2 − h and hence via the above
transformation the condition 1 + g + h = 0 is reduced to the condition h − 2 = 0.

Assume now that two of the factors (h− 2)(g− 2)(1+ g+ h) vanish. Then as it was shown
above we may assume h = 2. In this case other two factors become g− 2 and g+ 3. Supposing
h = 2 and g = −3 systems (3.1) become

ẋ = a + cx + dy − 3x2 + xy, ẏ = b + ex + f y − 4xy + 2y2,

which via the transformation x1 = x, y1 = x − y can be brought to the systems

ẋ1 = a1 + c1x1 + d1y1 + 2x2
1 + x1y1, ẏ1 = b1 + e1x1 + f1y1 + x1y1 + 2y2

1.

It remains to observe that these systems have the form (3.1) with h = 2 and g = 2 and we
conclude that the statement of Remark 3.2 is valid.

Considering Lemma 3.1 and Remark 3.2 we conclude that for determining the condi-
tions for the existence and the number of invariant parabolas for systems (3.1) it is sufficient
to examine when the invariant parabolas have the forms Φ(x, y) = p + qx + ry + x2 and
Φ(x, y) = p + qx + ry + y2. Moreover as it is mentioned above systems (3.1) could have in-
variant parabolas only in one direction (if χ1 = 0 and ζ1 ̸= 0) and they could have invariant
parabolas in two directions (if χ1 = 0 and ζ1 = 0). In what follows we examine each one of
these two possibilities.
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3.1.1 The possibility χ1 = 0 and ζ1 ̸= 0

Then we may assume h = 2 and by Lemma 3.1 systems (3.1) could have invariant parabolas of
the form Φ(x, y) = p + qx + ry + x2. Applying the translation (x, y) 7→

(
x − d, y − c + 2dg)

)
systems (3.1) can be brought to the systems

ẋ = a + gx2 + xy, ẏ = b + ex + f y + (g − 1)xy + 2y2. (3.3)

Coefficient conditions for systems (3.3) to possess invariant parabolas

Lemma 3.3. A system (3.3) possesses either one or two invariant parabolas or a double invariant
parabola of the form Φ(x, y) = p + qx + ry + x2 (r ̸= 0) if and only if Ω1 = 0 and the corresponding
set of conditions are satisfied, respectively:

(A1) g(g + 1) ̸= 0, 2g + 1 ̸= 0, D1 ̸= 0, G1 ̸= 0 ⇒ ∪;

(A2) g(g + 1) ̸= 0, 2g + 1 ̸= 0, D1 = 0, a ̸= 0, F1 ̸= 0 ⇒ ⋓;

(A3) g(g + 1) ̸= 0, 2g + 1 ̸= 0, D1 = 0, a ̸= 0, F1 = 0 ⇒ ∪2;

(A4) g(g + 1) ̸= 0, 2g + 1 ̸= 0, D1 = 0, a = 0, f ̸= 0 ⇒ ∪;

(A5) g = −1/2, D1 ̸= 0, a ̸= 0 ⇒ ∪;

(A6) g = −1/2, D1 = 0, b ̸= 0, e2 − 2b ̸= 0 ⇒ ⋓;

(A7) g = −1/2, D1 = 0, b ̸= 0, e2 − 2b = 0 ⇒ ∪2;

(A8) g = −1/2, D1 = 0, b = 0, e ̸= 0 ⇒ ∪;

(A9) g = 0, b = a, e ̸= 0, a ̸= 0 ⇒ ∪;

(A10) g = −1, b = 0, e + f ̸= 0, a ̸= 0 ⇒ ∪,

where

Ω1 = 2b2(1 + 2g)2 − b
[
4a(1 + g)(1 + 2g)(1 + 3g)− (e − f g)(e + f + f g)

]
+ a(1 + g)

[
2a(1 + g)(1 + 3g)2 − (e − 2 f g)(e + f + f g)

]
;

D1 = e + f (g + 1); G1 = a − b + 4ag − 2bg + 3ag2; F1 = 8ag(1 + g)− f 2(1 + 2g).

(3.4)

Proof. Considering the equations (2.6) and the form of invariant parabola Φ(x, y) = p + qx +

ry + x2 with r ̸= 0 we obtain

s = 1, v = u = 0, U = 2g, V = 2, W = −gq,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0.

Calculating the remaining equations we obtain

Eq6 = −q − r − gr, Eq8 = 2a − 2gp + gq2 + er,

Eq9 = −2p + f r + gqr, Eq10 = aq + gpq + br.

It is clear that the equations Eq6 = 0 implies q = −(1 + g)r and then Eq9 = 0 gives us
p = r( f − gr − g2r)/2. Therefore calculations yield

Eq8 = g(1 + g)(1 + 2g)r2 + (e − f g)r + 2a,

Eq10 = r
[
g2(1 + g)2r2 − f g(1 + g)r − 2(a − b + ag)

]
/2 ≡ rΨ/2

(3.5)
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and since r ̸= 0 the equation Eq10 = 0 is equivalent to Ψ = 0.
According to [12, Lemmas 11, 12] the equations Eq8 = 0 and Ψ = 0 have a common

solution of degree 2 with respect to the parameter r if and only if

Res(0)r (Eq8, Ψ) = Res(1)r (Eq8, Ψ) = 0

where Res(1)r is the subresultant of order one and Res(0)r is the subresultant of order zero which
coincide with standard resultant (for detailed definition see [12], formula (19)). We calculate

Res(1)r (Eq8, Ψ) = −g2(1 + g)2(e + f + f g) ≡ −g2(1 + g)2D1,

Res(0)r (Eq8, Ψ) = 2g2(g + 1)2Ω1.

So we examine three possibilities: g(g + 1) ̸= 0, g = 0 and g = −1.

1: The possibility g(g + 1) ̸= 0. Considering (3.4) we observe that the polynomial Ω1 is
quadratic with respect to the parameter b if 2g + 1 ̸= 0. So we discuss two cases: 2g + 1 ̸= 0
and 2g + 1 = 0.

1.1: The case 2g+ 1 ̸= 0. We observe that due to the condition g(g+ 1) ̸= 0 the subresultant
of order one Res(1)r (Eq8, Ψ) vanishes if and only if D1 = 0. So we consider two subcases:
D1 ̸= 0 and D1 = 0.

1.1.1: The subcase D1 ̸= 0. Then the invariant parabola exists if and only if Ω1 = 0 and
therefore we have to examine the solutions of the equation Ω1 = 0. In this case we calculate

Discrim[Ω1, b] = −(e + f + f g)2[8ag(1 + g)(1 + 2g)− (e − f g)2] ≡ −D2
1E

and hence the equation Ω1 = 0 has real solutions with respect to the parameter b if and only
if either D1 = 0 or E ≤ 0. However since the condition D1 ̸= 0 holds it remains to examine
the condition E ≤ 0.

In this case setting E = −w2 ≤ 0 we calculate

a =
(e − f g)2 − w2

8g(g + 1)(2g + 1)
(3.6)

and then we obtain:
Ω1 =

B+B−
32g2(1 + 2g)2 ,

where

B± = 8bg(1 + 2g)2 + ( f g − e + εw)
[
e(1 + g)− f g(3 + 5g) + εw(1 + 3g)

]
, ε = ±1.

Then the condition Ω1 = 0 gives us

b =
(e − f g − εw)

8g(1 + 2g)2

[
e(1 + g)− f g(3 + 5g) + εw(1 + 3g)

]
(3.7)

where ε = 1 if B+ = 0 and ε = −1 if B− = 0. In this case we obtain that the polynomials Eq8

and Ψ(e, f , g, r) have the common factor ζ = 2g(1 + g)(1 + 2g)r + e − f g − εw which is linear
with respect to the parameter r. Setting ζ = 0 we get

r = − e − f g − εw
2g(1 + g)(1 + 2g)
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and we arrive at the family of systems

ẋ =
(e − f g)2 − w2

8g(g + 1)(2g + 1)
+ gx2 + xy,

ẏ =
(e − f g − εw)

8g(1 + 2g)2

[
e(1 + g)− f g(3 + 5g) + εw(1 + 3g)

]
+ ex + f y + (g − 1)xy + 2y2.

(3.8)

This family of systems possess the following invariant parabola

Φ(x, y) = − (e − f g − εw)(e + 2 f + 3 f g − εw)

8g(1 + g)(1 + 2g)2

+
e − f g − εw
2g(1 + 2g)

x − e − f g − εw
2g(1 + g)(1 + 2g)

y + x2.
(3.9)

We observe that this conic is reducible if and only if e − f g + εw = 0.
Considering (3.6) and (3.7) we get

w2 = −8ag(1 + g)(1 + 2g) + (e − f g)2

and then we obtain

b =
1

8g(1 + 2g)2

[
(e − f g)(e + eg − 3 f g − 5 f g2)− 2εwg(e + f + f g)− (1 + 3g)w2] ⇒

4b(1 + 2g)2 − 4a(1 + g)(1 + 2g)(1 + 3g) + (e + f + f g)(e − f g − εw) = 0.

Since D1 = (e + f + f g) ̸= 0 we solve the last equation with respect to εw and we obtain

εw =
1

e + f + f g
[
4b(1 + 2g)2 − 4a(1 + g)(1 + 2g)(1 + 3g) + (e − f g)(e + f + f g)

]
.

Then calculations yield

r = − e − f g − εw
2g(1 + g)(1 + 2g)

= −2(a − b + 4ag − 2bg + 3ag2)

g(1 + g)(e + f + f g)
= − 2G1

g(1 + g)(e + f + f g)
̸= 0.

This completes the proof of the statement (A1) of Lemma 3.3.
Since systems (3.8) are in the class defined by the condition η > 0, according to the state-

ment α)α)α) of Main Theorem we have to prove that these systems could be brought via a trans-
formation to the canonical form (Sααα).

Indeed as g(1 + g)(1 + 2g) ̸= 0 we apply to the parabola (3.9) the translation

x = x1 −
e − f g − εw
4g(1 + 2g)

, y = y1 −
e + 3eg + f g(3 + 5g)− (1 + 3g)εw

8g(1 + 2g)
(3.10)

and we get a simpler form of this parabola:

Φ̃(x1, y1) = x2
1 −

e − f g − εw
2g(1 + g)(1 + 2g)

y1.
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On the other hand applying the same translation to the family of systems (3.8) we arrive at
the systems

ẋ1 =
(e − f g − εw)

[
f g(1 − g)(3 + 5g) + e(1 + 10g + 13g2) + (g − 1)(1 + 3g)εw

]
32g2(1 + g)(1 + 2g)2 −

f g(3 + g) + e(1 + 7g)− (1 + 7g)εw
8g(1 + 2g)

x1 −
e − f g − εw
4g(1 + 2g)

y1 + gx2
1 + x1y1,

ẏ1 =
f g(1 − g)(3 + 5g) + e(1 + 10g + 13g2) + (g − 1)(1 + 3g)εw

8g(1 + 2g)
x1−

f g(3 + g) + e(1 + 7g)− (1 + 7g)εw
4g(1 + 2g)

y1 + (g − 1)x1y1 + 2y2
1.

(3.11)

Observation 3.4. We remark that simultaneously applying the same translation on systems
(3.8) and on the corresponding invariant parabola (3.9) we arrive at systems (3.11). We point
out that the linear parts of these systems together with the coefficients of the transformed
parabola Φ̃(x1, y1) suggest us the new notations for the simplification of the canonical forms.

Indeed due to the condition g(1 + g)(1 + 2g)(e − f g − εw) ̸= 0 we could set the following
new notations:

k =
e − f g − εw

2g(1 + g)(1 + 2g)
, n = − f g(3 + g) + e(1 + 7g)− (1 + 7g)εw

8g(1 + 2g)
,

m =
f g(1 − g)(3 + 5g) + e(1 + 10g + 13g2) + (g − 1)(1 + 3g)εw

16g(1 + 2g)
⇒

e = gk − g3k + 2m + n − gn, f = − (1 + g)(1 + 7g)k − 4n
2

,

w = − g(1 + g)(1 + 3g)k − 2(2m + n + gn)
2ε

where k ̸= 0 due to e − f g + εw ̸= 0. Then we arrive at the following family of systems:

ẋ1 = km + nx1 −
k
2
(g + 1)y1 + gx2

1 + xy,

ẏ1 = 2mx1 + 2ny1 + (g − 1)x1y1 + 2y2
1.

which possess the invariant parabola Φ(x1, y1) = x2
1 − ky1, k ̸= 0.

Remark 3.5. If k ̸= 0 then due to a rescaling we may assume k = 1 in the above systems as
well as in the invariant parabola.

Indeed since k ̸= 0 via the rescaling (x1, y1, t1) 7→ (kx1, ky1, t/k) and setting m/k = m and
n/k = n we may assume k = 1 in the above systems. At the same time applying this rescaling
to the above parabola we get Φ(x1, y1) = k2(x2

1 − y1) and we conclude that the parabola
Φ̃(x1, y1) = x2

1 − y1 also in invariant for the above systems.
Therefore due to this remark we get the canonical systems (Sααα) provided by the statement

α)α)α) of Main Theorem.

1.1.2: The subcase D1 = 0. Then e = − f (1 + g) and therefore we obtain:

Ω1 = 2
[
a(1 + g)(1 + 3g)− b(1 + 2g)

]2
= 2G2

1



Family of quadratic differential systems with invariant parabolas 21

and since 2g + 1 ̸= 0 the condition Ω1 = 0 implies

b =
a(1 + g)(1 + 3g)

1 + 2g
.

Therefore we determine that in this case the polynomials Eq8 and Eq10 have the following
common factor

ϕ̃ = 2a − f (1 + 2g)r + g(1 + g)(1 + 2g)r2.

We observe that ϕ̃ is quadratic in r with the discriminant

Discrim[ϕ̃, r] = −(1 + 2g)
[
8ag(1 + g)− f 2(1 + 2g)

]
and setting this discriminant equal to be w2 we obtain

a =
f 2(1 + 2g)2 − w2

8g(1 + g)(1 + 2g)
. (3.12)

Then we arrive at the following expressions for the polynomials Eq8 and Eq10:

Eq8 =
H+H−

4g(1 + g)(1 + 2g)
, Eq10 =

rH+H−
8(1 + 2g)2 ,

where
H± = f (1 + 2g)− 2g(1 + g)(1 + 2g)r ± w.

Therefore the equations Eq8 = Eq10 = 0 imply H+H− = 0. If H+ = 0 we determine

r =
f + 2 f g + w

2g(1 + g)(1 + 2g)
≡ r+

and we obtain the parabola

Φ1(x, y) =
f 2(1 + 2g)2 − w2

8g(g + 1)(2g + 1)2 − f + 2 f g + w
2g(1 + 2g)

x +
f + 2 f g + w

2g(g + 1)(2g + 1)
y + x2.

In the case H− = 0 we obtain

r =
f + 2 f g − w

2g(1 + g)(1 + 2g)
≡ r−

and we get the parabola

Φ2(x, y) =
f 2(1 + 2g)2 − w2

8g(g + 1)(2g + 1)2 − f + 2 f g − w
2g(1 + 2g)

x +
f + 2 f g − w

2g(g + 1)(2g + 1)
y + x2.

Both these parabolas are invariant for the following family of systems:

ẋ =
f 2(1 + 2g)2 − w2

8g(1 + g)(1 + 2g)
+ gx2 + xy,

ẏ =
(3g + 1)

[
f 2(1 + 2g)2 − w2]

8g(2g + 1)2 − f (g + 1)x + f y + (g − 1)xy + 2y2).
(3.13)

We observe that both parabolas Φi(x, y) = 0 (i = 1, 2) exist (i.e. are not reducible) if and
only if r+r− ̸= 0 and this is equivalent to

( f + 2 f g + w)( f + 2 f g − w) = f 2(1 + 2g)2 − w2 ̸= 0
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and considering (3.12) this is equivalent to a ̸= 0.
On the other hand if only one of the factors vanishes we have a = 0 and

r+ + r− = ( f + 2 f g + w) + ( f + 2 f g − w) = 2 f (1 + 2g) ̸= 0

and due to 1+ 2g ̸= 0 we obtain that the above condition is equivalent to f ̸= 0. Therefore for
a = 0 and f ̸= 0 we could have only one parabola.

We determine that in the case w = 0 we obtain Φ1(x, y) = Φ2(x, y), i.e. the parabolas coa-
lesce when w tends to zero and we obtain a double parabola. On the other hand considering
(3.12) for w = 0 we obtain to

a − f 2(1 + 2g)
8g(1 + g)

=
8ag(1 + g)− f 2(1 + 2g)

8g(1 + g)
=

F1

8g(1 + g)

and we conclude that these invariant parabolas coalesce if and only if F1 = 0.
Thus we conclude that the statements (A2), (A3) and (A4) of Lemma 3.3 are proved.

Next we observe that the family of systems (3.13) is a subfamily of (3.8) defined by the
condition e = − f (1 + g) (i.e. D1 = 0). Moreover considering (3.9) for e = − f (1 + g) we
obtain:

Φ(x, y) =
f 2(1 + 2g)2 − w2

8g(g + 1)(2g + 1)2 − f + 2 f g + εw
2g(1 + 2g)

x +
f + 2 f g + εw

2g(g + 1)(2g + 1)
y + x2

and we observe that for ε = 1 (respectively ε = −1) the above parabola coincides with the
invariant parabola Φ1(x, y) = 0 (respectively Φ2(x, y) = 0) of systems (3.13).

So taking the invariant parabola Φ1(x, y) = 0 (obtained for e = − f (1 + g) and ε = 1 ) we
could apply the same translation (3.10) in this particular case and we arrive at the subfamily of
systems (3.11) defined by the conditions e = − f (1+ g) and ε = 1 which possess the following
invariant parabola

Φ̃1(x1, y1) = x2
1 +

( f + 2 f g + w)

2g(1 + g)(1 + 2g)
y1.

Since in the considered case we have only three free parameters, we set only two new param-
eters as follows:

k = − f + 2 f g + w
2g(1 + g)(1 + 2g)

, n =
f + 5 f g + 6 f g2 + w + 7gw

8g(1 + 2g)
⇒

f = − k + 8gk + 7g2k + 4n
2

, w =
(1 + 2g)(k + 4gk + 3g2k + 4n)

2
.

In this case after an additional rescaling (to force k = 1, see Remark 3.5) we arrive at the
subfamily of systems (Sααα) defined by the condition

m = (1 + 3g)(1 + 4g + 3g2 + 2n)/4.

1.2: The case 2g + 1 = 0. Then g = −1/2 and evaluating Ω1 and D1 we obtain

Ω1 =
[
2b(2e + f )2 + a(a − 4e2 − 6e f − 2 f 2)

]
/8 = 0, D1 = (2e + f )/2. (3.14)

So we discuss two subcases: D1 ̸= 0 and D1 = 0.
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1.2.1: The subcase D1 ̸= 0. Then 2e + f ̸= 0 and then the condition Ω1 = 0 gives us

b = − a(a − 4e2 − 6e f − 2 f 2)

2(2e + f )2 .

In this case the polynomials Eq8 and Eq10 have the common factor 4a + (2e + f )r. Therefore
the equations Eq8 = Eq10 = 0 imply r = −4a/(2e + f ) and we arrive at the family of systems

ẋ = a − x2/2 + xy,

ẏ = − a(a − 4e2 − 6e f − 2 f 2)

2(2e + f )2 + ex + f y − 3xy/2 + 2y2,
(3.15)

which possess the invariant parabola

Φ(x, y) =
2a(a − 2e f − f 2)

(2e + f )2 +
2a

2e + f
x − 4a

2e + f
y + x2. (3.16)

Evidently this conic is irreducible if and only if a ̸= 0. This completes the proof of the
statement (A5) of Lemma 3.3.

Next we show that systems (3.15) could be brought via a transformation to the canonical
form (Sααα). Indeed since 2e + f ̸= 0 we apply to parabola (3.16) the translation

x = x1 −
a

2e + f
, y = y1 +

a − 4e f − 2 f 2

4(2e + f )
.

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

4a
2e + f

y1.

On the other hand considering Observation 3.4 we apply the same translation to systems
(3.15) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k =
4a

2e + f
, n = − (−5a + 4e f + 2 f 2)

4(2e + f )
, m =

−3a + 16e2 + 20e f + 6 f 2

16(2e + f )
⇒

a = − k(k − 32m − 8n)
32

, e =
−3k + 16m + 12n

8
, f =

5k − 16n
8

.

Then after an additional rescaling (to force k = 1, see Remark 3.5) we arrive at the subfamily
of systems (Sααα) defined by the condition g = −1/2.

1.2.2: The subcase D1 = 0. This implies f = −2e and considering (3.14) we have

Ω1 = a2/8 = 0 ⇒ a = 0.

Therefore we obtain

Eq8 = 0, Eq10 = r(32b − 8er + r2)/32 ≡ rϕ(b, e, r)/32 = 0.

Since r ̸= 0 and Discrim[ϕ, r] = 64(e2 − 2b) we must have e2 − 2b ≥ 0 and we set e2 − 2b =

w2 ≥ 0, i.e. b = (e2 − w2)/2. Then we obtain

ϕ = (4e − r − 4w)(4e − r + 4w) ≡ φ1φ2 = 0.

If φ1 = 0 we obtain r = 4(e − w) ̸= 0 and we obtain the parabola

Φ′
1(x, y) = −2(e2 − w2)− 2(e − w)x + 4(e − w)y + x2 (3.17)
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which is invariant for the family of systems

ẋ = − x2/2 + xy,

ẏ = (e2 − w2)/2 + ex − 2ey − 3xy/2 + 2y2.
(3.18)

In the case φ2 = 0 we obtain r = 4(e + w) ̸= 0 and we obtain the parabola

Φ′
2(x, y) = −2(e2 − w2)− 2(e + w)x + 4(e + w)y + x2

which is invariant for the same family of systems (3.18).
We observe that both invariant parabolas exist only for (e − w)(e + w) = e2 − w2 ̸= 0 and

since b = (e2 − w2)/2 we obtain that the condition b ̸= 0 must hold.
On the other hand we could have only one invariant parabola in the case when one of the

factors vanishes, i.e. (e − w)(e + w) = 0. So we calculate

(e − w) + (e + w) = 2e

and we conclude that in the case b = 0 and e ̸= 0 systems (3.18) possess only one invariant
parabola.

We determine that in the case w = 0 we obtain Φ′
1(x, y) = Φ′

2(x, y), i.e. the parabolas
coalesce when w tends to zero and we obtain a double parabola. On the other hand consid-
ering the relation e2 − 2b = w2 for w = 0 we obtain e2 − 2b = 0 and hence in the case b ̸= 0
we have two distinct invariant parabolas if e2 − 2b ̸= 0 and one double invariant parabola if
e2 − 2b = 0.

Thus we conclude that the statements (A6), (A7) and (A8) of Lemma 3.3 are proved.

Next we show that systems (3.18) could be brought via a transformation to the canonical
form (Sααα). Indeed we apply to parabola (3.17) the translation

x = x1 + e − w, y = y1 + (3e + w)/4

which brings this parabola to the form Φ̃(x1, y1) = x2
1 + 4(e − w) y1.

On the other hand considering Observation 3.4 we apply the same translation to systems
(3.18) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k = −4(e − w), n = (−e + 5w)/4 ⇒
e = (−5k + 16n)/16, w = (−k + 16n)/16.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sααα)

defined by the conditions g = −1/2 and m = (1 − 8n)/32.

2: The possibility g = 0. Then considering (3.5) we obtain

Eq8 = 2a + er = 0, Eq10 = (b − a)r = 0.

and since r ̸= 0 we obtain b = a. We discuss two cases: e ̸= 0 and e = 0.

2.1: The case e ̸= 0. Then we get r = −2a/e and we arrive at the family of systems

ẋ = a + xy, ẏ = a + ex + f y − xy + 2y2, (3.19)
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which possess the invariant parabola

Φ(x, y) = − a f
e
+

2a
e

x − 2a
e

y + x2 (3.20)

and clearly this conic is irreducible if and only if the condition a ̸= 0 holds.

2.2: The case e = 0. Then the equation Eq8 = 0 gives us a = 0 and then the equation
Eq10 = br = 0 implies b = 0. However in this case we get the degenerate system:

ẋ = xy, ẏ = y( f − x + 2y).

So a system (3.3) with g = 0 possesses an invariant parabola if and only if the condition ea ̸= 0
is satisfied. This completes the proof of the statement (A9) of Lemma 3.3.

Now we look for a transformation to brings systems (3.19) to the canonical form (Sααα). For
this we apply to parabola (3.20) the translation

x = x1 − a/e, y = y1 −
a + e f

2e

which brings this parabola to the form Φ̃(x1, y1) = x2
1 − 2a

e y1.
On the other hand considering Observation 3.4 we apply the same translation to systems

(3.15) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k =
2a
e

, m =
a + 2e2 + e f

4e
, n = − a + e f

2e
⇒

a = k(2m + n)/2, e = 2m + n, f = −(k + 4n)/2.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sααα)

defined by the condition g = 0.

3: The possibility g = −1. Then considering (3.5) we obtain

Eq8 = 2a + (e + f )r = 0, Eq10 = br = 0.

and since r ̸= 0 we obtain b = 0. We discuss two cases: e + f ̸= 0 and e + f = 0.

3.1: The case e + f ̸= 0. Then we get r = −2a/(e + f ) and we arrive at the family of
systems

ẋ = a − x2 + xy, ẏ = ex + f y − 2xy + 2y2, (3.21)

which possess the invariant parabola

Φ(x, y) = − a f
e + f

− 2a
e + f

y + x2. (3.22)

if a(e + f ) ̸= 0.

3.2: The case e + f = 0. Then f = −e and the equation Eq8 = 0 gives us a = 0. Since b = 0
this leads to the degenerate system:

ẋ = −x(x − y), ẏ = (e − 2y)(x − y).

Thus we have proved that a system (3.3) with g = −1 possesses an invariant parabola if and
only if the condition a(e + f ) ̸= 0 holds. This completes the proof of the statement (A10).
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Next we show that systems (3.21) could be brought via a transformation to the canonical
form (Sααα). Indeed we apply to parabola (3.22) the translation

x = x1, y = y1 − f /2

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

2a
e + f

y1.

On the other hand considering Observation 3.4 we apply the same translation to systems
(3.15) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k =
2a

e + f
, m =

e + f
2

, n = − f
2

⇒

a = km, e = 2(m + n), f = −2n.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sααα)

defined by the conditions g = −1.
Since all the cases are examined we deduce that Lemma 3.3 is proved.

Invariant conditions: the case η > 0 and ζ1 ̸= 0 Next we determine the affine invariant
conditions for a system with η > 0 and ζ1 ̸= 0 to possess an invariant parabola. According to
Lemma 2.4 in this case the condition χ1 = 0 is necessary.

We prove the following theorem.

Theorem 3.6. Assume that for a non-degenerate arbitrary quadratic system the conditions η > 0,
χ1 = 0 and ζ1 ̸= 0 are satisfied. Then this system could possess invariant parabolas only in one
direction. More exactly it could only possess one of the following sets of invariant parabolas: ∪, ⋓ and
∪∪∪2. Moreover this system has one of the above sets of parabolas if and only if χ2 = 0 and one of the
following sets of conditions are satisfied, correspondingly:

(A1) ζ2 ̸= 0, ζ3 ̸= 0, ζ4 ̸= 0, R1 ̸= 0 ⇒ ∪;
(A2) ζ2 ̸= 0, ζ3 ̸= 0, ζ4 = 0, R2 ̸= 0, ζ5 ̸= 0 ⇒ ⋓;
(A3) ζ2 ̸= 0, ζ3 ̸= 0, ζ4 = 0, R2 ̸= 0, ζ5 = 0 ⇒ ∪2;
(A4) ζ2 ̸= 0, ζ3 ̸= 0, ζ4 = 0, R2 = 0, ζ5 ̸= 0 ⇒ ∪;
(A5) ζ2 ̸= 0, ζ3 = 0, ζ4 ̸= 0, R1 ̸= 0 ⇒ ∪;
(A6) ζ2 ̸= 0, ζ3 = 0, ζ4 = 0, R2 ̸= 0 ζ5 ̸= 0 ⇒ ⋓;
(A7) ζ2 ̸= 0, ζ3 = 0, ζ4 = 0, R2 ̸= 0, ζ5 = 0 ⇒ ∪2;
(A8) ζ2 ̸= 0, ζ3 = 0, ζ4 = 0, R2 = 0, ζ5 ̸= 0 ⇒ ∪;
(A9) ζ2 = 0, ζ6 ̸= 0, R1 = 0, R2 ̸= 0 ⇒ ∪.

Proof. Assume that for an arbitrary non-degenerate quadratic system the condition η > 0
holds. Then according to Lemma 2.3 this system could be brought via a linear transformation
to the family of systems (3.1). Forcing the condition χ1 = 0 to be fulfilled for these systems
we get (h − 2)(g − 2)(1+ g + h) = 0. Considering Remark 3.2 we may assume h = 2 and after
an additional translation we arrive at the family of systems (3.3), i.e. at the systems

ẋ = a + gx2 + xy, ẏ = b + ex + f y + (g − 1)xy + 2y2. (3.23)

For these systems we calculate

ζ1 = 2(g − 2)(3 + g), χ2 = 384(g − 2)(3 + g)Ω1
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and since ζ1 ̸= 0 the condition χ2 = 0 is equivalent to Ω1 = 0.
Following the statements (A1)–(A4) of the theorem for systems (3.23) we calculate:

ζ2 = 4g(g + 1), ζ3 = 8(2g + 1)2, ζ4 = −(g − 2)(3 + g)D1/8,

R1 = 30(g − 2)(3 + g)(a − b + 4ag − 2bg + 3ag2) = 30(g − 2)(3 + g)G1.

We discuss two cases: ζ2 ̸= 0 and ζ2 = 0.

1: The case ζ2 ̸= 0. Then g(g+ 1) ̸= 0 and taking into account Lemma 3.3 we have to consider
the condition 2g + 1 ̸= 0 which is equivalent to ζ3 ̸= 0.

1.1: The subcase ζ3 ̸= 0.
Then we have 2g + 1 ̸= 0 and due to ζ1 ̸= 0 (i.e. (g − 2)(3 + g) ̸= 0) the condition ζ4 ̸= 0

is equivalent to D1 ̸= 0. So we examine two possibilities: ζ4 ̸= 0 and ζ4 = 0.

1.1.1: The possibility ζ4 ̸= 0. Then we have D1 ̸= 0 and we observe that the condition
R1 ̸= 0 is equivalent to G1 ̸= 0 since ζ1 ̸= 0. Therefore all the conditions provided by the
statement (A1) of Lemma 3.3 are satisfied and by this lemma systems (3.23) possess one
invariant parabola.

1.1.2: The possibility ζ4 = 0. In this case due to ζ1 ̸= 0 we obtain D1 = 0 and considering
(3.4) we get:

D1 = e + f (1 + g) = 0 ⇒ e = − f (1 + g).

Then for systems (3.23) we obtain

Ω1 = 2
[
a(1 + g)(1 + 3g)− b(1 + 2g)

]2

and due to the condition 1 + 2g ̸= 0 the condition Ω1 = 0 yields

b =
a(1 + g)(1 + 3g)

1 + 2g
.

Therefore for systems (3.23) with the parameters e and b above determined we calculate

ζ5 = − 19
1 + 2g

(g − 2)(3 + g)
[
8ag(1 + g)− f 2(1 + 2g)

]
= − 19

1 + 2g
(g − 2)(3 + g)F1.

So due to the condition ζ1 ̸= 0 (i.e. (g − 2)(3 + g) ̸= 0 we obtain that the condition F1 = 0 is
equivalent to ζ5 = 0.

We determine that in the case under examination the condition a ̸= 0 is equivalent to
R2 ̸= 0, which for systems (3.23) has the value

R2 = − a(g − 2)(3 + g)(8 + 27g + 27g2)

4(1 + 2g)
.

Indeed first we observe that Discrim[8 + 27g + 27g2, g] = −135 < 0 and secondly we have
(g − 2)(3 + g)(1 + 2g) ̸= 0 due to the condition ζ1ζ3 ̸= 0. So considering Lemma 3.3 we
conclude that systems (3.23) possess two parabolas if the conditions

χ1 = χ2 = 0, ζ1 ̸= 0, ζ2 ̸= 0, ζ3 ̸= 0, ζ4 = 0, R2 ̸= 0

hold. Moreover by Lemma 3.3 these invariant parabolas are distinct if ζ5 ̸= 0, i.e. F1 ̸= 0 (see
statement (A2)) and they coalesce (obtaining a double parabola) if ζ5 = 0, i.e. F1 = 0 (see
statement (A3)).
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Assume now that the condition R2 = 0 (i.e. a = 0) holds. Then for systems (3.23) with
D1 = 0 and Ω1 = 0 we calculate

ζ5 = 19 f 2(g − 2)(3 + g)

and since (g− 2)(3+ g) ̸= 0 (due to ζ1 ̸= 0) we conclude that the condition f ̸= 0 is equivalent
to ζ5 ̸= 0. So we get the conditions provided by Lemma 3.3 (see statement (A4)) and therefore
we have one simple invariant parabola.

1.2: The subcase ζ3 = 0. Then 1+ 2g = 0, i.e. g = −1/2 and for systems (3.23) calculations
yield:

ζ1 = −25/2, ζ2 = −1, ζ4 = 25(2e + f )/64 = 25D1/32,

χ2 = −300
[
2b(2e + f )2 + a(a − 4e2 − 6e f − 2 f 2)

]
.

So considering Lemma 3.3 (see statements (A5)–(A8)) we discuss two possibilities: ζ4 ̸= 0
and ζ4 = 0.

1.2.1: The possibility ζ4 ̸= 0. Then 2e + f ̸= 0 and the condition χ2 = 0 gives us

b = − a(a − 4e2 − 6e f − 2 f 2)

2(2e + f )2 .

So according to Lemma 3.3 (see statements (A5)) systems (3.23) with g = −1/2 and the above
given value of the parameter b possess one invariant parabola if in addition the condition
a ̸= 0 holds. It remains to observe that this condition is governed by the invariant polynomial
R1 because for these systems we have R1 = 375a/8.

1.2.2: The possibility ζ4 = 0. Then we have D1 = 0 which implies f = −2e and then we
obtain χ2 = −300a2 = 0, i.e. a = 0. As a result we arrive at the family of systems

ẋ = −x2/2 + xy, ẏ = b + ex − 2ey − 3xy/2 + 2y2 (3.24)

for which we calculate

ζ1 = −25/2, ζ2 = −1, ζ3 = ζ4 = R1 = 0, R2 = −125b/16, ζ5 = 475(2b − e2).

So considering the statements (A6) and (A7) of Lemma 3.3 we deduce that in the case R2 ̸= 0
(i.e. b ̸= 0) systems (3.24) possess two distinct invariant parabolas if ζ5 ̸= 0 and one double
invariant parabola if ζ5 = 0.

Assuming R2 = 0 (i.e. b = 0) considering the value of the invariant polynomial ζ5 given
above we get ζ5 = −475e2 and hence the condition e ̸= 0 is equivalent to ζ5 ̸= 0.

So we get the conditions provided by the statement (A8) of Lemma 3.3 and therefore
systems (3.24) possess one simple invariant parabola.

2: The case ζ2 = 0. Then we have g(g + 1) = 0, i.e. either g = 0 or g = −1. We discuss each
one of these possibilities.

2.1: The possibility g = 0. Then for for systems (3.23) we calculate

χ2 = −2304(a − b)(2a − 2b − e2 − e f ), R1 = −180(a − b).

According to the statement (A9) of Lemma 3.3 for the existence of invariant parabola the
condition b = a is necessary, i.e. we must have R1 = 0 and this implies χ2 = 0. Setting b = a
we obtain

ζ6 = e/2, R2 = 12a
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and considering the statements (A9) the condition ζ6R2 ̸= 0 must be satisfied for the existence
of an invariant parabola.

2.2: The possibility g = −1. In this case for systems (3.23) we obtain

χ2 = −2304b(2b + e2 + e f ), R1 = −180b.

Considering the statement (A10) of Lemma 3.3 we deduce that for the existence of an invariant
parabola the condition b = 0 is necessary, i.e. we must have R1 = 0 and this implies χ2 = 0.
Setting b = 0 we calculate

ζ6 = −(e + f )/2, R2 = −12a

and therefore by the statements (A10) the condition ζ6R2 ̸= 0 must be satisfied for the exis-
tence of an invariant parabola.

We observe that in both cases g = 0 and g = −1 we have obtained the same invariant
conditions R1 = 0 and ζ6R2 ̸= 0. This completes the proof of the statement (A9) of Theorem
3.6 as well as the proof of Theorem 3.6.

3.1.2 The possibility χ1 = ζ1 = 0

Next we consider the case when systems (3.1) could possess invariant parabolas in two direc-
tions. Then two factors of χ1 from (3.2) vanish. According to Remark 3.2 we could consider
h = 2 = g and due to the translation (x, y) 7→ (x − d, y − e) (forcing d = e = 0) we arrive at
the family of systems

ẋ = a + cx + 2x2 + xy, ẏ = b + f y + xy + 2y2. (3.25)

Coefficient conditions for systems (3.25) to possess invariant parabolas. By Lemma 3.1
systems (3.25) could possess invariant parabolas either of the form Φ(x, y) = p + qx + ry + x2

(r ̸= 0) or of the form Φ(x, y) = p + qx + ry + y2 (q ̸= 0). We prove the following lemma.

Lemma 3.7. A system (3.25) possesses either one or two invariant parabolas or a double invariant
parabola of the indicated form if and only if the corresponding set of conditions are satisfied, respectively:

(B) Φ(x, y) = p + qx + ry + x2 ⇔ Ω′
1 = 0 and either

(B1) D′
1 ̸= 0, G ′

1 ̸= 0 ⇒ one invariant parabola; or

(B2) D′
1 = 0, a ̸= 0, F ′

1 ̸= 0 ⇒ two invariant parabolas; or

(B3) D′
1 = 0, a ̸= 0, F ′

1 = 0 ⇒ one double invariant parabola; or

(B4) D′
1 = 0, a = 0, c ̸= 0 ⇒ one invariant parabola.

(B′) Φ(x, y) = p + qx + ry + y2 ⇔ Ω′
2 = 0 and either

(B′
1) D′

2 ̸= 0, G ′
2 ̸= 0 ⇒ one invariant parabola; or

(B′
2) D′

2 = 0, b ̸= 0, F ′
2 ̸= 0 ⇒ two invariant parabolas; or

(B′
3) D′

2 = 0, b ̸= 0, F ′
2 = 0 ⇒ one double invariant parabola; or

(B′
4) D′

2 = 0, b = 0, f ̸= 0 ⇒ one invariant parabola.
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where

Ω′
1 = 50b2 + b(109c2 − 420a − 53c f − 6 f 2) + 3(6a − c2 + c f )(49a − 6c2 − c f + 2 f 2);

D′
1 = 13c − 3 f ; G ′

1 = 21a − 5b − 10c2 + 5c f ;

F ′
1 = 15a − 15b − 2c2 + 2 f 2;

Ω′
2 = 50a2 + a(109 f 2 − 420b − 53c f − 6c2) + 3(6b − f 2 + c f )(49b − 6 f 2 − c f + 2c2);

D′
2 = 13 f − 3c; G ′

2 = 21b − 5a − 10 f 2 + 5c f ;

F ′
2 = 15b − 15a − 2 f 2 + 2c2.

(3.26)

Proof. Considering the equations (2.6) we examine each one of the statements of the above
lemma.

(B) Φ(x, y) = p + qx + ry + x2 with r ̸= 0. In this case we obtain

s = 1, v = u = 0, U = 4, V = 2, W = 2(c − q),

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0.

Calculating the remaining equations we have

Eq6 = −q − 3r, Eq8 = 2a − 4p − cq + 2q2,

Eq9 = −2p − 2cr + f r + 2qr, Eq10 = aq − 2cp + 2pq + br.

It is clear that the equations Eq6 = 0 implies q = −3r whereas Eq9 = 0 gives us p = −r(2c −
f + 6r)/2. Therefore calculations yield

Eq8 = 2a + (7c − 2 f )r + 30r2,

Eq10 = r
[
b − 3a + 2c2 − c f + 3(4c − f )r + 18r2] ≡ rΨ′(a, b, c, f , r)

and since r ̸= 0 the equation Eq10 = 0 is equivalent to Ψ′ = 0.
According to [12, Lemmas 11,12] the equations Eq8 = 0 and Ψ′ = 0 have a common

solution of degree 2 with respect to the parameter r if and only if

Res(0)r (Eq8, Ψ′) = Res(1)r (Eq8, Ψ) = 0

where Res(1)r is the subresultant of order one and Res(0)r is the subresultant of order zero which
coincide with standard resultant (for detailed definition see [12], formula (19)). We calculate

Res(1)r (Eq8, Ψ) = 18(13c − 3 f ) ≡ 18D′
1, Res(0)r (Eq8, Ψ) = 18Ω′

1.

So we examine two possibilities: D′
1 ̸= 0 and D′

1 = 0.

1: The possibility D′
1 ̸= 0. Therefore the equations Eq8 = 0 and Ψ′ = 0 could have a unique

common solution with respect to the parameter r and for this it is necessary and sufficient
Ω′

1 = 0. So we have to examine the solutions of the equation Ω′
1 = 0. In this case we calculate

Discrim[Ω′
1, b] = −(13c − 3 f )2(240a − 49c2 + 28c f − 4 f 2) ≡ −D′2

1 E ′

and hence the equation Ω′
1 = 0 has real solutions with respect to the parameter b if and only

if either D′
1 = 0 or E ′ ≤ 0. However since the condition D′

1 ̸= 0 holds it remains to examine
the condition E ′ ≤ 0. In this case setting E ′ = −w2 ≤ 0 we calculate

a =
(7c − 2 f )2 − w2

240
(3.27)
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and then we obtain Ω′
1 =

(
E+E−

)
/3200, where

E± = 400b + 93c2 − 16c f − 52 f 2 + 4ε(13c − 3 f )w + 7w2, ε = ±1.

Then the condition Ω′
1 = 0 gives us

b = − 1
400

(3c + 2 f + εw)(31c − 26 f + 7εw) (3.28)

where ε = 1 if E+ = 0 and ε = −1 if E− = 0. In this case we obtain that the polynomials Eq8

and Ψ(c, f , r) have the common factor ζ = (7c − 2 f + 60r − εw) which is linear with respect
to the parameter r. Setting ζ = 0 we get

r =
2 f − 7c + εw

60

and we arrive at the family of systems

ẋ =
(7c − 2 f )2 − w2

240
+ cx + 2x2 + xy,

ẏ = − (3c + 2 f + εw)(31c − 26 f + 7εw)

400
+ f y + xy + 2y2.

(3.29)

This family of systems possess the following invariant parabola

Φ(x, y) =
(7c − 2 f − εw)(13c − 8 f + εw)

1200
+

(7c − 2 f − εw)

20
x − (7c − 2 f − εw)

60
y + x2.

(3.30)
We observe that this conic is reducible if and only if 7c − 2 f − εw = 0.

Considering (3.27) and (3.28) we get

w2 = −240a + (7c − 2 f )2

and then we obtain

b = − 1
400

[
(31c − 26 f )(3c + 2 f ) + 4(13c − 3 f )εw + 7w2] ⇒

100b − 420a + 109c2 − 53c f − 6 f 2 + (13c − 3 f )εw = 0.

Since D′
1 = 13c − 3 f ̸= 0 we solve the last equation with respect to εw and we obtain

εw =
1

13c − 3 f
(
420a − 100b − 109c2 + 53c f + 6 f 2).

Then calculations yield

r =
(−7c + 2 f + εw)

60
=

21a − 5b − 10c2 + 5c f
3(13c − 3 f )

=
G ′

1
3(13c − 3 f )

̸= 0.

This completes the proof of the statement (B1) of Lemma 3.3.

Next we show that systems (3.29) could be brought via a transformation to the canonical
form (Sααα). Indeed we apply to parabola (3.30) the translation

x = x1 +
2 f − 7c + εw

40
, y = y1 +

31c − 26 f + 7εw
80

.
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which brings this parabola to the form Φ̃(x1, y1) = x2
1 +

2 f − 7c + εw
60

y1.
On the other hand considering Observation 3.4 we apply the same translation to systems

(3.29) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k = −2 f − 7c + εw
60

, m = −31c − 26 f + 7εw
160

, n =
11c − 2 f + 3εw

16
⇒

c = 6k − 2m + n, f =
3k − 16m + 4n

2
, εw = −21k + 2m + 3n.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sααα)

defined by the conditions g = 2.

2: The possibility D′
1 = 0. Then f = 13c/3 and therefore we obtain:

Ω′
1 = 2(63a − 15b + 35c2)2/9

and hence the condition Ω′
1 = 0 implies

b = 7(9a + 5c2)/15.

Therefore we determine that in this case the polynomials Eq8 and Eq10 have the following
common factor

ϕ′ = 6a − 5cr + 90r2.

We observe that ϕ′ is quadratic in r with the discriminant

Discrim[ϕ′, r] = −5(432a − 5c2)

and setting this discriminant equal to be w2 we obtain

a =
25c2 − w2

2160
. (3.31)

Then we arrive at the following expressions for the polynomials Eq8 and Eq10:

Eq10 =
3r
5

Eq8 =
r(5c − 180r + w)(5c − 180r − w)

1800
=

rU+U−
1800

.

Therefore the equations Eq8 = Eq10 = 0 imply U+U− = 0. If U+ = 0 we determine

r =
5c + w

180
≡ r+

and we obtain the parabola

Φ′
1(x, y) =

(65c − w)(5c + w)

10800
− 5c + w

60
x +

5c + w
180

y + x2. (3.32)

In the case U− = 0 we obtain

r =
5c + w

180
≡ r−

and we get the parabola

Φ′
2(x, y) =

(65c + w)(5c − w)

10800
− 5c − w

60
x +

5c − w
180

y + x2.
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Both these parabolas are invariant for the following family of systems:

ẋ =
25c2 − w2

2160
+ cx + 2x2 + xy, ẏ =

7(1225c2 − w2)

3600
+

13c
3

y + xy + 2y2. (3.33)

We observe that both parabolas Φ′
i(x, y) = 0 (i = 1, 2) exist (i.e. are not reducible) if and

only if r+r− ̸= 0 and this is equivalent to

(5c + w)(5c − w) = 25c2 − w2

and considering (3.31) this is equivalent to a ̸= 0.
On the other hand if only one of the factors vanishes we have a = 0 and

r+ + r− = (5c + w) + (5c − w) = 10c ̸= 0.

Therefore for a = 0 and c ̸= 0 we could have only one parabola.
We determine that in the case w = 0 we obtain Φ′

1(x, y) = Φ′
2(x, y), i.e. the parabolas coa-

lesce when w tends to zero and we obtain a double parabola. On the other hand considering
(3.31) for w = 0 we obtain

a − 25c2

2160
=

432a − 5c2

432
= − 9

432
F ′

1

and we conclude that these invariant parabolas coalesce if and only if F ′
1 = 0.

Thus we conclude that the statements (B2), (B3) and (B4) of Lemma 3.7 are proved.
Next we show that systems (3.33) could be brought via a transformation to the canonical

form (Sααα). Indeed we could apply to parabola (3.32) the translation

x = x1 +
5c + w

120
, y = y1 −

7(35c − w)

240

which brings this parabola to the form Φ̃(x1, y1) = x2
1 +

5c + w
180

y1.
On the other hand considering Observation 3.4 we apply the same translation to systems

(3.29) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k = −5c + w
180

, n =
7c + 3w

48
⇒ c = −3(45k + 4n)/2, w = 15(21k + 4n)/2.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sααα)

defined by the conditions g = 2 and m = 7(21k + 2n)/4.

(B′) Φ(x, y) = p + qx + ry + y2 with q ̸= 0 otherwise we get a reducible conic. It is not
too difficult to detect that this case can be brought to the case (B) if we apply two changes:
one in systems (3.25) and another in the formula of conic (2.4). More precisely the change

(x, y, a, b, c, f ) 7→ (y, x, b, a, f , c) (3.34)

conserves systems (3.25) whereas the change

(x, y, p, q, r, s, v, u) → (y, x, p, r, q, u, v, s)

conserves the conic (2.4). We observe that the second change transfers the parabola Φ(x, y) =
p + qx + ry + x2 to the parabola Φ(x, y) = p + qx + ry + y2 and at the same time the first
change transfers the conditions (Bi), i = 1, 2, 3, 4 from the statement (B) of Lemma 3.7 to the
conditions (B′

i), i = 1, 2, 3, 4 from the statement (B′) of the same lemma, correspondingly.
Since the conditions of the statement (B) are proved, we conclude that the conditions of the
statement (B′) of Lemma 3.7 are also valid. This completes the proof of Lemma 3.7.
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We point out that Theorem 3.6 provides the necessary and sufficient conditions for the
existence of invariant parabolas for an arbitrary quadratic systems with the conditions η > 0,
χ1 = 0 and ζ1 ̸= 0. As it was mentioned earlier (see page 16) the condition ζ1 ̸= 0 does not
allow this system to possess invariant parabolas in two directions.

Invariant conditions: the case η > 0 and ζ1 = 0 Next we consider the class of quadratic
systems for which the conditions η > 0 and ζ1 = 0, which could possess invariant parabolas
in two directions.

We prove the following theorem.

Theorem 3.8. Assume that for a non-degenerate arbitrary quadratic system the conditions η > 0 and
χ1 = ζ1 = 0 are satisfied. Then this system could possess invariant parabolas in one or two directions.
More exactly it could only possess one of the following sets of invariant parabolas: ∪, ⋓, ∪∪∪2, ∪⊂
and ⋓⊂. Moreover this system has one of the above sets of invariant parabolas if and only if χ3 = 0
and one of the following sets of conditions are satisfied, correspondingly:

(B1) χ4 ̸= 0, ζ7 ̸= 0, R3 ̸= 0 ⇒ ∪;
(B2) χ4 ̸= 0, ζ7 = 0, R4 ̸= 0, ζ8 ̸= 0 ⇒ ⋓;
(B3) χ4 ̸= 0, ζ7 = 0, R4 ̸= 0, ζ8 = 0 ⇒ ∪2;
(B4) χ4 ̸= 0, ζ7 = 0, R4 = 0 ⇒ ∪;
(B5) χ4 = 0, ζ5 ̸= 0, ζ9 ̸= 0 ⇒ ∪⊂;
(B6) χ4 = 0, ζ5 ̸= 0, ζ9 = 0, ζ10 ̸= 0 ⇒ ∪;
(B7) χ4 = 0, ζ5 = 0, ζ6 ̸= 0 ⇒ ⋓⊂.

Proof. As it was shown earlier (see page 29) if for a quadratic system with three real infinite
singularities the conditions χ1 = ζ1 = 0 are satisfied, then via an affine transformation and
time rescaling this system can be brought to the form (3.25). Thus in what follows we consider
the family of quadratic systems

ẋ = a + cx + 2x2 + xy, ẏ = b + f y + xy + 2y2. (3.35)

Considering (3.26) for these systems we calculate

χ1 = χ2 = ζ1 = 0, χ3 = 24345383 · 491 Ω′
1Ω′

2, χ4 = 123750(Ω′
1 + Ω′

2)

and therefore the condition χ3 = 0 yields Ω′
1Ω′

2 = 0, i.e. one of the necessary conditions
provided either by the statement (B) of Lemma 3.7 or by the statement (B′) of this lemma is
satisfied. We discuss two cases: χ4 ̸= 0 and χ4 = 0.

1: The case χ4 ̸= 0. Then Ω′
1 + Ω′

2 ̸= 0 and we conclude that only one of the polynomials Ω′
1

or Ω′
2 vanishes. Considering the change (3.34) we may assume without losing generality that

the conditions Ω′
1 = 0 and Ω′

2 ̸= 0 are fulfilled.
On the other hand for systems (3.35) we calculate

ζ7 = 105750
(
D′

2Ω′
1 +D′

1Ω′
2
)
, R3 = 5134081342500

(
G ′

2Ω′
1 + G ′

1Ω′
2
)
.

Therefore since Ω′
1 = 0 and Ω′

2 ̸= 0 we obtain that the condition D′
1 = 0 is equivalent to

ζ7 = 0. Moreover in this case the condition R3 ̸= 0 is equivalent to G ′
1 ̸= 0. So we discuss two

subcases: ζ7 ̸= 0 and ζ7 = 0.

1.1: The subcase ζ7 ̸= 0. Then D′
1 ̸= 0 and by Lemma 3.7 (see statement (B1)) we deduce

that systems (3.25) possess one invariant parabola if and only if G ′
1 ̸= 0. Due to Ω′

1 = 0 and
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Ω′
2 ̸= 0 this condition is equivalent to R3 ̸= 0 and we conclude that the statement (B1) of

Theorem 3.8 is proved.

1.2: The subcase ζ7 = 0. This implies D′
1 = 13c − 3 f = 0, i.e. f = 13c/3 and then we get

Ω′
1 = 2(63a − 15b + 35c2)2/9 = 0 ⇒ b = 7(9a + 5c2)/15.

So we arrive at the family of systems

ẋ = a + cx + 2x2 + xy, ẏ =
7
15

(9a + 5c2) +
13c
3

y + xy + 2y2, (3.36)

for which we calculate

ζ8 = −(432a − 5c2)/9 = F ′
1, R4 = 15600a.

We observe that the condition R4 ̸= 0 is equivalent to a ̸= 0 and therefore by Lemma 3.7 in
the case R4 ̸= 0 systems (3.36) possess two distinct parabolas in one direction (see statement
(B2)) if ζ8 ̸= 0 and they possess one double invariant parabola (see statement (B3)) if ζ8 = 0.
This means that the statements (B2) and (B3) of Theorem 3.8 are proved.

Assume now that the condition R4 = 0 holds. Then a = 0 and for systems (3.36) we have
χ4 = 110000c4 ̸= 0. Then according to the statement (B4) of Lemma 3.7 we conclude that
these systems possess one invariant parabola and therefore the statements (B4) of Theorem
3.8 is valid.

2: The case χ4 = 0. Then we get Ω′
1 = Ω′

2 = 0 and since for systems (3.35) we have

ζ5 = 25(13c − 3 f )(13 f − 3c)/4 = 25D′
1D′

2/4,

ζ9 = −990000(21a − 5b − 10c2 + 5c f )(5a − 21b − 5c f + 10 f 2) = 990000G ′
1G ′

2,

ζ10 = 5(8a + 8b − 5c2 + 5c f − 5 f 2)/4 = 5(G ′
1 + G ′

2)/8.

(3.37)

We examine two subcases: ζ5 ̸= 0 and ζ5 = 0.

2.1: The subcase ζ5 ̸= 0. Then D′
1D′

2 ̸= 0 and by Lemma 3.7 (see statements (A′
1) and

(B′
1)) we have one invariant parabola in the direction x = 0 if G ′

1 ̸= 0 and one in the direction
y = 0 if G ′

2 ̸= 0. So considering (3.37) we examine two possibilities: ζ9 ̸= 0 and ζ9 = 0.

2.1.1: The possibility ζ9 ̸= 0. This implies G ′
1G ′

2 ̸= 0 and by Lemma 3.7 in this case we have
one invariant parabola in one direction and another invariant parabola in other direction. So
the statement (B5) of Theorem 3.8 is proved.

2.1.2: The possibility ζ9 = 0. Then we have G ′
1G ′

2 = 0, i.e. at least one of the factors
vanishes. Considering (3.37) we conclude that both factors vanish if and only if ζ10 = 0. In
this case G ′

1 = G ′
2 = 0 and by Lemma 3.7 (see statements (B1) and (B′

1)) systems (3.25) could
not possess any invariant parabolas.

On the other hand in the case ζ10 ̸= 0 we have G ′
1 + G ′

2 ̸= 0 and since G ′
1G ′

2 = 0, by Lemma
3.7 we have one invariant parabola (either in direction y = 0 if G ′

1 = 0 or in direction x = 0 if
G ′

2 = 0. This means that the statement (B6) of Theorem 3.8 is valid.

2.2: The subcase ζ5 = 0. In this case we get D′
1D′

2 = 0. On the other hand we obtain
D′

1 + D′
2 = 10(c + f ) and hence both D′

1 and D′
2 vanish if and only if c + f = 0 and this

condition is governed by the invariant polynomial ζ6 = −(c + f )/2. So we discuss two
possibilities: ζ6 ̸= 0 and ζ6 = 0.
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2.2.1: The possibility ζ6 ̸= 0. Then only one of the polynomials D′
1 or D′

2 vanishes and
due to the change (x, y, a, b, c, f ) 7→ (y, x, b, a, f , c) without losing generality we may assume
that for systems (3.25) the condition D′

1 = 0 holds. Considering (3.26) this condition implies
f = 13c/3 and then we obtain

Ω′
1 = 2(63a − 15b + 35c2)2/9 = 0 ⇒ b = 7(9a + 5c2)/15.

Therefore we calculate

Ω′
2 = 8(144a + 5c2)(2704a + 5c2)/225, ζ6 = −8c/3 ̸= 0

and the condition Ω′
2 = 0 gives us either a = −5c2/144 ̸= 0 or a = −5c2/2704 ̸= 0 (due to

ζ6 ̸= 0). In this case we get either

F ′
1 = 20c2/9 ̸= 0, G ′

2 = −120c2 ̸= 0

if a = −5c2/144 or

F ′
1 = 980c2/1521 ̸= 0, G ′

2 = −13720c2/117 ̸= 0

if a = −5c2/2704. So considering the statements (B2) and (B′
1) of Lemma 3.7 we conclude

that systems (3.25) possess two distinct invariant parabolas in the direction x = 0 and one
invariant parabola in the direction y = 0. This means that the statement (B7) of Theorem 3.8
is valid.

2.2.2: The possibility ζ6 = 0. This condition implies D′
1 = D′

2 = 0 and considering (3.26)
we obtain c = f = 0. Then we obtain

Ω′
1 = 2(21a − 5b)2, Ω′

2 = 2(5a − 21b)2

and evidently the conditions Ω′
1 = Ω′

2 = 0 imply a = b = 0. Therefore we arrive at the
following homogeneous system

ẋ = x(2x + y), ẏ = y(x + 2y)

that could not possess any invariant parabola.
Since all the possibilities are examined we conclude that Theorem 3.8 is proved.

3.2 Systems with one real and two complex infinite singularities

In this case according to Lemma 2.3 systems (2.5) could be brought via a linear transformation
to the following family of systems

dx
dt

= a + cx + dy + gx2 + (h + 1)xy,

dy
dt

= b + ex + f y − x2 + gxy + hy2.
(3.38)

For these systems we calculate

C2(x, y) = x(x2 + y2), χ1 = −2(2 + h)
[
g2 + (h − 3)2] (3.39)

and by Lemma 2.6 we conclude that the above systems could have invariant parabolas only of
the form Φ(x, y) = p + qx + ry + x2 with r ̸= 0 (otherwise we get a reducible conic).
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On the other hand according to Lemma 2.4 for a system (3.38) to possess an invariant
parabola the condition χ1 = 0 is necessary. Considering (3.39) this condition implies either
h = −2 or g = 0 = h − 3. We claim that in the second case systems (3.38) could not possess
any invariant parabola.

Indeed, assuming g = 0 and h = 3 and using a translation we may assume c = d = 0 and
we arrive at the family of systems

ẋ = a + 4xy, ẏ = b + ex + f y − x2 + 3y2. (3.40)

Considering equations (2.6) and the form of the parabola Φ(x, y) = p + qx + ry + x2 with
r ̸= 0, for systems (3.40) we have

s = 1, v = u = 0, Eq2 = 8 − V, Eq7 = r(3 − V).

Evidently the conditions Eq2 = 0 and Eq7 = 0 imply r = 0, i.e. the conic Φ(x, y) = p + qx +

ry + x2 with r = 0 is reducible and this completes the proof of our claim.
For systems (3.38) we calculate

ζ1 = −2
[
(h − 3)(1 + h)(2h − 1) + g2(3 + 2h)

]
and clearly the conditions g = 0 and h = 3 imply ζ1 = 0. On the other hand for h = −2 we
get ζ1 = 2(25 + g2) ̸= 0 and therefore the condition h + 2 = 0 is equivalent to χ1 = 0 and
ζ1 ̸= 0. So we have the next remark.

Remark 3.9. If a system (3.38) possesses an invariant parabola then the conditions χ1 = 0 and
ζ1 ̸= 0 are necessary.

According to this remark we assume that the conditions χ1 = 0 and ζ1 ̸= 0 are fulfilled for
systems (3.38). Then the condition h = −2 holds and due to a translation we may consider
c = d = 0. So we arrive at the family of systems

ẋ = a + gx2 − xy, ẏ = b + ex + f y − x2 + gxy − 2y2. (3.41)

3.2.1 Coefficient conditions for systems (3.41) to possess invariant parabolas

We prove the following lemma.

Lemma 3.10. A system (3.41) possesses either one or two invariant parabolas or a double invariant
parabola of the form Φ(x, y) = p + qx + ry + x2 if and only if Ω̃ = 0 and the corresponding set of
conditions are satisfied, respectively:

(E1) D̃ ̸= 0, G̃ ̸= 0 ⇒ one invariant parabola;

(E2) D̃ = 0, b ̸= 0, F̃ ̸= 0 ⇒ two invariant parabolas;

(E3) D̃ = 0, b ̸= 0, F̃ = 0 ⇒ one double invariant parabola;

(E4) D̃ = 0, b = 0, f ̸= 0 ⇒ one invariant parabola,

where

Ω̃ = 2a2(1 + 3g2)2 + a
[
8bg(1 + 3g2)− (e − f g)( f + eg + 2 f g2)

]
+ b(8bg2 + f 2g2 − e2),

D̃ = e − f g, G̃ = a + 2bg + 3ag2,

F̃ = 608(b + ag)(25 + g2) + 25(49e2 + 76 f 2)− f g(850e + 299 f g).
(3.42)
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Proof. Considering equations (2.6) and the form of the parabola Φ(x, y) = p + qx + ry + x2

with r ̸= 0 for systems (3.41) we obtain

s = 1, v = u = 0, U = 2g, V = −2, W = −gq − r,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0, Eq6 = q − gr.

Therefore the condition Eq6 = 0 gives us q = gr and calculations yield:

Eq9 = 2p + r( f + r + g2r) = 0 ⇒ p = −r( f + r + g2r)/2

and then we obtain

Eq8 = 2a + (e + f g)r + 2g(1 + g2)r2,

Eq10 =
r
2
[
2(b + ag)− f (1 + g2)r − (1 + g2)2r2] ≡ r

2
Ψ̃(a, b, f , g, r).

Since r ̸= 0 the equation Eq10 = 0 is equivalent to Ψ̃ = 0.
According to [12, Lemmas 11,12] the equations Eq8 = 0 and Ψ̃ = 0 have a common solution

of degree 2 with respect to the parameter r if and only if

Res(0)r (Eq8, Ψ̃) = Res(1)r (Eq8, Ψ̃) = 0

where Res(1)r is the subresultant of order one and Res(0)r is the subresultant of order zero
which coincide with the standard resultant (for detailed definition see [12], formula (19)). We
calculate

Res(1)r (Eq8, Ψ̃) = (1 + g2)2(e − f g) ≡ (1 + g2)2D̃,

Res(0)r (Eq8, Ψ̃) = 2(1 + g2)2Ω̃.

We observe that the subresultant of order one Res(1)r (Eq8, Ψ̃) vanishes if and only if D̃ = 0. So
we consider two cases: D̃ ̸= 0 and D̃ = 0.

1: The case D̃ ̸= 0. Then the invariant parabola exists if and only if Ω̃ = 0 and therefore we
have to examine the solutions of the equation Ω̃ = 0. We calculate

Discrim[Ω̃, a] = (e − f g)2[8b(1 + g2)(1 + 3g2) + ( f + eg + 2 f g2)2] ≡ D̃2Ẽ

and hence the equation Ω̃ = 0 has real solutions in the parameter a if and only if either D̃ = 0
or Ẽ ≥ 0. However since the condition D̃ ̸= 0 holds it remains to examine the condition Ẽ ≥ 0.

In this case setting Ẽ = w2 ≥ 0 we calculate

b = − ( f + eg + 2 f g2)2 − w2

8(1 + g2)(1 + 3g2)
(3.43)

and then we obtain
Ω̃ =

G+G−
8(1 + g2)2(1 + 3g2)2 ,

where

G± = 4a(1 + g2)(1 + 3g2)2 − ( f + eg + 2 f g2 + εw)(e + 2eg2 + f g3 − εgw), ε = ±1.

Then the condition Ω̃ = 0 gives us

a =
( f + eg + 2 f g2 + εw)(e + 2eg2 + f g3 − εwg)

4(1 + g2)(1 + 3g2)2 , (3.44)
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where ε = 1 if G+ = 0 and ε = −1 if G− = 0. In this case we obtain that the polynomials Eq8

and Ψ̃ have the common factor ζ = 2(1 + g2)(1 + 3g2)r + f + eg + 2 f g2 + εw which is linear
with respect to the parameter r. Setting ζ = 0 we get

r = − f + eg + 2 f g2 + εw
2(1 + g2)(1 + 3g2)

and we arrive at the family of systems

ẋ =
( f + eg + 2 f g2 + εw)(e + 2eg2 + f g3 − gεw)

4(1 + g2)(1 + 3g2)2 + gx2 − xy,

ẏ = − ( f + eg + 2 f g2)2 − w2

8(1 + g2)(1 + 3g2)
+ ex + f y + gxy − 2y2.

(3.45)

This family of systems possess the following invariant parabola

Φ(x, y) =
( f − eg + 4 f g2 − εw)( f + eg + 2 f g2 + εw)

8(1 + g2)(1 + 3g2)2 − g( f + eg + 2 f g2 + εw)

2(1 + g2)(1 + 3g2)2 x

− f + eg + 2 f g2 + εw
2(1 + g2)(1 + 3g2)

y + x2.
(3.46)

We observe that this conic is reducible if and only if f + eg + 2 f g2 + εw = 0.
Considering (3.43) we get

w2 = 8b(1 + g2)(1 + 3g2) + ( f + eg + 2 f g2)2

and then from (3.44) we obtain

a =
1

4(1 + g2)(1 + 3g2)2

[
( f + eg + 2 f g2)(e + 2eg2 + f g3) + (e − f g)(1 + g2)εw − gw2] ⇒

8bg(1 + 3g2) + 4a(1 + 3g2)2 − (e − f g)( f + eg + 2 f g2)− (e − f g)εw = 0.

Since D̃ = (e − f g) ̸= 0 we solve the last equation with respect to εw and we obtain

εw =
1

e − f g
[
4b(1 + 2g)2 − 4a(1 + g)(1 + 2g)(1 + 3g) + (e − f g)(e + f + f g)

]
.

Then calculations yield

r = − f + eg + 2 f g2 + εw
2(1 + g2)(1 + 3g2)

= −2(a + 2bg + 3ag2)

(e − f g)(1 + g2)
= − 2 G̃

(e − f g)(1 + g2)
̸= 0.

This completes the proof of the statement (E1) of Lemma 3.10.

Next we show that systems (3.45) could be brought via a transformation to the canonical
form (Sβββ). Indeed we could apply to parabola (3.46) the translation

x = x1 +
g( f + eg + 2 f g2 + εw)

4(1 + g2)(1 + 3g2)
, y = y1 +

f (2 + 9g2 + 6g4)− (2 + 3g2)(eg + εw)

8(1 + g2)(1 + 3g2)
,

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

f + eg + 2 f g2 + εw
2(1 + g2)(1 + 3g2)

y1.
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On the other hand considering Observation 3.4 we apply the same translation to systems
(3.45) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k =
f + eg + 2 f g2 + εw
2(1 + g2)(1 + 3g2)

, n =
g(4e − f g + 7eg2 + 2 f g3) + (4 + 7g2)εw

8(1 + g2)(1 + 3g2)
,

m =
(2 + 3g2)(4e − f g + 7eg2 + 2 f g3)− 3g(2 + g2)εw

16(1 + g2)(1 + 3g2)
⇒

e =
gk − 2g3k + 4m + 2gn

2
, f =

4k + 7g2k − 4n
2

, w =
2n − 2gm + 3g2n

ε
.

Then after an additional rescaling (to force k = 1) we arrive at the family of systems (Sβββ).

2: The case D̃ = 0. Then e − f g = 0 and we have e = f g. Therefore we obtain:

Ω̃ = 2(a + 2bg + 3ag2)2

and the condition Ω̃ = 0 implies

a = − 2bg
1 + 3g2 .

Therefore we determine that in this case the polynomials Eq8 and Eq10 have the following
common factor

ϕ̃ = 2b − f (1 + 3g2)r − (1 + g2)(1 + 3g2)r2.

We observe that ϕ̃ is quadratic in r with the discriminant

Discrim[ϕ̃, r] = (1 + 3g2)(8b + f 2 + 8bg2 + 3 f 2g2)

and clearly the condition (8b + f 2 + 8bg2 + 3 f 2g2) ≥ 0 must hold. Setting

8b + f 2 + 8bg2 + 3 f 2g2 = (1 + 3g2)w2 ≥ 0,

we obtain

b = − (1 + 3g2)( f 2 − w2)

8(1 + g2)
. (3.47)

Then we arrive at the following expressions for the polynomials Eq8 and Eq10:

Eq8 =
gM+M−
2(1 + g2)

, Eq10 = − rM+M−
8

, M± = f + 2r + 2g2r ± w.

Therefore the equations Eq8 = Eq10 = 0 imply M+M− = 0.
If M+ = 0 we determine

r = − f + w
2(1 + g2)

≡ r+

and we obtain the parabola

Φ1(x, y) =
( f − w)( f + w)

8 (g2 + 1)
− g( f + w)

2 (g2 + 1)
x − f + w

2 (g2 + 1)
y + x2. (3.48)

In the case M− = 0 we obtain

r = − f − w
2(1 + g2)

≡ r−
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and we get the parabola

Φ2(x, y) =
( f − w)( f + w)

8 (g2 + 1)
− g( f − w)

2 (g2 + 1)
x − f − w

2 (g2 + 1)
y + x2.

Both these parabolas are invariant for the following family of systems:

ẋ =
g( f 2 − w2)

4(1 + g2)
+ gx2 − xy,

ẏ = − (1 + 3g2)( f 2 − w2)

8(1 + g2)
+ f gx + f y + gxy − 2y2.

(3.49)

We observe that both parabolas Φi(x, y) = 0 (i = 1, 2) exist (i.e. are not reducible ) if and
only if r+r− ̸= 0 and this is equivalent to

( f − w)( f + w) = f 2 − w2

and considering (3.47) this is equivalent to b ̸= 0.
On the other hand if only one of the factors vanishes we have b = 0 and

r+ + r− = ( f − w) + ( f + w) = 2 f ̸= 0

i.e. f ̸= 0. Therefore for b = 0 and f ̸= 0 we could have only one parabola.
We determine that in the case w = 0 we obtain Φ1(x, y) = Φ2(x, y), i.e. the parabolas coa-

lesced when w tends to zero and we obtain a double parabola. On the other hand considering
(3.47) for w = 0 we obtain to

b +
f 2(1 + 3g2)

8(1 + g2)
=

8b(1 + g2) + f 2(1 + 3g2)

8(1 + g2)
=

(1 + 3g2)

608(25 + g2)(1 + g2)
F̃

and we conclude that these invariant parabolas coalesce if and only if F̃ = 0. So the statements
(E2)–(E4) of Lemma 3.10 are valid.

As all the cases are examined we conclude that Lemma 3.10 is proved.

Next we show that systems (3.49) could be brought via a transformation to the canonical
form (Sβββ). Indeed we could apply to parabola (3.48) the translation

x = x1 +
g( f + w)

4(1 + g2)
, y = y1 +

f (2 + g2)− (2 + 3g2)w
8(1 + g2)

.

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

f + w
2(1 + g2)

y1.

On the other hand considering Observation 3.4 we apply the same translation to systems
(3.49) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k =
f + w

2(1 + g2)
, n =

3 f g2 + 4w + 7g2w
8(1 + g2)

⇒ f =
4k + 7g2k − 4n

2
, w =

4n − 3g2k
2

.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sβββ)

defined by the conditions m = 3g(1 + 3g2 − 2n)/4.
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3.2.2 Invariant conditions: the case η < 0

Next using Lemma 3.10 we shall construct the equivalent affine invariant conditions for a
system with η < 0 to possess an invariant parabola.

We prove the following theorem.

Theorem 3.11. Assume that for a non-degenerate arbitrary quadratic system the conditions η < 0,
χ1 = 0 and ζ1 ̸= 0 are satisfied. Then this system could possess invariant parabolas only in one (real)
direction. More exactly it could only possess one of the following sets of invariant parabolas: ∪, ⋓ and
∪∪∪2. Moreover this system has one of the above sets of invariant parabolas if and only if χ2 = 0 and
one of the following sets of conditions are satisfied, correspondingly:

(E1) ζ4 ̸= 0, R1 ̸= 0 ⇒ ∪;
(E2) ζ4 = 0, R7 ̸= 0, ζ5 ̸= 0 ⇒ ⋓;
(E3) ζ4 = 0, R7 ̸= 0, ζ5 = 0 ⇒∪∪∪2;
(E4) ζ4 = 0, R7 = 0, ζ5 ̸= 0 ⇒ ∪.

Proof. According to Remark 3.9 for a system (3.38) to possess an invariant parabola the condi-
tions χ1 = 0 and ζ1 ̸= 0 are necessary. As it was shown earlier (see page 37) if for a quadratic
system with one real and two complex infinite singularities the conditions χ1 = 0 and ζ1 ̸= 0
are satisfied, then via an affine transformation and time rescaling this system can be brought
to the form (3.41). Thus in what follows we consider the family of quadratic systems

ẋ = a + gx2 − xy, ẏ = b + ex + f y − x2 + gxy − 2y2, (3.50)

for which considering (3.42) we calculate.

χ1 = 0, ζ1 = 2(25 + g2), χ2 = 384(25 + g2) Ω̃,

ζ4 = −(25 + g2) D̃/8, R1 = −30(25 + g2) G̃.
(3.51)

Evidently the condition χ2 = 0 is equivalent to Ω̃ = 0 and we consider two cases: ζ4 ̸= 0 and
ζ4 = 0.

1: The case ζ4 ̸= 0. Then we have D̃ ̸= 0 and according to Lemma 3.10 in this case a quadratic
system possesses an invariant parabola if and only if the condition G̃ ̸= 0 holds. According
to (3.51) this condition is governed by the invariant polynomial R1. So we conclude that the
statement (E1) of Theorem 3.11 is valid.

2: The case ζ4 = 0. This implies D̃ = 0 and considering (3.42) we get e = f g. Then for
systems (3.50) we calculate

χ2 = 768(25 + g2)(a + 2bg + 3ag2)2 = 0 ⇒ a = − 2bg
1 + 3g2

and in this case we obtain:
ζ5 = F̃/4, R7 = −64480b.

We examine two possibilities: R7 ̸= 0 and R7 = 0.

2.1: The possibility R7 ̸= 0. In this case we get b ̸= 0. We observe that the condition
ζ5 = 0 is equivalent to F̃ = 0 and according to Lemma 3.10 due to b ̸= 0 we get two invariant
parabolas for ζ5 ̸= 0 and one double invariant parabola if ζ5 = 0.
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Thus the statements (E2) and (E3) of Theorem 3.11 are valid.

2.2: The possibility R7 = 0. This implies b = 0 and for systems (3.50) with e = f g we
calculate

χ2 = 768a2(25 + g2)(1 + 3g2)2, ζ5 = 19( f 2 + 8ag)(25 + g2).

Therefore the condition χ2 = 0 gives us a = 0 and then we obtain ζ5 = 19 f 2(25 + g2). So the
condition f ̸= 0 is equivalent to ζ5 ̸= 0 and considering the statement (E4) of Lemma 3.10 we
conclude that the statement (E4) of Theorem 3.11 is valid and this completes the proof of this
theorem.

3.3 Systems with two real distinct infinite singularities

In this case, according to Lemma 2.3, the conditions η = 0 and M̃ ̸= 0 hold and systems (2.5)
could be brought via a linear transformation and the additional change (x, y, a, b, c, d, e, f , g, h)
7→ (y, x, b, a, f , e, d, c, h, g) to the following family of systems

dx
dt

= a + cx + dy + gx2 + (h − 1)xy,

dy
dt

= b + ex + f y + gxy + hy2.
(3.52)

For these systems we calculate

C2(x, y) = −xy2, χ1 = 2g2(h − 2)

and by Lemma 2.6 we conclude that the above systems could have invariant parabolas either
of the form Φ(x, y) = p + qx + ry + x2 with r ̸= 0 (otherwise we get a reducible conic) or of
the form Φ(x, y) = p + qx + ry + y2 with q ̸= 0.

According to Lemma 2.4 for the existence of an invariant parabola for a system (3.52) the
condition χ1 = 0 is necessary, i.e. g(h − 2) = 0. We prove the following lemma.

Lemma 3.12. Assume that a system (3.52) possesses an invariant parabola. Then its quadratic ho-
mogeneous part is of the form x2 (respectively, y2) only if the condition h = 2 (respectively, g = 0)
holds.

Proof. Assume that a system (3.52) possesses an invariant parabola of the form Φ(x, y) =

p + qx + ry + x2 with r ̸= 0 (otherwise we get a reducible conic). Then considering equations
(2.6) we obtain

s = 1, v = u = 0, Eq2 = −2 + 2h − V = 0 ⇒ V = 2(h − 1).

Therefore we have Eq7 = −(h − 2)r = 0 and since r ̸= 0 this implies h = 2. So the statement
of the lemma is true in this case.

If the system possesses an invariant parabola of the form Φ(x, y) = p + qx + ry + y2 with
q ̸= 0 then considering equations (2.6) we obtain

s = v = 0, u = 1, Eq3 = 2g − U = 0 ⇒ U = 2g.

In this case we obtain Eq5 = −gq = 0 and due to q ̸= 0 we get g = 0. This completes the proof
of the lemma.
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Considering Lemma 3.12 we conclude that for determining the conditions for the existence
and the number of invariant parabolas for systems (3.52) it is necessary and sufficient to
examine the two possibilities: the existence of invariant parabolas of the form Φ(x, y) =

p + qx + ry + x2 (r ̸= 0) and of the form Φ(x, y) = p + qx + ry + y2 (q ̸= 0). By Lemma 3.12 in
the first case the condition h = 2 holds whereas in the second we have g = 0.

Taking into account that for systems (3.52) we have

χ1 = 2g2(h − 2), µ0 = g2h

we conclude that the case h − 2 = 0 is equivalent to χ1 = 0 and µ0 ̸= 0 whereas the case g = 0
is equivalent to χ1 = µ0 = 0. In what follows we examine each one of this two possibilities.

3.3.1 The possibility χ1 = 0 and µ0 ̸= 0

Then we have g ̸= 0 and h = 2 and by Lemma 3.12 systems (3.52) could have invariant
parabolas only of the form Φ(x, y) = p+ qx+ ry+ x2 with r ̸= 0. Applying the transformation
(x, y) 7→ (x/g − d, y − c + 2dg) we impose the conditions g = 1 and c = d = 0 to be fulfilled
and we arrive at the family of systems

ẋ = a + x2 + xy, ẏ = b + ex + f y + xy + 2y2. (3.53)

Coefficient conditions for systems (3.53) to possess invariant parabolas. We prove the fol-
lowing lemma.

Lemma 3.13. A system (3.53) possesses either one or two invariant parabolas or a double invariant
parabola of the form Φ(x, y) = p + qx + ry + x2 (r ̸= 0) if and only if Υ1 = 0 and the corresponding
set of conditions are satisfied, respectively:

(H1) D1 ̸= 0, G1 ̸= 0 ⇒ ∪;

(H2) D1 = 0, a ̸= 0, F1 ̸= 0 ⇒ ⋓;

(H3) D1 = 0, a ̸= 0, F1 = 0 ⇒∪∪∪2;

(H4) D1 = 0, a = 0, e ̸= 0 ⇒ ∪.

where
Υ1 = 8b2 − b(24a − e2 + f 2) + a(18a − e2 + e f + 2 f 2);

D1 = e + f ; G1 = 3a − 2b; F1 = 4a − e2.
(3.54)

Proof. Considering the equations (2.6) and the form of invariant parabola Φ(x, y) = p + qx +

ry + x2 with r ̸= 0 for systems (3.53) we obtain

s = 1, v = u = 0, U = 2, V = 2, W = −q,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0.

Then we have

Eq6 = −q − r = 0, Eq9 = −2p + f r + qr = 0 ⇒ q = −r, p = r( f − r)/2

and calculations yield

Eq8 = 2a + (e − f )r + 2r2, Eq10 = − r
2
[
2(a − b) + f r − r2)

]
≡ − r

2
Ψ1(a, b, f , r).
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Since r ̸= 0 the equation Eq10 = 0 is equivalent to Ψ1 = 0.
According to [12, Lemmas 11,12] the equations Eq8 = 0 and Ψ1 = 0 have a common

solution of degree 2 with respect to the parameter r if and only if

Res(0)r (Eq8, Ψ1) = Res(1)r (Eq8, Ψ1) = 0

where Res(1)r is the subresultant of order one and Res(0)r is the subresultant of order zero
which coincide with the standard resultant (for detailed definition see [12], formula (19)). We
calculate

Res(1)r (Eq8, Ψ1) = (e + f ) ≡ D1, Res(0)r (Eq8, Ψ1) = 2Υ1.

So we consider two possibilities: D1 ̸= 0 and D1 = 0.

1: The possibility D1 ̸= 0. Then the invariant parabola exists if and only if Υ1 = 0 and
therefore we have to examine the solutions of the equation Υ1 = 0. In this case we calculate ??

Discrim[Υ1, b] = −(e + f )2(16a − e2 + 2e f − f 2) ≡ −D2
1E

and hence due to D1 ̸= 0 the equation Υ1 = 0 has real solutions with respect to the parameter
b if and only if E ≤ 0. Then setting E = −w2 ≥ 0 we calculate

a =
(e − f )2 − w2

16
(3.55)

and then we obtain:
Υ1 =

N+N−
128

,

where
N± = 32b − e2 + 6e f − 5 f 2 + 2(e + f )εw + 3w2, ε = ±1.

Then the condition Υ1 = 0 gives us

b =
1

32
(e − 5 f − 3εw)(e − f + εw) (3.56)

where ε = 1 if N+ = 0 and ε = −1 if N− = 0. In this case we obtain that the polynomials Eq8

and Ψ1(e, f , g, r) have the common factor ζ = e − f + 4r + εw which is linear with respect to
the parameter r. Setting ζ = 0 we get

r = − e − f + εw
4

and we arrive at the family of systems

ẋ =
(e − f )2 − w2

16
+ x2 + xy,

ẏ =
1

32
(e − 5 f − 3εw)(e − f + εw) + ex + f y + xy + 2y2.

(3.57)

This family of systems possess the following invariant parabola

Φ(x, y) = − (e − f + εw)(e + 3 f + εw)

32
+

e − f + εw
4

x − e − f + εw
4

y + x2. (3.58)

We observe that this conic is reducible if and only if e − f + εw = 0.
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Considering (3.55) we get
w2 = −16a + (e − f )2

and then we obtain

b =
1
32

[
(e − 5 f )(e − f )− 2(e + f )εw − 3w2] ⇒

16b − 24a + (e + f )(e − f + εw) = 0.

Since D1 = e + f ̸= 0 we solve the last equation with respect to εw and we obtain

εw =
1

e + f
(
24a − 16b − e2 + f 2).

Then calculations yield

r = − e − f + εw
4

= −2(3a − 2b)
e + f

= − 2G1

e + f
̸= 0.

This completes the proof of the statement (H1) of Lemma 3.13.

Next we show that systems (3.57) could be brought via a transformation to the canonical
form (S1

γγγ). Indeed we could apply to parabola (3.58) the translation

x = x1 −
e − f + εw

8
, y = y1 −

3e + 5 f + 3εw
16

,

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

e − f + εw
4

y1.
On the other hand considering Observation 3.4 we apply the same translation to systems

(3.57) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k =
e − f + εw

4
, n = −7e + f + 7εw

16
, m =

13e − 5 f − 3εw
32

⇒

e = −k + 2m − n, f = −7k + 4n
2

, w =
3k − 4m − 2n

2ε
.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (S1
γγγ)

defined by the conditions g = 1.

2: The possibility D1 = 0. Considering (3.54) we have f = −e and then we calculate

Υ1 = 2(3a − 2b)2 = 0 ⇒ b = 3a/2.

Therefore we determine that in this case the polynomials Eq8 and Eq10 have the following
common factor

ϕ1 = a + er + r2.

We observe that ϕ̃ is quadratic in r with the discriminant Discrim[ϕ1, r] = −4a+ e2 and setting
Discrim[ϕ1, r] = w2 we obtain

a =
e2 − w2

4
. (3.59)

Then we arrive at the following expressions for the polynomials Eq8 and Eq10:

Eq8 =
S+S−

2
, Eq10 = r

S+S−
8

, S± = (e + 2r ± w).
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Therefore the equations Eq8 = Eq10 = 0 imply S+S− = 0. If S+ = 0 we determine

r = − e + w
2

≡ r+

and we obtain the parabola

Φ1(x, y) =
e2 − w2

8
+

e + w
2

x − e + w
2

y + x2. (3.60)

In the case S− = 0 we obtain

r = − e − w
2

≡ r−

and we get the parabola

Φ2(x, y) =
e2 − w2

8
+

e − w
2

x − e − w
2

y + x2.

Both these parabolas are invariant for the following family of systems:

ẋ =
e2 − w2

4
+ x2 + xy, ẏ =

3(e2 − w2)

8
+ ex − ey + xy + 2y2. (3.61)

We observe that both parabolas Φi(x, y) = 0 (i = 1, 2) exist (i.e. are not reducible) if and only
if r+r− ̸= 0 and this is equivalent to

(e + w)(e − w) = e2 − w2 ̸= 0.

Considering (3.59) this is equivalent to a ̸= 0.
On the other hand if only one of the factors vanishes we have a = 0 and

r+ + r− = (e + w) + (e − w) = 2e ̸= 0

and we obtain that the above condition is equivalent to e ̸= 0. Therefore for a = 0 and e ̸= 0
we could have only one parabola and we have no parabolas for a = e = 0.

We determine that in the case w = 0 we obtain Φ1(x, y) = Φ2(x, y), i.e. the parabolas coa-
lesce when w tends to zero and we obtain a double parabola. On the other hand considering
(3.59) for w = 0 we obtain

a − e2 − w2

4
=

4a − e2

4
=

F1

4
and we conclude that these invariant parabolas coalesce if and only if F1 = 0.

Thus we conclude that the statements (H2),(H3) and (H4) of Lemma 3.13 are proved.

Next we show that systems (3.61) could be brought via a transformation to the canonical
form (S1

γγγ). Indeed we could apply to parabola (3.60) the translation

x = x1 − (e + w)/4, y = y1 + (e − 3w)/8,

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

e + w
2

y1.
On the other hand considering Observation 3.4 we apply the same translation to systems

(3.61) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k = (e + w)/2, n = −(3e + 7w)/8 ⇒ e = (7k + 4n)/2, w = −(3k + 4n)/2.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (S1
γγγ)

defined by the conditions g = 1 and m = 3(3 + 2n)/4.
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Invariant conditions: the case η = 0, M̃ ̸= 0 and µ0 ̸= 0. Next using Lemma 3.13 we shall
construct the equivalent affine invariant conditions for a system with η = 0, M̃ ̸= 0 and µ0 ̸= 0
to possess an invariant parabola.

We prove the following theorem.

Theorem 3.14. Assume that for a non-degenerate arbitrary quadratic system the conditions η = 0,
M̃ ̸= 0, χ1 = 0 and µ0 ̸= 0 are satisfied. Then this system could possess invariant parabolas only
in one (simple) direction. More exactly it could only possess one of the following sets of invariant
parabolas: ∪, ⋓ and ∪∪∪2. Moreover this system has one of the above sets of invariant parabolas if and
only if χ2 = 0 and one of the following sets of conditions are satisfied, correspondingly:

(H1) ζ4 ̸= 0, R1 ̸= 0 ⇒ ∪;

(H2) ζ4 = 0, R2 ̸= 0, ζ5 ̸= 0 ⇒ ⋓;

(H3) ζ4 = 0, R2 ̸= 0, ζ5 = 0 ⇒∪∪∪2;

(H4) ζ4 = 0, R2 = 0, ζ5 ̸= 0 ⇒ ∪.

Proof. Assume that quadratic system the conditions η = 0 and M̃ ̸= 0 are fulfilled. Then via
a linear transformation this system can be brought to the canonical form (3.52). According to
Lemma 2.4 for a system (3.52) to possess an invariant parabola the conditions χ1 = χ2 = 0 are
necessary. Moreover it was shown earlier (see page 44) that a system (3.52) with χ1 = 0 and
µ0 ̸= 0 via an affine transformation ant time rescaling can be brought to the form (3.53). Thus
in what follows we consider the family of quadratic systems

ẋ = a + x2 + xy, ẏ = b + ex + f y + xy + 2y2. (3.62)

Considering (3.54) for these systems we calculate.

χ1 = 0, χ2 = 384Υ1, ζ4 = −D1/8, R1 = 30G1. (3.63)

Evidently the condition χ2 = 0 is equivalent to Υ1 = 0 and we consider two cases: ζ4 ̸= 0 and
ζ4 = 0.

1: The case ζ4 ̸= 0. Then we have D1 ̸= 0 and according to Lemma 3.13 in this case a
quadratic system possesses an invariant parabola if and only if the condition G1 ̸= 0 holds.
According to (3.63) this condition is governed by the invariant polynomial R1. So we conclude
that the statement (H1) of Theorem 3.14 is valid.

2: The case ζ4 = 0. This implies D1 = 0 and considering (3.54) we get f = −e. Then for
systems (3.62) we calculate

χ2 = 768(3a − 2b)2 = 0 ⇒ b = 3a/2

and in this case we obtain:

ζ5 = −19(4a − e2) = −19F1, R2 = −27a/2.

We examine two possibilities: R2 ̸= 0 and R2 = 0.

2.1: The subcase R2 ̸= 0. In this case we get a ̸= 0. We observe that the condition ζ5 = 0
is equivalent to F1 = 0 and according to Lemma 3.13 due to b ̸= 0 (because a ̸= 0) we get two
invariant parabolas for ζ5 ̸= 0 and one double invariant parabola if ζ5 = 0.

Thus the statements (H2) and (H3) of Theorem 3.14 are valid.
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2.2: The subcase R2 = 0. This implies a = 0 and for systems (3.62) with f = −e and
a = b = 0 we calculate

ζ5 = 19e2.

So the condition e ̸= 0 is equivalent to ζ5 ̸= 0 and considering Lemma 3.13 we conclude that
the statement (H4) of Theorem 3.14 is valid. This completes the proof of Theorem 3.14.

3.3.2 The possibility χ1 = µ0 = 0

In this case considering the conditions χ1 = 2g2(h − 2) = 0 and µ0 = g2h for systems (3.52)
we obtain g = 0 and by Lemma 3.12 these systems could have invariant parabolas of the form
Φ(x, y) = p + qx + ry + y2 with q ̸= 0 and if in addition h = 2 then they could have invariant
parabolas of the form Φ(x, y) = p + qx + ry + x2 with r ̸= 0.

So we consider the family of systems

ẋ = a + cx + dy + (h − 1)xy, ẏ = b + ex + f y + hy2. (3.64)

Coefficient conditions for systems (3.64) to possess invariant parabolas. We prove the fol-
lowing lemma.

Lemma 3.15. A system (3.64) could only possess one of the following sets of invariant parabolas: ∪,
2
∪,

2
∪⊂,

2
∪

2
⋓,

2
∪

2
⋓c,

2
∪

2
∪∪∪2,

2
∪∪∪3 and ∞

2
∪. Moreover this system has one of the above sets of invariant

parabolas if and only if the corresponding set of conditions are satisfied, respectively:

(K1) h + 1 ̸= 0, 3h + 1 ̸= 0, h ̸= 0, h − 2 ̸= 0, Υ2 = 0, e ̸= 0 ⇒
2
∪;

(K2) h = 2, Υ3 ̸= 0, Υ2 = 0, e ̸= 0 ⇒
2
∪;

(K3) h = 2, Υ3 = 0, Υ2 ̸= 0, e(a − cd) ̸= 0 ⇒ ∪;

(K4) h = 2, Υ3 = 0, Υ2 = 0, e(4c − f ) ̸= 0 ⇒
2
∪⊂;

(K5) h = 0, Υ2 = 0, e f ̸= 0 ⇒
2
∪;

(K6) h = −1/3, c = 2 f , D2 > 0, e ̸= 0 ⇒
2
∪

2
⋓;

(K7) h = −1/3, c = 2 f , D2 < 0, e ̸= 0 ⇒
2
∪

2
⋓c;

(K8) h = −1/3, c = 2 f , D2 = 0, F2 ̸= 0, e ̸= 0 ⇒
2
∪

2
∪∪∪2;

(K9) h = −1/3, c = 2 f , D2 = 0, F2 = 0, e ̸= 0 ⇒
2
∪∪∪3;

(K10) h = −1, e = 0, G2 ̸= 0, H2 ̸= 0, c − f ̸= 0 ⇒
2
∪;

(K11) h = −1, e = 0, G2 = 0, H2 ̸= 0, c − f = 0 ⇒ ∞
2
∪,

where

Υ2 = aeh(1 + 3h)3 − b(1 + h)(1 + 3h)2( f + 2ch − f h)− ( f + ch + f h)
[
2c2h(1 + h)

− c f (1 + h)(5h − 1) + de − 2 f 2 + 6deh + 9deh2 + 2 f 2h2]; Υ3 = b + 2c2 − de − c f ;

D2 = 256b3 + 576b2(de + f 2) + 432b(de + f 2)2 − 324a2e2 − 972ade2 f

+ 27(de − 2 f 2)2(4de + f 2); F2 = 4b + 3de + 3 f 2; G2 = 2a + cd, H2 = 4b − c2 + 2c f .
(3.65)
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Proof. Considering the equations (2.6) and the form of invariant parabola Φ(x, y) = p + qx +

ry + y2 with q ̸= 0 we obtain

s = v = 0, u = 1, U = 0, V = 2h, W = 2 f − hr,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0, Eq6 = 2e − (h + 1)q.
(3.66)

So we have to consider two possibilities: h + 1 ̸= 0 and h + 1 = 0.

1: The possibility h + 1 ̸= 0. Then equation Eq6 = 0 gives us q =
2e

1 + h
and since q ̸= 0 we

get e ̸= 0. Therefore we calculate:

Eq8 =
e
[
2c − 4 f + (1 + 3h)r

]
1 + h

and we have to examine two cases: 1 + 3h ̸= 0 and 1 + 3h = 0.

1.1: The case 1 + 3h ̸= 0. Then due to e ̸= 0 the equation Eq8 = 0 implies r = −2(c − 2 f )
1 + 3h

and calculations yield:

Eq9 =
2

(1 + h)(1 + 3h)2

[
de(1 + 3h)2 + b(1 + h)(1 + 3h)2 + (c − 2 f )(1 + h)( f + 2ch − f h)

− h(1 + h)(1 + 3h)2 p
]
,

Eq10 =
2

(1 + h)(1 + 3h)
[
ae(1 + 3h)− b(c − 2 f )(1 + h)− (1 + h)( f + ch + f h)p

]
.

(3.67)
We observe that both equations are linear with respect to parameter p and we calculate

Resp(Eq9, Eq10) = − 4
(1 + h)(1 + 3h)3 Υ2 = 0.

Considering (3.65) we observe that Υ2 is linear with respect to the parameter a with the coef-
ficient eh(1 + 3h)3 where e(1 + 3h) ̸= 0. So we consider two subcases: h ̸= 0 and h = 0.

1.1.1: The subcase h ̸= 0. Then the condition Υ2 = 0 gives us

a =
1

eh(1 + 3h)3

[
b(1 + h)(1 + 3h)2( f + 2ch − f h)

+ ( f + ch + f h)(de + c f − 2 f 2 + 2c2h + 6deh − 4c f h

+ 2c2h2 + 9deh2 − 5c f h2 + 2 f 2h2)
]
≡ a′

(3.68)

and then we calculate

Eq9 =
2

(1 + h)(1 + 3h)2 Ψ(b, c, d, e, f , h), Eq10 =
2( f + ch + f h)

h(1 + h)(1 + 3h)3 Ψ(b, c, d, e, f , h),

where

Ψ = b(1 + h)(1 + 3h)2 − h(1 + h)(1 + 3h)2 p + de(1 + 3h)2 + (c − 2 f )(1 + h)( f + 2ch − f h).

Therefore the condition Eq9 = Eq10 = 0 implies Ψ = 0 and we get

p =
2

h(1 + h)(1 + 3h)2

[
b(1 + h)(1 + 3h)2 + de(1 + 3h)2 + (c − 2 f )(1 + h)( f + 2ch − f h)

]
≡ p′.

(3.69)
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Thus we arrive at the family of systems

ẋ = a′ + cx + dy + (h − 1)xy, ẏ = b + ex + f y + hy2, e ̸= 0, (3.70)

where a′ is given in (3.68). These systems possess the following invariant parabola:

Φ = p′ +
2e

h + 1
x − 2(c − 2 f )

3h + 1
y + y2, e ̸= 0, (3.71)

where p′ is given in (3.69).
We recall that according to Lemma 3.12 in the case h − 2 = 0 systems (3.64) could possess

invariant parabolas of the form Φ(x, y) = p + qx + ry + x2. So we discuss two cases: h − 2 ̸= 0
and h − 2 = 0.

1.1.1.1: The possibility h − 2 ̸= 0. Then by Lemma 3.12 systems (3.64) could not possess
invariant parabolas in the second direction.

So we proved that in the case (h + 1)(3h + 1)h(h − 2)e ̸= 0 and Υ2 = 0 systems (3.64)
possess an invariant parabola of the form Φ(x, y) = p + qx + ry + y2.

Thus the proof of the statement (K1) of Lemma 3.15 is completed.

Next we show that systems (3.70) could be brought via a transformation to the canonical
form (S2

γγγ). Indeed we could apply to parabola (3.71) the translation

x = x1 −
1

2eh(1 + 3h)2

[
de(1 + 3h)2 + b(1 + h)(1 + 3h)2 + (c − 2 f )(1 + h)( f + ch + f h)

]
,

y = y1 +
c − 2 f
1 + 3h

,

which brings this parabola to the form Φ̃(x1, y1) = y2
1 +

2e
1 + h

x1.

On the other hand considering Observation 3.4 we apply the same translation to systems
(3.61) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k = − 2e
1 + h

, m =
f + 2ch − f h

1 + 3h
, n =

h + 1
4eh(1 + 3h)2

[
de(1 + 3h)2−

b(h − 1)(1 + 3h)2 − (c − 2 f )(h − 1)( f + ch + f h)
]

⇒

c =
f (h − 1) + (1 + 3h)m

2h
, d =

(h − 1)( f 2 − m2)− 4h(bh − b − 2hkn)
2h(1 + h)k

, e = − (1 + h)k
2

.

Then after an additional rescaling (to force k = 1) we arrive at the family of systems (S2
γγγ).

1.1.1.2: The possibility h− 2 = 0. In this case we examine the conditions for the existence
of the invariant parabolas of the form Φ(x, y) = p + qx + ry + x2 (r ̸= 0).

Considering the equations (2.6) for systems (3.64) we obtain

s = 1, v = u = 0, U = 0, V = 2, W = 2c,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0, Eq6 = 2d − q.

Therefore the equation Eq6 = 0 gives us q = 2d and then calculations yield:

Eq9 = 2d2 − 2p − 2cr + f r = 0 ⇒ p = (2d2 − 2cr + f r)/2.
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In this case we obtain

Eq8 = 2(a − cd) + er, Eq10 = 2d(a − cd) + (b + 2c2 − c f )r

and we claim that the condition e ̸= 0 must hold in order to have an invariant parabola.
Indeed suppose e = 0. Then Eq8 = 0 gives us a = cd and therefore due to r ̸= 0 from Eq10 = 0
we get b = c( f − 2c) and this leads to the following degenerate systems

ẋ = (d + x)(c + y), ẏ = −(2c − f − 2y)(c + y).

So e ̸= 0 and we obtain
r = −2(a − cd))/e ̸= 0.

In this case calculations yield

Eq10 = −2(a − cd)(b + 2c2 − de − c f )/e = −2(a − cd)Υ3/e (3.72)

and due to a − cd ̸= 0 we obtain that Eq10 = 0 is equivalent to Υ3 = 0. Therefore we discuss
two cases: Υ3 ̸= 0 and Υ3 = 0.

a) The case Υ3 ̸= 0. Then systems (3.64) could not possess invariant parabolas of the form
Φ(x, y) = p + qx + ry + x2 (r ̸= 0). However these systems could have invariant parabolas of
the form Φ(x, y) = p + qx + ry + y2 (q ̸= 0) and for this it is sufficient to force the conditions
Υ2 = 0 and e ̸= 0. Indeed the condition h = 2 implies (h + 1)(3h + 1)h ̸= 0 and as it was
shown above (see p. 1.1.1:) in the case Υ2 = 0 and e ̸= 0 we arrive at the family of systems
(3.70) possessing the invariant parabola (3.71) in this particular case with h = 2.

Thus we conclude that the statement (K2) of Lemma 3.15 is proved.

b) The case Υ3 = 0. Considering (3.65) the condition Υ3 = 0 gives us b = −2c2 + de + c f .
Then from (3.72) we get Eq10 = 0 and we arrive at the following systems

ẋ = a + cx + dy + xy, ẏ = −2c2 + de + c f + ex + f y + 2y2, e ̸= 0, (3.73)

possessing the invariant parabola

Φ =
a(2c − f )− d(2c2 − de − c f )

e
+ 2dx − 2(a − cd)

e
y + x2, e(a − cd) ̸= 0. (3.74)

Next we show that systems (3.73) could be brought via a transformation to the canonical
form (S1

γγγ). Indeed we could apply to parabola (3.74) the translation

x = x1 − d, y = y1 +
2c − f

2
.

which brings this parabola to the form Φ̃(x1, y1) = x2
1 −

2(a − cd)
e

y1.
On the other hand considering Observation 3.4 we apply the same translation to systems

(3.73) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k =
2(a − cd)

e
, m =

e
2

, n =
4c − f

2
⇒

a = cd + km, e = 2m, f = 2(2c − n).
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Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (S1
γγγ)

defined by the condition g = 0.
Next we examine the possibility of the existence besides the parabola (3.74) another

parabola of the form Φ(x, y) = p + qx + ry + y2 (q ̸= 0). As it was mentioned earlier the
condition h = 2 implies (h + 1)(3h + 1)h ̸= 0 and according to the statement (K1) of Lemma
3.15 to have such a parabola the condition Υ2 = 0 is necessary. So we examine two possibili-
ties: Υ2 ̸= 0 and Υ2 = 0.

b.1) The possibility Υ2 ̸= 0. In this case by the statement (K1) we could not have parabola
of the form Φ(x, y) = p + qx + ry + y2 (q ̸= 0) and hence in the case under consideration we
have a single parabola (3.74).

Thus we deduce that the conditions provided by the statement (K3) of Lemma 3.15 are
valid.

b.2) The possibility Υ2 = 0. As it was shown above (see p. b)) for h = 2 and Υ3 = 0 systems
(3.64) can be brought to the form (3.73). For these systems we calculate

Υ2 = 2(576c3 + 343ae − 343cde − 432c2 f + 108c f 2 − 9 f 3).

So due to e ̸= 0 we obtain

a =
1

343e
[
c(343de − 576c2) + 9 f (48c2 − 12c f + f 2)

]
and we arrive at the family of systems

ẋ =
1

343e
[
c(343de − 576c2) + 9 f (48c2 − 12c f + f 2)

]
+ cx + dy + xy,

ẏ = −2c2 + de + c f + ex + f y + 2y2, e ̸= 0,
(3.75)

possessing the following two invariant parabolas:

Φ1 = d2 − 9(2c − f )(4c − f )3

343e2 + 2dx +
18(4c − f )3

343e2 y + x2, e(4c − f ) ̸= 0;

Φ2 =
1

147
(60c f − 141c2 + 98de + 3 f 2) +

2e
3

x − 2(c − 2 f )
7

y + y2, e ̸= 0.
(3.76)

So the conditions provided by the statement (K4) of Lemma 3.15 are valid.

Next we show that systems (3.75) could be brought via a transformation to the canonical
form (S2

γγγ). Indeed we could apply to parabola Φ2 = 0 from (3.76) the translation

x = x1 +
9(4c − f )2 − 98de

98e
, y = y1 +

c − 2 f
7

which brings this parabola to the form Φ̃(x1, y1) = y2
1 +

2e
3

x1.
On the other hand considering Observation 3.4 we apply the same translation to systems

(3.75) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k = −2e
3

, m =
4c − f

7
⇒ c =

f + 7m
4

, e = −3k
2

.

Then after an additional rescaling (to force k = 1) we arrive at the the subfamily of systems
(S2

γγγ) defined by the conditions h = 2 and n = −3m2/2.
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1.1.2: The subcase h = 0. In this case considering (3.67) we obtain

Eq9 = 2(b + de + c f − 2 f 2), Eq10 = 2(ae − bc + 2b f − f p)

and clearly the condition Eq9 = 0 gives us b = −de − c f + 2 f 2. We observe that the equation
Eq10 = 0 is linear with respect to the parameter p with the coefficient f . So we discuss two
possibilities: f ̸= 0 and f = 0.

1.1.2.1: The possibility f ̸= 0. Then the condition Eq10 = 0 implies

p =
[
ae + (c − 2 f )(de + c f − 2 f 2)

]
/ f

and we arrive at the family of systems

ẋ = a + cx + dy − xy, ẏ = −de − c f + 2 f 2 + ex + f y, e f ̸= 0, (3.77)

possessing the following invariant parabola:

Φ =
1
f
[
ae + (c − 2 f )(de + c f − 2 f 2)

]
+ 2ex − 2(c − 2 f )y + y2, e f ̸= 0. (3.78)

On the other hand for h = 0 we have

Υ2 = − f (b + de + c f − 2 f 2)

and since f ̸= 0 we conclude that the condition Υ2 = 0 is equivalent to b + de + c f − 2 f 2 = 0.

1.1.2.2: The possibility f = 0. Then considering (3.67) for h = f = 0 we obtain

Eq9 = 2(b + de) = 0, Eq10 = 2(ae − bc) = 0

and due to e ̸= 0 (since q ̸= 0) this implies b = −de and a = −cd. However in this case we get
the degenerate systems

ẋ = −(d − x)(c − y), ẏ = −e(d − x).

Thus we have proved that for the existence of invariant parabola of systems (3.64) with h = 0
the conditions Υ2 = 0 and e f ̸= 0 must hold and we deduce that the conditions provided by
the statement (K5) of Lemma 3.15 are valid.

Next we show that systems (3.77) could be brought via a transformation to the canonical
form (S2

γγγ). Indeed we could apply to parabola (3.78) the translation

x = x1 −
a + cd − 2d f

2 f
, y = y1 + c − 2 f ,

which brings this parabola to the form Φ̃(x1, y1) = y2
1 + 2e x1.

On the other hand considering Observation 3.4 we apply the same translation to systems
(3.77) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k = −2e, m = f , n =
a + cd

4 f
⇒

a = −cd + 4mn, e = −k/2, f = m.
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Then after an additional rescaling (to force k = 1) we arrive at the the subfamily of systems
(S2

γγγ) defined by the conditions h = 0.

1.2: The case 1 + 3h = 0. Then h = −1/3 and considering (2.6) and (3.66) we calculate
Eq6 = 2/3(3e − q) = 0 which implies q = 3e ̸= 0. Therefore calculations yield:

Eq8 = 3e(c − 2 f ), Eq9 = (6b + 9de + 2p − 3 f r − r2)/3

and since e ̸= 0 the equation Eq8 = 0 implies c = 2 f and from Eq9 = 0 we obtain

p =
1
2
[
r2 + 3 f r − 3(2b + 3de)

]
.

Then we obtain

Eq10 = −1
6
[
r3 + 9 f r2 − 3(4b + 3de − 6 f 2)r − 18(ae + 2b f + 3de f )

]
≡ −1

6
Ψ(r)

and we conclude that if r0 is a solution of the equation Eq10 = 0 (i.e. Ψ(r0) = 0) then systems

ẋ = a + 2 f x + dy − 4xy/3, ẏ = b + ex + f y − y2/3, e ̸= 0 (3.79)

possess the invariant parabola

Φ0(x, y) = (r2
0 + 3 f r0 − 6b − 9de)/2 + 3ex + r0y + y2. (3.80)

On the other hand we calculate

Ψ′
r = 3(r2 + 6 f r − 4b − 3de + 6 f 2), Ψ′′

r = 6(3 f + r),

Discrim[Ψ, r] = 27D2, Resr(Ψ′
r, Ψ′′

r ) = −108F2,

and we conclude that systems (3.79) has the following invariant parabolas of the form (3.80):

• if D2 > 0 ⇒ three real distinct invariant parabolas;

• if D2 < 0 ⇒ one real and two complex invariant parabolas;

• if D2 = 0, F2 ̸= 0 ⇒ one simple and one double real invariant parabolas;

• if D2 = 0, F2 = 0 ⇒ one triple real invariant parabolas.

So we conclude that the conditions provided by the statements (K6)–(K9) of Lemma 3.15 are
valid.

Next we show that systems (3.79) could be brought via a real transformation to the canonical form
(S2

γγγ). Indeed we could apply to parabola (3.80) with r0 ∈ R the translation

x = x1 +
12b + 18de − 6 f r0 − r2

0
12e

, y = y1 − r0/2,

which brings this parabola to the form Φ̃(x1, y1) = y2
1 + 3e x1.

On the other hand applying the same translation to systems (3.79) we arrive at the systems

ẋ1 = − 1
8e

Ψ(r0) +
2
3
(3 f + r0)x1 −

1
9e

(12b + 9de − 6 f r0 − r2
0)y1 −

4
3

x1y1,

ẏ1 =
1
6
(12b + 9de − 6 f r0 − r2

0) + ex1 +
1
3
(3 f + r0)y1 −

1
3

y2
1.
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We recall that Ψ(r0) = 0 and we set the following new notations (suggested by the above parabola and
the linear parts of the above systems):

k = −3e, m =
3 f + r0

3
, n = −

12b + 9de − 6 f r0 − r2
0

18e
⇒

b =
3dk + 6kn + 6mr0 − r2

0
12

, e = − k
3

, f =
3m − r0

3
.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (S2
γγγ) defined

by the conditions h = −1/3.

2: The possibility h + 1 = 0. Then h = −1 and considering (3.66) for h = −1 we have Eq6 = 2e = 0,
i.e. e = 0. Then taking into account (2.6) calculations yield:

Eq8 = q(c − 2 f − r), Eq9 = 2b + 2p + dq − f r − r2

and since q ̸= 0 the condition Eq8 = 0 implies c − 2 f − r = 0 and this gives us r = c − 2 f . Then from
Eq9 = 0 we obtain p = (c2 − 2b − 3c f + 2 f 2 − dq)/2 and we obtain

Eq10 =
1
2
[
(c − f )(4b − c2 + 2c f ) + (2a + cd)q

]
. (3.81)

We observe that for systems (3.64) we have G2 = 2a + cd and therefore we have to consider two cases:
G2 ̸= 0 and G2 = 0.

2.1: The case G2 ̸= 0. Then 2a + cd ̸= 0 and the equation Eq10 = 0 implies

q = − (c − f )(4b − c2 + 2c f )
2a + cd

and we obtain the parabola

Φ =
−2ab + ac2 − 3ac f + 2a f 2 + bcd − 2bd f

2a + cd
− (c − f )(4b − c2 + 2c f )

2a + cd
x + (c − 2 f )y + y2,

(2a + cd)(c − f )
(

4b − c2 + 2c f
)
̸= 0 ⇔ G2H2(c − f ) ̸= 0,

(3.82)

which is invariant for the family of systems

ẋ = a + cx + dy − 2xy, ẏ = b + f y − y2. (3.83)

So we conclude that the conditions provided by the statement (K10) of Lemma 3.15 are valid.

Next we show that systems (3.83) could be brought via a transformation to the canonical form (S2
γγγ).

Indeed we could apply to parabola (3.82) the translation

x = x1 −
2a − cd + 2d f

4(c − f )
, y = y1 −

c − 2 f
2

,

which brings this parabola to the form Φ̃(x1, y1) = y2
1 −

(c − f )(4b − c2 + 2c f )
2a + cd

x1.

On the other hand considering Observation 3.4 we apply the same translation to systems (3.83)
and we set the following new notations (suggested by the above parabola and the linear parts of the
transformed systems):

k =
(c − f )(4b − c2 + 2c f )

2a + cd
, m = c − f , n =

2a + cd
4(c − f )

⇒

a = (4mn − cd)/2, b = (2cm − c2 + 4kn)/4, f = c − m.

Then after an additional rescaling (to force k = 1) we arrive at the the subfamily of systems (S2
γγγ)

defined by the conditions h = −1.



Family of quadratic differential systems with invariant parabolas 57

2.2: The case G2 = 0. In this case 2a + cd = 0, i.e. a = −cd/2 and considering (3.81) the equation
Eq10 = 0 yields

(c − f )(4b − c2 + 2c f ) = 0 ⇒ (c − f )H2 = 0.

If H2 = 0 then we get b = c(c − 2 f )/4 and this leads to degenerate systems:

ẋ = −(d − 2x)(c − 2y)/2, ẏ = (c − 2y)(c − 2 f + 2y)/4.

So the condition H2 ̸= 0 is necessary and then we have c − f = 0. So we get f = c which leads to the
family of systems

ẋ = −cd/2 + cx + dy − 2xy, ẏ = b + cy − y2 (3.84)

possessing the following family of invariant parabolas:

Φ = −(2b + dq)/2 + qx − cy + y2, q ∈ R, q ̸= 0. (3.85)

Next we show that systems (3.84) could be brought via a transformation to the canonical form (S2
γγγ).

Indeed we could apply to parabola (3.85) the translation

x = x1 +
4b + c2 + 2dq

4q
, y = y1 +

c
2

,

which brings this parabola to the form Φ̃(x1, y1) = y2
1 + q x1.

On the other hand considering Observation 3.4 we apply the same translation to systems (3.84)
and we set the following new notations (suggested by the above parabola and the linear parts of the
transformed systems):

k = −q, m = c − f , n = −4b + c2

4q
⇒

b = (4kn − c2)/4, q = −k ̸= 0.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (S2
γγγ) defined

by the conditions h = −1 and m = 0. Moreover we observe that this subfamily of systems possess the
following family of invariant parabolas:

Φ = −n(1 + q) + qx + y2, q ∈ R, q ̸= 0.

Evidently for q = −1 we get the parabola y2 − x = 0.
Thus the the condition provided by the statement (K11) of Lemma 3.15 are valid and this completes

the proof of the Lemma 3.15.

Invariant conditions: the case η = 0, M̃ ̸= 0 and µ0 = 0. Next we consider the class of
quadratic systems for which the conditions η = 0, M̃ ̸= 0, µ0 = 0, which by Lemma 3.12
could possess invariant parabolas in two directions.

We prove the following theorem.

Theorem 3.16. Assume that for a non-degenerate arbitrary quadratic system the conditions η = 0,
M̃ ̸= 0, χ1 = µ0 = 0 are satisfied. Then this system could possess invariant parabolas in two

directions. More exactly it could only possess one of the following sets of invariant parabolas: ∪,
2
∪,

2
∪⊂,

2
∪

2
⋓,

2
∪

2
⋓c,

2
∪

2
∪∪∪2,

2
∪∪∪3 and ∞

2
∪. Moreover this system has one of the above sets of invariant

parabolas if and only if one of the following sets of conditions are satisfied, correspondingly:
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(K1) ζ11ζ12ζ13ζ14 ̸= 0, R5 ̸= 0,
{

ζ15 ̸= 0, ζ16 = 0
or ζ15 = ζ17 = 0,

⇒
2
∪;

(K2) ζ11 = 0, R3 ̸= 0, ζ16 = 0, R5 ̸= 0 ⇒
2
∪;

(K3) ζ11 = 0, R3 = 0, ζ16 ̸= 0, R6 ̸= 0 ⇒ ∪;

(K4) ζ11 = 0, R3 = 0, ζ16 = 0, ζ8 ̸= 0 ⇒
2
∪⊂;

(K5) ζ12 = 0, ζ16 = 0, ζ8 ̸= 0 ⇒
2
∪;

(K6) ζ13 = 0, ζ8 = 0, ζ18 > 0, R5 ̸= 0 ⇒
2
∪

2
⋓;

(K7) ζ13 = 0, ζ8 = 0, ζ18 < 0, R5 ̸= 0 ⇒
2
∪

2
⋓c;

(K8) ζ13 = 0, ζ8 = 0, ζ18 = 0, R5 ̸= 0, χ3 ̸= 0 ⇒
2
∪

2
∪∪∪2;

(K9) ζ13 = 0, ζ8 = 0, ζ18 = 0, R5 ̸= 0, χ3 = 0 ⇒
2
∪∪∪3;

(K10)ζ14 = 0, ζ19 ̸= 0, ζ20 ̸= 0, R5 = 0, ζ21 ̸= 0 ⇒
2
∪;

(K11)ζ14 = 0, ζ19 = 0, ζ20 ̸= 0, R5 = 0, ζ21 = 0 ⇒ ∞
2
∪.

Proof. Assume that quadratic system the conditions η = 0 and M̃ ̸= 0 are fulfilled. Then via
a linear transformation this system can be brought to the canonical form (3.52). According to
Lemma 2.4 for a system (3.52) to possess an invariant parabola the conditions χ1 = χ2 = 0 are
necessary. Moreover it was shown earlier (see page 49) that a system (3.52) with χ1 = µ0 = 0
via an affine transformation and time rescaling can be brought to the form (3.64). Thus in
what follows we consider the family of quadratic systems

ẋ = a + cx + dy + (h − 1)xy, ẏ = b + ex + f y + hy2. (3.86)

1: The statement (K1). Considering (3.65) for these systems we calculate

χ1 = χ2 = 0, ζ11 = −4(h − 2)y2, ζ12 = 4hy2, ζ13 = (1 + 3h)y2, ζ14 = (1 + h)2y2,

ζ15 = (h − 1)2y2/4, ζ16 = 45e3(h − 1)2Υ2/8, R5 = 32e.
(3.87)

The condition ζ11 ̸= 0 implies h − 2 ̸= 0 and according to Lemma 3.12 systems (3.64) could
not possess invariant parabolas of the form Φ(x, y) = p + qx + ry + x2.

On the other hand evidently the condition ζ12ζ13ζ14 ̸= 0 is equivalent to (1+ h)(1+ 3h)h ̸=
0 and the condition R5 ̸= 0 is equivalent to e ̸= 0. So considering the statement (K1) of
Lemma 3.15 it remains to determine in invariant form the condition which is equivalent to
Υ2 = 0. We consider two cases: ζ15 ̸= 0 and ζ15 = 0.

1.1: The case ζ15 ̸= 0. Then h − 1 ̸= 0 and due to R5 ̸= 0 (i.e. e ̸= 0) we conclude that the
condition Υ2 = 0 is equivalent to ζ16 = 0 and hence the statement (K1) of Theorem 3.16 is
valid in this case.

1.2: The case ζ15 = 0. Then h = 1 and we obtain

Υ2 = −4(16bc + c3 − 16ae + 4cde + 8de f − 4c f 2), ζ17 = 13824e2Υ2.

Therefore due to e ̸= 0 we conclude that the condition Υ2 = 0 is equivalent to ζ17 = 0 and this
completes the proof of the statement (K1) of Theorem 3.16.
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2: The statements (K2)–(K4). For systems (3.86) the condition ζ11 = 0 gives us h = 2. In
this case we calculate

R3 = −503139971565000 e4(b + 2c2 − de − c f ) = −503139971565000 e4Υ3,

R5 = 32e, R6 = 8925(a − cd)e4/4, ζ16 = 45e3Υ2/8, ζ8 = e(4c − f ).

Therefore the condition R5 ̸= 0 is equivalent to e ̸= 0 and for e ̸= 0 the condition R3 =

0 (respectively ζ16 = 0) is equivalent with Υ3 = 0 (respectively Υ2 = 0). So in the case
R3 ̸= 0 we deduce that the conditions of the statements (K2) provides the conditions of the
statements(K2) of Lemma 3.15.

Assume now R3 = 0. We observe that the condition R6 ̸= 0 (respectively ζ8 ̸= 0) implies
e(a − cd) ̸= 0 (respectively e(4c − f ) ̸= 0), i.e. in both cases we have e ̸= 0. Then the condition
R3 = 0 is equivalent to Υ3 and the condition ζ16 = 0 is equivalent to Υ2 = 0.

Thus considering Lemma 3.15 we conclude that in the case ζ16 ̸= 0 (respectively ζ16 = 0)
we get the conditions provided by the statement (K3) (respectively (K4)) of this lemma. So
the invariant conditions provided by the statements statements (K2)–(K4) of Theorem 3.16
are valid.

3: The statement (K5). Considering (3.87) the condition ζ12 = 0 implies h = 0 and we
calculate:

ζ16 = 45e3Υ2/8, ζ8 = e f .

Clearly the condition ζ8 ̸= 0 implies e f ̸= 0 and then the condition ζ16 = 0 is equivalent to
Υ2 = 0. So we get the conditions provided by the statement (K5) of Lemma 3.15 and this
implies the validity of the statement (K5) of Theorem 3.16.

4: The statements (K6)–(K9). Considering (3.87) we observe that the condition ζ13 = 0
implies h = −1/3 and we calculate:

R5 = 32e, ζ8 = −2e(c − 2 f )/3.

So the condition R5 ̸= 0 implies e ̸= 0 and then the condition ζ8 = 0 yields c = 2 f . In this
case we have

ζ18 = 64/2187 e2 D2, χ3 = −15792269387776
729

e4 F2
2

and hence the condition ζ18 = 0 is equivalent to D2 = 0 and for ζ18 ̸= 0 we have sign(ζ18) =

sign(D2). Moreover the condition χ3 = 0 is equivalent to F2 = 0.
Thus we obtain that in the case R5 ̸= 0, ζ8 = 0 and ζ18 > 0 (respectively ζ18 < 0) then we

arrive at the conditions provided by the statement (K6) (respectively (K7) ) of Lemma 3.15.
In the case ζ18 = 0 (i.e. D2 = 0) we obtain the conditions provided by the statement (K8)

if χ3 ̸= 0 and by the statement (K9) if χ3 = 0 (i.e. F2 = 0). This proves the validity of the
statements (K6)–(K9) of Theorem 3.16.

5: The statements (K10), (K11). From (3.87) we obtain that the condition ζ14 = 0 implies
h = −1 and then we have R5 = 32e. So the condition R5 = 0 implies e = 0 and we calculate

ζ19 = 6(2a + cd)y4 = 6G2, ζ20 = 8(4b − c2 + 2c f )y2 = 8H2y2, ζ21 = 2(c − f )y3.

So we observe that for ζ19 ̸= 0, ζ20 ̸= 0 and ζ21 ̸= 0 we arrive at the conditions provided by the
statement (K10) of Lemma 3.15. In the case ζ19 = 0, ζ20 ̸= 0 and ζ21 = 0 we get the conditions
provided by the statement (K11) of the same lemma.

Thus we conclude that the statements (K10) and (K11) of Theorem 3.16 are valid and this
completes the proof of this theorem.
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3.4 Systems with a unique infinite singular point which is real

In this case according to Lemma 2.3 systems (2.5) via a linear transformation could be brought
to the following family of systems

dx
dt

= a + cx + dy + gx2 + hxy,
dy
dt

= b + ex + f y − x2 + gxy + hy2. (3.88)

For these systems we calculate

C2(x, y) = x3, χ1 = −2h3

and by Lemma 2.6 we conclude that the above systems could have invariant parabolas only of
the form Φ(x, y) = p + qx + ry + x2 with r ̸= 0 (otherwise we get a reducible conic).

According to Lemma 2.4 for a system (3.88) to possess an invariant parabola the condition
χ1 = 0 is necessary and this implies h = 0. Moreover we may assume e = 0 due to the
translation x → x + e/2, y → y and we arrive at the family of systems

dx
dt

= a + cx + dy + gx2,
dy
dt

= b + f y − x2 + gxy. (3.89)

3.4.1 Coefficient conditions for systems (3.89) to possess invariant parabolas.

We prove the following lemma.

Lemma 3.17. A system (3.89) could only possess one of the following sets of invariant parabolas:
3
∪

and ∞
3
∪. Moreover this system has one of the above sets of invariant parabolas if and only if the

corresponding set of conditions are satisfied, respectively:

(L1) g ̸= 0, Υ4 = 0, d ̸= 0 ⇒
3
∪;

(L2) g = 0, d = 0, c − f ̸= 0, f (2c − f ) ̸= 0 ⇒
3
∪;

(L3) g = 0, d = 0, f = c ̸= 0 ⇒ ∞
3
∪,

where

Υ4 = 27bdg4 − 9ag3(d − cg + 2 f g)− (2d + cg − 2 f g)(d − cg − f g)(2d − 2cg + f g). (3.90)

Proof. Considering equations (2.6) and the form of the parabola Φ(x, y) = p + qr + ry + x2

with r ̸= 0 (otherwise we get a reducible conic), for systems (3.89) we obtain

s = 1, v = u = 0, U = 2g, V = 0, W = 2c − gq − r, Eq6 = 2d − gr

and clearly we have to discuss two possibilities: g ̸= 0 and g = 0.

1: The possibility g ̸= 0. Then the equation Eq6 = 0 yields r = 2d/g ̸= 0 and we calculate:

Eq8 = 2(a − gp) + q(2d − cg)/g + gq2 = 0 ⇒ p =
a
g
− q(cg − 2d)

2g2 +
q2

2
.

Then we obtain
Eq9 = d(4d − 4cg + 2 f g + 3g2q)/g2
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and since dg ̸= 0 the equation Eq8 = 0 gives us

q = 2(2cg − 2d − f g)/(3g2)

and finally we calculate the last equation Eq10 = 0:

Eq10 =
2

27g5

[
27bdg4 − 9ag3(d − cg + 2 f g)− (2d + cg − 2 f g)(d − cg − f g)(2d − 2cg + f g)

]
=

2
27g5 Υ4.

Since dg ̸= 0 the equation Eq10 = 0 gives us

b =
1

27dg4

[
9ag3(d − cg + 2 f g) + (2d + cg − 2 f g)(d − cg − f g)(2d − 2cg + f g)

]
≡ b0

and we arrive at the family of systems

ẋ = a + cx + dy + gx2, ẏ = b0 + f y − x2 + gxy (3.91)

possessing the invariant parabola

Φ(x, y) =
9ag3 − (2d + cg − 2 f g)(2d − 2cg + f g)

9g4 − 2(2d − 2cg + f g)
3g2 x +

2d
g

y + x2. (3.92)

This completes the proof of the statement (L1) of Lemma 3.17.

Next we show that systems (3.91) could be brought via a transformation to the canonical
form (Sδδδ). Indeed we could apply to parabola (3.92) the translation

x = x1 −
2cg − 2d − f g

3g2 , y = y1 +
8d2 − 2d(5c − f )g + g2(2c2 + c f − f 2 − 9ag)

18dg3 ,

which brings this parabola to the form Φ̃(x1, y1) = x2
1 +

2d
g

y1.

On the other hand considering Observation 3.4 we apply the same translation to systems
(3.91) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k = −2d
g

, n = −−d + cg − 2 f g
3g

, m = −16d2 − 2d(7c − 5 f )g − g2(2c2 + c f − f 2 − 9ag)
36dg2 ⇒

a =
4c2 − 8ck − 5k2 − 4n2 + 4k(8gm + 3n)

16g
, d = − gk

2
, f =

2c + k + 6n
4

.

Then after an additional rescaling (to force k = 1) we arrive at the family of systems (Sδδδ).

2: The possibility g = 0. Then the equation Eq6 = 0 yields d = 0 and we calculate:

Eq9 = r( f − 2c + r)

and due to r ̸= 0 we get r = 2c − f ̸= 0. Then calculations yield:

Eq8 = 2a + (c − f )q, Eq10 = 2bc − b f − f p + aq

and we have to examine two cases: c − f ̸= 0 and c − f = 0.
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2.1: The case c − f ̸= 0. Then the equation Eq8 = 0 gives us q = −2a/(c − f ) and then we
obtain

Eq10 =
2bc2 − 2a2 − 3bc f + b f 2

c − f
− f p.

We claim that for the existence of an invariant parabola the condition f ̸= 0 must hold.
Indeed supposing f = 0 we obtain Eq10 = 2(bc − a2)/c and then the condition Eq10 = 0
implies b = a2/c. However in this case we arrive at the degenerate systems

ẋ = a + cx, ẏ =
(a − cx)(a + cx)

c2

and this completes the proof of our claim.
So we have f ̸= 0 and then the condition Eq10 = 0 gives us

p =
−2a2 + 2bc2 − 3bc f + b f 2

f (c − f )

and we arrive at the parabola

Φ(x, y) =
2bc2 − 2a2 − 3bc f + b f 2

f (c − f )
− 2a

c − f
x + (2c − f )y + x2, f (c − f )(2c − f ) ̸= 0, (3.93)

which is invariant for the family of systems:

ẋ = a + cx, ẏ = b + f y − x2. (3.94)

This completes the proof of the statement (L2) of Lemma 3.17.
Next we show that systems (3.94) could be brought via a transformation to the canonical

form (Sδδδ). Indeed we could apply to parabola (3.93) the translation

x = x1 +
a

c − f
, y = y1 −

bc2 − a2 − 2bc f + b f 2

(c − f )2 f
,

which brings this parabola to the form Φ̃(x1, y1) = x2
1 + (2c − f ) y1.

On the other hand considering Observation 3.4 we apply the same translation to systems
(3.95) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k = f − 2c, m = − a
c − f

, n =
f
2

⇒ a = −m(k + 2n)
2

, c =
2n − k

2
, f = 2n.

Then after an additional rescaling (to force k = 1) we arrive at the subfamily of systems (Sδδδ)

defined by the condition g = 0.

2.2: The case c − f = 0. Then we set f = c and the equation Eq8 = 0 gives us a = 0 and we
obtain

Eq10 = c(b − p) = 0.

In this case r = 2c − f = c ̸= 0 and hence the condition Eq10 = 0 implies p = b. Therefore we
obtain the family of systems

ẋ = cx, ẏ = b + cy − x2, (3.95)

which possess the family of the invariant parabolas depending on one parameter q.

Φ(x, y) = b + qx + cy + x2, c ̸= 0. (3.96)

This completes the proof of the Lemma 3.17.
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Next we show that systems (3.95) could be brought via a transformation to the canonical
form (Sδδδ). Indeed we could apply to parabola (3.96) the translation

x = x1 −
q
2

, y = y1 −
4b − q2

4c
,

which brings this parabola to the form Φ̃(x1, y1) = x2
1 + c y1.

On the other hand considering Observation 3.4 we apply the same translation to systems
(3.95) and we set the following new notations (suggested by the above parabola and the linear
parts of the transformed systems):

k = −c, m =
q
2

⇒ c = −k, q = 2m.

Then after an additional rescaling (to force k = 1) arrive at the subfamily of systems (Sδδδ)

defined by the conditions g = 0 and n = −1/2.

3.4.2 Invariant conditions: the case η = M̃ = 0 and C2 ̸= 0

Next, using Lemma 3.17 we shall construct the equivalent affine invariant conditions for a
system with η = M̃ = 0 and C2 ̸= 0 to possess an invariant parabola.

We prove the following theorem.

Theorem 3.18. Assume that for a non-degenerate arbitrary quadratic system the conditions η = M̃ =

0, χ1 = 0 and C2 ̸= 0 are satisfied. Then this system could only possess one of the following sets of

invariant parabolas:
3
∪ and ∞

3
∪. Moreover this system has one of the above sets of invariant parabolas

if and only if one of the following sets of conditions are satisfied, correspondingly:

(L1) ζ14 ̸= 0, ζ22 = 0, R2 ̸= 0 ⇒
3
∪;

(L2) ζ14 = 0, ζ20 = 0, ζ23 ̸= 0, ζ24 ̸= 0 ⇒
3
∪;

(L3) ζ14 = 0, ζ20 = 0, ζ23 = 0, ζ24 ̸= 0 ⇒ ∞
3
∪.

Proof. Assume that quadratic system the conditions M̃ = 0 and C2 ̸= 0 are fulfilled. Then via
a linear transformation this system can be brought to the canonical form (3.88). According to
Lemma 2.4 for a system (3.88) to possess an invariant parabola the conditions χ1 = χ2 = 0 are
necessary. Moreover it was shown earlier (see page 60) that a system (3.88) with χ1 = 0 via
an affine transformation ant time rescaling can be brought to the form (3.89). Thus in what
follows we consider the family of quadratic systems

dx
dt

= a + cx + dy + gx2,
dy
dt

= b + f y − x2 + gxy. (3.97)

1: The statement (L1). Considering (3.90) for these systems we calculate

χ1 = χ2 = 0, ζ14 = g2x2, ζ22 = 9d3g3Υ4, R2 = 9d2g4/4 (3.98)

and clearly the condition ζ14 ̸= 0 is equivalent to g ̸= 0 and in this case the condition R2 ̸= 0
gives us d ̸= 0. Therefore we conclude that for ζ14R2 ̸= 0 the condition ζ22 = 0 is equivalent
to Υ4 = 0.
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2: The statement (L2). From (3.98) evidently the condition ζ14 = 0 implies g = 0 and then
we calculate

ζ23 = −2(c − f )2, ζ20 = −12d2x2.

Therefore the condition ζ20 = 0 is equivalent to d = 0 whereas ζ23 ̸= 0 implies c − f ̸= 0. So
for ζ20 = 0 we get d = 0 and then we calculate

ζ24 = 24 f (2c − f )x3

and hence the condition ζ24 ̸= 0 is equivalent to f (2c − f ) ̸= 0. Since the condition ζ23 ̸= 0
is equivalent to c − f ̸= 0, considering Lemma 3.17 we conclude that the statement (L2) of
Theorem 3.18 is proved.

3: The statement (L3). Since the condition ζ23 = −2(c − f )2 = 0 gives us f = c for systems
(3.97) with g = d = 0 and f = c we calculate ζ24 = 24c2x3 and clearly the condition ζ24 ̸= 0 is
equivalent to c ̸= 0. This completes the proof of Theorem 3.18.

3.5 Systems with infinite line filled up with singularities

According to Lemma 2.3 in the case C2 = 0 systems (2.5) via a linear transformation could
be brought to the systems (SV) for which in addition we may assume e = f = 0 due to a
translation. So we consider the following family of quadratic systems

dx
dt

= a + cx + dy + x2,
dy
dt

= b + xy. (3.99)

We prove the following lemma.

Lemma 3.19. A non-degenerate quadratic system (3.99) could only have invariant parabola of the form
Φ(x, y) = p + qx + ry + x2 with r ̸= 0. Moreover it possesses an invariant parabola of this form if
and only if the following conditions hold:

d ̸= 0, Υ5 = 9ac − 2c3 + 27bd = 0.

Proof. Suppose that these systems possess an invariant parabola

Φ(x, y) ≡ p + qx + ry + sx2 + 2vxy + uy2 = 0

with v2 − su = 0 and u ̸= 0, i.e. its quadratic part is not of the form sx2. Then clearly we may
assume u = 1 and then we obtain s = v2, i.e. we get the parabola

Φ(x, y) ≡ p + qx + ry + (vx + y)2 = 0, (3.100)

for which the condition q ̸= rv must hold, otherwise we get a reducible conic.
Considering equations (2.6) and the form of the parabola (3.100) with q ̸= rv, for systems

(3.99) we obtain
s = v2, u = 1, Eq3 = 2 − U − 2vV, Eq4 = −V

and evidently the equations Eq3 = 0 and Eq4 = 0 imply V = 0 and U = 2. Then calculations
yield

Eq5 = −q + 2cv2 − v2W = 0, Eq6 = −r + 2cv + 2dv2 − 2vW = 0, Eq7 = 2dv − W = 0
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and we get
W = 2dv, q = 2v2(c − dv), r = 2v(c − dv) ⇒ q = rv.

So we obtain a reducible conic.
Thus we have proved that if systems (3.99) possess an invariant parabola then it is neces-

sary of the form
Φ(x, y) ≡ p + qx + ry + sx2 = 0

with s ̸= 0 and r ̸= 0, otherwise we get a reducible conic. Then we may assume s = 1 and
again, considering the ten equations (2.6) and the above parabola, for systems (3.99) we obtain

s = 1, u = v = 0, Eq1 = 2 − U = 0, Eq2 = −V = 0 ⇒ V = 0, U = 2

and then calculations yield:

Eq5 = 2c − q − W = 0, Eq6 = 2d − r = 0 ⇒ r = 2d ̸= 0, W = 2c − q.

Therefore evaluating the remaining equations we obtain

Eq8 = 2a − 2p − cq + q2, Eq9 = d(3q − 4c), Eq10 = 2bd − 2cp + aq + pq.

Since d ̸= 0 (due to r ̸= 0) the equation Eq9 = 0 gives us q = 4c/3 and then from Eq8 = 0 we
get p = (9a + 2c2)/9. In this case we obtain

Eq10 =
2

27
(9ac − 2c3 + 27bd) =

2
27

Υ5 = 0.

Since d ̸= 0 the condition Υ5 = 0 implies b =
c

27d
(2c2 − 9a) and we arrive at the systems

ẋ = a + cx + dy + x2, ẏ =
c

27d
(2c2 − 9a) + xy (3.101)

which possess the following invariant parabola:

Φ(x, y) =
1
9
(
9a + 2c2)+ 4c

3
x + 2dy + x2, d ̸= 0. (3.102)

This complete the proof of the Lemma 3.19.

Evaluating for systems (3.99) the invariant polynomials ζ5 and ζ22 we obtain

ζ5 = −891d2/4, ζ22 = 9d3(9ac − 2c3 + 27bd) = 9d3Υ5.

So the condition d ̸= 0 is equivalent to ζ5 ̸= 0 and in this case the condition Υ5 = 0 is
equivalent to ζ22 = 0. Therefore considering Lemma 3.19 we conclude that the following
theorem is valid.

Theorem 3.20. Assume that for a non-degenerate quadratic system the condition C2 = 0 holds. Then
this system possesses an invariant parabola (which is unique) if and only if the conditions ζ5 ̸= 0 and
ζ22 = 0 hold.
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In order to determine a simpler canonical form of systems (3.101) we apply to these sys-
tems as well as to parabola (3.102) the translation

x = x1 −
2c
3

, y = y1 −
9a − 2c2

18d
.

Then we could set the following new notations:

k = −2d, m = −9a − 2c2

36d
, n = − c

3
⇒

a = 2(km + n2), c = −3n, d = − k
2

,

where k ̸= 0 due to d ̸= 0. Then we arrive at the family of systems

ẋ1 = km + nx1 −
k
2

y1 + x2
1, ẏ1 = 2mx1 + 2ny1 + x1y1,

which possess the invariant parabola

Φ(x1, y1) = x2
1 − ky1, k ̸= 0.

Finally applying the rescaling (x1, y1, t1) 7→ (kx, ky, t/k) we arrive at the systems

ẋ = m + nx − y/2 + x2, ẏ = 2mx + 2ny + xy,

which possess the invariant parabola Φ(x, y) = x2 − y.
As all the cases are investigated we conclude that the Main Theorem is proved.
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