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Abstract. In this work we mainly prove the following interior gradient estimates in
weighted Lorentz spaces
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where g(t) = ta(t) for t > 0 and M (u)(x) is the first-order fractional maximal function
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for a class of non-homogeneous divergence quasilinear elliptic equations with measure
data in the subquadratic case

—div [a ((ADu : Du)%) ADu} =u inQ,
whose model cases are the classical elliptic p-Laplacian equation with measure data
—div (|Du\”72 Du) =u forl<p<?2
and the elliptic p-Laplacian equation with the logarithmic term and measure data
—div (|Du\p_210g(1 + |Dul) Du) =p forl<p<2

It deserves to be specially noted that the subquadratic case is a little different from
the superquadratic case since as an example, the modulus of ellipticity in the above-
mentioned special cases tends to infinity when |Du| — 0 for 1 < p < 2.
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1 Introduction

In this paper we mainly study the local gradient estimates in weighted Lorentz spaces for the
following non-homogeneous quasilinear elliptic equations with right-hand side measure in
divergence form

—div [a ((ADu : Duﬁ) ADu] =u inQ, (1.1)

where () is a bounded domain in R"” for n > 2, u is a Borel measure with finite mass and
a:[0,00) — [0,00) € C'[0,0) satisfies

ta'(t) < su ta'(t)

-1 <i, = }r>1£ alt) = st>O 0] =:5, <0 foranyt > 0. (1.2)

Moreover, the symmetric matrix A(x) = {a;;(x)} satisfies the following uniformly elliptic
condition

ATHEP < A(x)E- ¢ < Al (13)

for every ¢ € R", a.e. x € R" and some constant A > 0. We remark that if a(t) = t’~2 and A
is the identity matrix I, then i, =s, = p —2for 1 < p < 2 and (1.1) is reduced to the classical
elliptic p-Laplacian equation with right-hand side measure in divergence form

— div <|Du\”*2 Du) —u forl<p<2. (1.4)

It may be worthwhile to remark that another two natural examples of the functions a are
a(t) = tP=2log(1 +t) for 1 < p < 2, which makes (1.1) for A = I is equal to

—div (|DulP~*1og (1 + |Du|) Du) = p,

and a more general example (see page 600 in [9] and page 314 in [46]), which is related to
(p,q)-growth condition given by appropriate gluing of the monomials.
Define

g(t) == ta(t) (1.5)
and t t
G(t) := / g(r)dr = / ta(t)dt fort > 0. (1.6)
0 0
From (1.2) we know that
g(t) is strictly increasing and continuous over [0, +c0), (1.7)
and then
G(t) is increasing over [0, +o0) and strictly convex with G(0) = 0. (1.8)

The partial differential equations involving measure data allow to consider various math-
ematical models in many interesting phenomena such as the blood flow in the heart [58] and
state-constrained optimal control problems [23,24]. The pointwise estimates of solutions to
elliptic PDEs via suitable linear and nonlinear potentials of the right-hand side measure y
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were first investigated by Kilpeldinen & Maly [39,40], in which they obtained the pointwise
estimates for u in terms of nonlinear Wolff potentials Wg’ ) defined by

where

HlBee) = [ In(y)ldy

Remarkably, such estimates played an essential role in the nonlinear potential theory (see
[38,60]). In more specific terms, Kilpeldinen & Maly [39,40] proved the following estimate

1
Y
u(s0)| < Clup) | WE e R)+ (f - Julvax) ] y>p-1 (19)

with B(x, R) C Q) for solution to the p-Laplacian equation with right-hand side measure (1.4).
Afterwards, Trudinger & Wang [64] used a different approach to prove the pointwise estimate
via the nonlinear Wolff potential for the p-Laplacian operators. Later, Duzaar & Mingione
[35,51] extended (1.9) to the pointwise estimate at the gradient level

Du(xo)| < C(n, p) {][ 1Duldx+ W (x, 2R)]

B(x0,2R
for solutions to the elliptic p-Laplacian equation (1.4) and more general case. In the subsequent
papers, for the case p > 2 Kuusi & Mingione [44,45] made a deep study of the pointwise
estimates for gradient

Dutaa)| < Clup) [f - Duldr+ € (1 x0,28)) "

B(x0,2R

of solutions to (1.4) and more general case in terms of the linear Riesz potential of the right-
hand side Ily | (x,R) which is defined by

1 (x, R) = /OR !u!(fn(x{e))dgg

In particular, we mention here that Duzaar & Mingione [33] obtained gradient estimates via
linear Riesz potentials

1

IDu(xo)| < c][ DUl C [ (x0,28)]
B

x0,2R
for solutions of the general case of the elliptic p-Laplacian equation for 2 —1/n < p < 2. We
remark that the lower bound 2 — 1/7 on the exponent p is to ensure W'!-solutions (see [33]).
It deserves to be specially noted that Dong, Nguyen, Phuc & Zhu [32,55,57] also studied the
local and global pointwise gradient estimates for solutions to the quasilinear elliptic equation
with measure data — div A(x, Du) = u in the case 1 < p <2 — 1/n, whose prototype is given
by the elliptic p-Laplace equation (1.4). Moreover, an extension of the previous results to a
class of general elliptic equations

—div [a (|Du|) Du| = u
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including the p-Laplacian equation has been recently given by Baroni [7], in which the author
proved the following pointwise gradient estimates via the linear Riesz potential

8(|Du(xo)|) < Cg <][ )!Du\dx) +C1 (x0,2R).

B(x0,2R

Actually, Cianchi & Maz’ya [26-28] have proved Lipschitz regularity and sharp estimates for
weak solutions of

—div (a (|Du|) Du) = f, (1.10)

which is first introduced and studied by Lieberman [46] as the most natural and best general-
ization of the p-Laplacian equation. In the meanwhile, the authors [5,6,10,21,25,30,31,52,65]
also studied regularity estimates of weak solutions for the quasilinear elliptic equations (1.10).

In a general way we call w belongs to the class of the Muckenhoupt weights A, for some
p>1lifwe L} (R") and w > 0 almost everywhere satisfies

() () <

for any ball B, in R". Moreover, we denote

Aw:= |J A, and w(B) ::/ w(x)dx.

1<p<eo 4

Furthermore, the corresponding weighted Lebesgue space L},(B,) consists of all functions
which satisfy

1/p
sy = ( [, 1P w@ar) <
Now we give the following definition of weighted Lorentz spaces.

Definition 1.1. The weighted Lorentz space LY, (Q)) for any 0 < g < o0 and 0 < r < oo is the
set of all measurable functions & satisfying

1Bl 27y < o,

where

1
[q/ A lw({xeQ:h(x)] > A)idA| forr < oo,
17l gy = 0

S

supAw ({x € Q: |h(x)| > A}) for r = oo.

A>0

Actually, the weighted Lebesgue space L{,(Q) = L#'(Q) and Marcinkiewicz space M7(Q)) =
L1 (Q).

Lemma 1.2 (see [16,19,47,62,63]). Assume that w € A, for some p > 1. Then there exists a small
positive constant o > 0 such that

o (o) = woy = ()

for any balls B, C Bg C R", where C; > 1 and C; > 0.
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There are various kinds of Calder6n—-Zygmund type estimates for the elliptic equations of
p-Laplacican type (see, for example, [3,8,17,29,41,47,48] and the references therein). More
to the point, Mingione [50] first proved the local sharp estimates in Lorentz spaces for the
solutions to the following p-Laplacian type elliptic equation with measure data

—diva(x,Du) =pu in Q. (1.11)

Furthermore, Phuc [59] obtained the following global weighted norm inequality in Lorentz
spaces for gradients of solutions to (1.11)

(My (1) € LY (Q) = |Du| € LY (Q)

for2—1/n < p < n,any q € (0,4+o) and r € (0, +o0], where M (u)(x) is the first-order
fractional maximal function

oy TP (x)) "
Milux) = sup g o *ERY
Subsequently, Nguyen & Phuc [54,56] obtained existence and global regularity estimates for
gradients of solutions to quasilinear elliptic equations with measure data, whose prototypes
are of the form —div (|Du|P~2Du) = §|Du|?+pu for 1 < p < 2—1/n. In the meanwhile,
Byun, Ok & Park [18] established the corresponding Calderén-Zygmund type estimates for
quasilinear elliptic equations (1.11) with variable p(x)-growth involving measure data. More-
over, Byun, Cho & Youn [14] studied the existence of distributional solutions and the global
Calderé6n—Zygmund type estimates to nonlinear elliptic problems (1.1) and more general case
with the right-hand side Radon measure. Moreover, Avelin, Kuusi & Mingione [4] have inves-
tigated a limiting case of Calderén-Zygmund theory for a class of nonlinear elliptic equations
modeled on the elliptic p-Laplacian equation with right-hand side measure (1.4). Motivated
by the works mentioned above, our purpose of this paper is to establish the local weighted
Lorentz gradient estimates for weak solutions of the problem (1.1) with the condition (1.2) in
the case —1/n < i, <5, < 0. More precisely, we shall prove that

g7 [Ma(p)] € Ly, (Q) = [Dul € Ly}, ().

w,loc w,loc

We now state the definition of weak solutions.

Definition 1.3. A function u € WI}J’CG(O) (see Definition 2.4) is a local weak solution of (1.1) if
for any ¢ € Wé’G(Q) N L®(Q)) we have

1
/Qa ((ADu : Du)2> ADu - Dedx = /Q edy.

In this work we shall assume that the coefficients of A = {a;;} are in the BMO space and
their semi-norms are small enough. Higher integrability of solutions to various kinds of ellip-
tic/parabolic PDEs with discontinuous coefficients of VMO/BMO type has been extensively
studied by many authors (see [2,15,20,41,43]). We would like to point out that a function
satisfies the small BMO condition if it satisfies the VMO condition. More precisely, we use the
following small BMO condition.

Definition 1.4. We say that the matrix A of coefficients is (J, R)-vanishing if

sup sup
0<r<R xcR" By (x)

A(y) — Apw)| dy <9,

where

ZBr(x) = ][B,(x)A(y) dy.
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The main result of this work is stated as follows. First of all, we remark that the following
conclusion is stated as a priori estimate for weak solutions. Actually, solutions to measure
data problems (very weak solutions) are usually found by approximation procedures. So,
they are often called SOLA (Solutions Obtained by Limiting Approximation). We can refer to
the relevant existence theory in the papers [11-13,37,40]. In the following we shall mention a

space W/ (Q), where
t
A {C)
£(1) == /0 s,

whose definition is just like Section 3.2 in [7]. More precisely, the exact definition of SOLA is
given as follows: a function u € W;’Cf (Q) is a local SOLA of (1.1) if

L :
/Q a ((ADu : Du)2> ADu - Dedx = /Q edu

holds for any ¢ € C(€)), and moreover there exists a sequence of weak solutions {u;} €
WL (Q) of

loc

—div (a <(ADuk : Duk)%> ADuk> = in Q, (1.12)

such that uy — u in Wli'cf (Q)), where {u;} € L*(Q) converges weakly to y in the sense of
measure. In particular, we shall assume that —1/n < i, <5, < 0 in the theorem below just
like in the paper of Duzaar & Mingione [33], in which they supposed that p > 2 —1/n for the
elliptic p-Laplacian equations and general case.

Now we shall give a concrete conclusion of this paper.

Theorem 1.5. Suppose that y € L®(Q) and u € Wllo’CG(Q) is a local weak solution of (1.1) in (2 D By
for =1/n <i, <s, < 0. Then we have
g [Ma(p)] € L

w,loc

(Q) = |Du| € LY

w,loc

(@)

forany q € (1,00) and r € (0, co|, with the estimate

Dullgy 5y <€ [ (1Dul +1)dx+ Cllg™ M1 (1) g, (5

where C is independent of u and .

2 Proof of the main result

In this section we shall finish the proof of the main result in this work, Theorem 1.5. First of
all, we shall give some definitions on the general Orlicz spaces, which have been extensively
studied in the area of analysis (see [1,53]) and play a crucial role in many fields of math-
ematics including geometric, probability theory, stochastic analysis, Fourier analysis, partial
differential equations and so on (see [61]).

Definition 2.1. A function G belongs to ®, which consists of all increasing and convex func-
tions G : [0, +00) — [0, +00), is said to be a Young function if
G(t t
lim Glt) li

= —— =0.
t0+ t t—1>r—Poo G(t)
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Additionally, a Young function G is said to G € A, if there exists M > 0 such that
G(2t) < MG(t) for any t > 0. (2.1)

Moreover, we call a Young function G € V; if there exists a number a4 > 1 such that

G(t) < Géc;t) for any t > 0. (2.2)
Example 2.2.
(1) Gi(t) = (1+t)log(l1+1t) —t € Ay, but G1(t) ¢ V».
(2) Go(t) =el —t—1 € V,, but Gy(t) & A,.
(3) Gs(t) =tPlog(1+t) € ANV, for p > 1.
Remark 2.3. Actually, if G € Ay N V3, then we have
G(61t) <K6P'G(t) and G(62t) < 2a68°G(t) (2.3)
forevery t >0and 0 < 6, <1 < 60; < oo, where 1 =log, M > B> =log,2+1> 1.

Definition 2.4. Assume that G is a Young function. Then the Orlicz class K¢ (R") is the set of
all measurable functions f : R" — R satisfying

/nG(]f])dx<oo.

The Orlicz space LE(IR") is the linear hull of K¢(R") and W'¢(R") := {f € L°(R") | Df €
LE(R™)}.

Moreover, in this work we need the following crucial lemmas, which will be used in the
subsequent proof.

Lemma 2.5 ([1]). Let G be a Young function satisfying G € Ay N Vy. Then
(1) KG(Q) = L5(Q).
(2) C(Q) is dense in LE(Q)).
(3) LA (Q) C L°(Q) C LP2(Q) C LY(Q) with B1 > Bp > 1 as in (2.3).
(4) If f € L°(R"), then

[ Glflyax= ["Ifre R 1f > ] df600).

(5) st <eG(s)+C(e)G(t) foranys,t>0ande >0,
where G is the conjugate function of G

G(t) := sup {st — G(s)} foranyt > 0.

s>0

Now we shall recall the following results, which can be derived from Proposition 2.9 of
[26], Lemma 1.9 and Lemma 2.4 of [65] and the change of variable.
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Lemma 2.6. Assume that a(t) satisfies (1.2) for s, < 0 and G(t) = fot Ta(7) dt for t > 0 is defined
in (1.6).

1. Forany t > 0 we find that

Oiu S a(Gt) < 9511 and 92+1a G(Gt)

245,
2@ S S 0] < 6° forany 0 > 1. (2.4)

2. G(t) € Van Ay and G(g(t)) < CG(t) for t > 0.
3. There exist C = C(n,iz,5,) > 0and ey = €y(n, iz, 8,) > 0 we have
1 1
G Iz~ n) < C(e) [ ((Ag-0)) Az —a ((An-m)?) A - (€~ 1) +€G (1))
for any &,y € R" and small positive constant € € (0, €p).
Next, we can obtain the following important results for s, < 0.
Lemma 2.7. Assume that a(t) satisfies (1.2) and s, < 0, G(t) is defined in (1.6) and
V(z) =+/a(|z])z. (2.5)

Then for any ¢, € R" there exists C = C(n,i,,5,) > 0 we have

Ca (gl +1n1) & = 1P < V(@) = V(n[* < Ca (el +Inl) & 1P, (26)
Ca(El+ D IE—nP < V@ -Vl G —n) < Clallel+ D g -1 @)
and
a((az-0) ) Az —a((An-m)?) An] - @ =) = CV(E©) — V)P (2.8)
Proof. We first find that
vE) -V ()

= \Ja(l2)z —/a(nl)y
=(€—n) /1\/ (Is¢+ (1 —s)y|)ds

YT SRELL 1
T2d Tl A9l Va(st+ -9

Then from (1.2) we deduce that
1 1 1
V@ -Vl <lg—nl [ \Jalst+@—sihds =5 1c =yl [ yfa(lse+1—s))ds

— (1= ) el [ Vatsera-sas 29)

Similarly, we have

(s¢ + (1 =s)n) [sC + (1 =s)y]-(C — ) ds

v@-vilz (142 ) le—al [ Vot a-onhas 210)
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V@ -Vl E-n = (1+5) -k [ Valst+ a-shas @

and

V@ -von-E-n<(1-%) P [ Valst+a-shas. @2

In view of the facts that a(t) is strictly decreasing and |s¢ + (1 —s)y| < |¢| + || for any
0 <s <1, we find that

[ fatser @ =omhas> [*\Jalel+nhas = Ja(el+ln), @13

which implies that the left-hand inequalities of (2.6) and (2.7) hold true. On the other hand,
we define

50 1= 1S — 110l
& =1l
where 79 is the minimum norm point on the line through ¢ and 7. Without loss of generality

we may as well assume that |¢| > |57| > 0. It is easy to check that sy > 1. The following two
cases shall be considered separably.

Case 1: sp > 1. Then |sy+ (1—5)&| > |sno+ (1—5)¢| > |sO0+(1—9)¢| = (1—59)|¢| >
@ (I¢] + |n|) for any s € [0,1] and |{| > |5| > 0. Furthermore, from Lemma 2.6 (1) and the
decreasing property of a(t) we conclude that

[ Vats+a=s)ehas < [ \/ (552 et b as

<Cyfa(l+inl) [ (-9)tas
< Cyfa el + o) 21

Case 2: 1 < 59 < 1. Recalling the definition of 79 and choosing s = sy, we have

[ oo + @ =s)zhds <2 [ \Jatlsr + (1 - 9has
1
<c [ \/allom + (1-0)¢))d

<c ["aa—o) i

in view of the facts that |[079 + (1 —0)&| > [0+ (1 —6)¢| = (1 —6) |¢] for any 6 € [0,1] and
a(t) is decreasing. Similarly to Case 1, we find that

[ Vatlsn+ (@ =9)ahs < ¢ faticl + . 215)

Therefore, from (2.9)-(2.15) we can conclude that the right-hand inequalities of (2.6) and (2.7)
are true.
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For the sake of clarity and brevity, we may as well assume that A = I in the following
proof. First of all, we can compute as follows

a8~ nalal) = @ ) [ alst+ (1 -l ds

La (s + (1= s)g))
+, e+ (1—s)n

(86 + (1 —s)) [s¢ + (1 =s)y] - (¢ — 1) ds,
which implies that
[Ga(1G1) —=na(lnD]-(€—mn)

. o s+ (1 —s)y]- (E—n) [
> |€_17’2/0 a(\sé+(1—5)’7|)d5+1a/0 a(|s¢+ (1 —s)n|) |sé 4+ (1 —s)7] ds

> (i) 6P [ a(lsg+ (- s)yl)ds

in view of (1.2). Then similarly to (2.13), we find that

1
| allse+ @ =shds = a(izl +1n)),
which implies that

[Ga (1) = na (Iy))] - & —n) = Ca (1] + |n]) [ = nl*. (2.16)
Thus, from (2.6) and (2.16) we can obtain (2.8) and then finish the proof. O

For a locally integrable function f in R", we define its Hardy-Littlewood maximal function

M(f)(x) as
M(f)(x) := sup )If(y)l dy.

r>0 B, (x
If f is not defined outside a bounded domain (), then we let f be zero in the above definition if
x leaves (). Moreover, we can obtain the following basic properties for the Hardy-Littlewood
maximal functions.

Lemma 2.8 (see [42]).
1. If f € LY(Q), then we have the weak 1-1 estimate

Hx e Q:(Mf)(x) > A} < % /Q |f(x)|dx  for some constant C3 > 0. (2.17)

2. If f € LS(Q) for G € Ay N Vs, then we have Mf € LC(Q) with the estimates

1
c Lelfax< [ cmpyax<c [ G(fl)ax
& JLedr< [ ampar<c [ G(f)ax
In this paper we shall use the following version of the weighted Vitali covering lemma,

which will be a crucial ingredient in obtaining our main result.

Lemma 2.9 ([59, Lemma 3.4]). Assume that E and F are measurable sets, E C F C By, and that
there exists an € > 0 such that w(E) < ew(By) and that for all x € By and for all r € (0,1] with
w (ENB,(x)) > ew (B,(x)) we have B,(x) N By C F. Then, we have

w (E) < Cew (F).
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Moreover, we shall also use the following standard arguments of measure theory.

Lemma 2.10 (see [22,59]). Assume that r € (0, +oc0) and f is a nonnegative and measurable function
in Q). Let m > 1 be a constant. Then for 0 < q < oo we have

FeLY(Q) iffS:= Y m" [w ({x cQ:f(x) > m})}q <

i>1

and )
=S < Uflljyr ) < € [@(Q)7T +5],

where C > 0 is a constant depending only on m and w.

Furthermore, we shall prove the following important result, which involves a delicate
argument and a new scaling procedure in the subquadratic case s, < 0.

Lemma 2.11. Assume that u € Wllo’CG(Q) is a local weak solution of (1.1) with (1.2) and Bor C Q. If
v € WYC(ByRr) is the weak solution of

(2.18)

div [ ((ADo-Dv)?) ADv| =0 in Bag,
U= 1u on 0By,

then for any €1 > 0 there exists a constant C = C(n,1,,54,€1) > 1 such that

[ 1 (1 [p](Bar) [
— < 1 .
. |Du — Dv|dx < Cg <€1 (2R)"1 +e€1 . |Du| dx

Proof. Without loss of generality we may as well assume that R = 1 by defining
i(x) = R"'u(Rx), o(x) =R 'o(Rx) and fi(x) = Ru(Rx).
For k > 1 we define the following truncation operators (see [33,34,44,49])
Tk (s) := max{—k, min{k,s}} and Pi(s):=Ti(s — Ti(s)), s € R.

Since u and v are weak solutions of (1.1) and (2.18) respectively, then we have
1 1
/ [a ((ADu-Du)?) ADu —a ((ADo- Do)?) ADo] - Dgdx = / odu  (2.19)
Bz BZ
for any ¢ € L*(By) N W, (By). Without loss of generality we may as well assume that
|u|(B2) <e1 and ][ |Duldx < 1 (2.20)
By €1

for any small constant €1 € (0,1). If not, we can define

i(x) = 7 o(x) = N fi(x) = )
") =57 M GO =G
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where
1
A= g—l <|y|(B2)> +e1][ |Du|dx.
€ B,

Then, 4 (t) satisfies (1.2) and ii(x) € W-°(Q) is a local weak solution of

loc
—div [ﬁ ((ADﬁ : Dﬁﬁ) ADa} = .
Therefore, it is sufficient to prove the following inequality

][ \Du — Do|dx < C (2.21)
B>

under the condition (2.20), where C is independent of €;. By choosing ¢ = Px(u —v) €
L®(By) N Wy©(By) in (2.19) and using (2.8), we find that

V (Du) — V (Do) dx < c/ luldx < C, (2.22)
Ck BZ

where C := {x € By : k < |u(x) —v(x)| < k+1}. In the meantime, from (2.4), (2.6) and
Young’s inequality we find that

|Du — Do| < Ca™ 2 (|Du| + | Do|) |V(Du) — V(Do
<Ca‘7(\Du|+|Dv|+1)|V(Du) 14

)
(Do)

<C(|Du|+!Dv!+1 ]V(Du) V(D)
< C (|Du— Do| ™% + [Dul~% +1) |V(Du) — V(Dv)|
< C|V(Du) —V(Dv)\ﬁ+§|Du—Dv|

+C|Du|~% |V(Du) — V(Dv)| + |V(Du) — V(Do)

1 i
< C|V(Du) — V(Dv)\ﬂfﬂ + §|Du — Do| + C|Du|™ 2 |V(Du) — V(Dv)| +1

for i, € (—1/n,0), which implies that

\Du — Do| < C|V(Du) — V(Dv)|*% + C|Du|~% |V(Du) — V(Do)| +1
and then

/ |Du — Dv|dx < C/ |V(Du)—V(Dv)’ﬁ + 1dx
B, By

e (/Bz V(Du) — V(Do)| =5 dx> 2 (/BZ |Duydx> e

by using Holder’s inequality. Moreover, from Holder’s inequality, (2.22) and the definition of
Cy we find that

1
2+ia
\V(Du) — V(Dv)|%5 dx < C |G| 77 (/ \V(Du) — V(Dv)|2dx) :
Cy Cr

1 L
< C|Cil' ™7 [|ul (By)] 7

1

1 1- 2+ig
< ClpI(Ba)) s (= vl dx)
n (7 +1a
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for some ¢ € (—ni,, 1) C (0,1). Therefore, we conclude that

\V(Du) — V(Do)| %@ dx
By

< [ |V(Du) - V(Do)|% dx + Z/ V(Du) — V(Do)| 77 dx

Co =/
nlll</ |M—U|”0'dx) + }
0 1 2+la _ﬁ
Z n(1+ia)] (Z/ |u—v‘” de)
k=1 k n—c

(1-27)

1+</ |u —v|"7 ”dx)

) s (1-2i7)
Cllu|(B)]7= {1+ (/32\Du—Dv|dx> } (2.24)

by Sobolev’s inequality and the fact that

< C[Iul(By)) 7

n(1+1i,)
n—o

>1,

since 0 € (—ni,, 1). Furthermore, from (2.20), (2.23), (2.24) and Young's inequality we obtain

e (1-27)
Du—DU dx < C+C B, =i 1+ Du — Dol dx B
M
By

1+</ |Du—Dv|dx>(1 Mz)]

< C+C[|p|(By))77 {1 + (/Bz |Du — Dv|dx>n”u(1—zlfa)}

2
,711 —ig
(B2 ( [, 1Dulax) ]
it (1= )
—l—C(/ |Du—Dv|dx>
B>

Lty i (1-77)
<C+Ce™ +C </ |Du — Do| dx>

ﬁ(l 2411'5)
§C+C</ |Du—Dv|dx> ,
B,

which implies that (2.21) is true since

n (1— 1.><1 foria€<—1,0>.
n—o 241, n

Thus, we finish the proof. O

2+ig
2
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We now switch to another comparison estimate for solutions to (1.1) and the homogeneous
constant coefficient problem.

Lemma 2.12. Assume that u € W,la’CG(Q) is a local weak solution of (1.1) with B C Q) and (1.2). If
w € WYC(BR) is the weak solution of

_ 1\ —

div |a| (Ag,Dw-Dw)? | Ag.Dw| =0 in Bg,

|: (( Br ) ) Br :| R (225)
w="70 on aBR,
then for any €1 > 0 there exists a constant C = C(n, iz, S4,€1) > 1 such that
e |V|(BZR)>

Du—Dw|dx < Cg ' | — -0 +e][ Du| dx. 2.26
£ ax<cgt (S ) ref  1ou 226

Proof. 1f we select the test function ¢ = v — w, then after a direct calculation we can show the
resulting expression as

— 1\ — — 1\ —
L = / a((ABRDw . Dw)2>ABRDw - Dwdx = / a((ABRDw . Dw)2>A3RDw - Dvdx =: I,.
BR BR
Using (1.3) and Lemmas 2.5-2.6, we find that

c/ (IDw|) dx<11_12<r/ G(\Dw\)dHC(r)/ G (|Dol) dx
B B

R R

which implies that

/G(|Dw\)dxgc/ G (|Dvl) dx (2.27)
Br Br

by choosing T small enough. Moreover, we apply Gehring’s lemma (see Theorem 6.7 in [36])
to obtain the reverse Holder type inequality

[/BR[ (|Dw|)]1+‘5°dx] v <c/ (IDw|) d (2.28)

for some positive constant 5y > 0. On the other hand, we can also calculate the result of the
expression I3 = Iy, where

I = /B [a((ADv- Do)?) ADu —a ((ADw - Dw)?) ADw] - (Do — Dw)dx,
Iy := —/B [a ((ADw : Dwﬁ) ADw —a <(ABRDw : Dw)%> ABRDw] - (Dv — Dw)dx.

From Lemma 2.6 we find that

e/ (]Dv])dx+13>C/ (|Dv — Dw|) dx
Br
Moreover, we first discover

|14\g/ ((4Dw - Dw)t) |A — A, | |Dw| [Dw — Do dx
R

_|_

a ((ADw-Dwﬁ) —a ((ABRDw-Dw §>‘ |Ap,Dw| |Dw — Dol dx
Br

=: Iy + Ipo.
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Estimate of I3;. From (1.3), Lemma 2.6, Young’s inequality and Holder’s inequality we find
that

In < c/ a (|Dw|) |Dw| |A — Ag, | |Dw — Dol dx
Br

< i/ G(|Dw—Dv\)yA—ZBR\dHc(e)/ G (a(|Dw|) |Dw]) |A — Ap, | dx
2A Br Br
<e G(|Dw—Dvy)dx+c(e)/ G (|Dw|) |A — Ap, | dx
Br BR

0

SG/BRG(|Dw—Dv|)dx+C(e) {/BR [G(|Dw|)]1+50dx}1+150 [/BR }A_ABR|1§(;;de]%

for any € > 0, which implies that

%

_ T+5y
I41§e/ G(\Dw—Dv])dx—l—C(e)/ G (|Dw|) dx [/ ‘A_ABR|dx} T+
BR B BR

2R

ge/ G(\Dw—Dvy)dHC(e)aﬁ/ G (|Dv]) dx,
Bx B

2R
where we used Definition 1.4 and (2.27)—(2.28).

Estimate of I45. (1.2), (1.3), Lemma 2.6 and Lagrange’s mean value theorem yield the bound

_ 1
Ip < C/ la" (Q)] ‘(ADw-Dw); — (ApyDw - Dw)?| |Dw| |Dw — Dv| dx
Br

a(f)| A — Ap,| |Dw|?
B | 4 | 1 R‘f 7 |Dw| |Dw — Do dx
! (ADw - Dw)? + (ABRDW . Dw)z

< c/ a (|Dw|) |Dw| |A — Apy| |Dw — Do) dx,
Br

<C

_ 1
where  is between (ADw - Dw)? and (Ap,Dw - Dw)? satisfying

,(ZBRDw-Dw)% < Az|Duw).

Nl—

A~z|Dw| <, (ADw - Dw)

And then, we have

O
I42§e/ G(|Dw—Dv|)dx+C(e)(sﬁ/ G (|Do|) dx
Br B

2R

for any € > 0, whose proof is totally similar to that of I3;. Thus, we choose € small enough
and combine the estimates of I3 and I to conclude that

/ G(yDv—Dw|)dx§e/
Bx B

ge%““/ G (|Dvl) dx
Bar

G(]Dv])dx—kC(e)éli%O/ G (|Do]) dx

R Bar

by selecting €,6 small enough satisfying the last inequality. Since 8>*=G(t) < G(0t) <
62+s:G(t) for any 0 > 1 and t > 0 by (2.4), we find that

2tinp < G <9G’1(t)) < 0%t forany 6 > 1,
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which implies that
G (6%7+t) <0GT(1) < G (67*¢) forany 6 > 1.

In other words, we conclude that

-

()
L

—~
D
-

~—

[

0% < ooy SO7F forany 0> 1. (2:29)

From Jensen’s inequality and the reverse Holder’s inequality (see Lemma 4.2 in [7]) we deduce
that

G<][ ]Dv—Dw|dx)§C][ G (|Dv — Dw|) dx
Br Br

< Ce?“s“][ G (|Dv|) dx
B

R

< Ceit™ G <][ \Dv\dx) ,
Bor

which implies that

][ |Dv—Dw|dx§Cel][ |Do|dx
BR R

By

by using (2.29). Finally, by using Lemma 2.11 and the above inequality we obtain
][ |Du — Dw|dx < ][ |Du—Dv|dx+][ |Dv — Dw|dx
BR BR BR

— 1 ‘V‘(B?_R)
< 1 L =7
Cg ( 2Ry + Ceq /BR]Du\dx—i—Cel /BZR]Dv]dx

(1 W|(32R)>
Co 1 =222/ —|—C€/ Dudx+Ce/ Dv — Duldx
8 <€1 (2R)n71 ! BZR‘ | ! BZR‘ ‘

~1 (1 |p[(B2r) /
Cg (€1 (2R)" 1 + Cey BZR\Du|dx

IN

IA

and then finish the proof. O

Additionally, we can get the following local Lipschitz regularity for the homogeneous
constant coefficient problem.

Lemma 2.13 (see [7, Lemma 4.1]). Let w € WYC(Q) be a weak solution to
_ 1\
div [a ((ABRDw . Dw)2> ABRDZU:| =0 inBr C R".
Then we can obtain the following De Giorgi type estimate

sup |Dw| < C+ |Dw|dx.
Br

Bgr/2

The following crucial lemma, which shows how the upper level sets of |Du| decay, allows
us to build the interior gradient estimates.
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Lemma 2.14. Assume that A > 0. There is a constant N = N(n,iz,s,) > 0 so that for any € > 0,
there exists a small 6 = §(e) > 0 such that if u € Wli'CG(Q) is a local weak solution of (1.1) in Bsy C Q)
for r € (0,1] with

B,N{x € By : M(|Du|)(x) <A} N{x € By:g ' [Mi(p)] (x) <A} # O, (2.30)

then we have
w ({x € B, : M(|Dul)(x) > NA}) < ew (B,). (2.31)

Proof. From (2.30), there exists a point xy € B, such that

][ |Duldx <A and ¢! <p][ d]y]) < OA (2.32)
By (o) By (o)

for all p > 0. Since By, C Bs,(xy), it follows from (2.32) that

][ Du| dx < B0l 1 |Du|dx < 2"A. (2.33)
By, |Bar|  [Bsr(x0)] JBs (x0)

Since ttlg(1) < g(t) < t51g(1) for any + > 1 by Lemma 2.6, we know that part <g () <

~

past for any f > 1. Similarly, we also see that prast <g it < taeT for any 0 < t < 1. In the
same way, we also have

- _1 (4r |Bs,(x0)]
1 4r][ d >< 1<.-5r][ dlul ) < con.
g < B4r |]/l| o g 57’ |B41’| B5r(x0) |]/l’ -

Then we apply Lemma 2.12 to deduce that

][ \Du—Dw|dx§Cg1(4r][ d]y])—i—el][ |Du| dx
Bs, €1 By By,
A
<c® L cen

ig+1
€

jay

by choosing ¢, €; small enough satisfying C—4— + Ce;A < A in advance and then

ig+1
€1

D] o5,y < c][B \Dw| dx
4r

< C][ \Du]dx—i—C][ |Du — Dw| dx
By, By,
< NjA
by Lemma 2.13 and (2.33), for some positive constant N; > 1. Now we shall claim that
{x € B, : M(|Dul)(x) > NA} C {x € B, : M(|Du — Dw|)(x) > N1A} (2.34)

for N := max{3",2N; }. Actually, we take x; € {x € B, : M(|Du — Dw|)(x) < NjA}. If 0 <
p < 1, then we find that B,(x1) C By, and so

]l |Du|dx§][ (IDw| + |Du — Dw|) dx
Bp(xl) Bp(xl)

< M(|Du — Dw|)(x1) + N1A
< 2NiA.
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On the other hand, if p > 7, then B,(x1) C B3,(x0). From (2.32), we deduce that

B
][ \Du|dx§|3p(xo)‘][ |Du|dx <3"A < NA.
By(x1) |Bp(x1)| B3, (x0)

Thus, the claim (2.34) is true. Then from Lemma 2.8 we estimate

1 1
m!{x € B, : M(|Du|) > NA}| < m\{x € B, : M(|Du — Dw|) > N1A}|

C
< — Du — Dw|dx
- NlA][B3r| |

SC 51 +C€1,

ig+1
€1

which implies that

w({x € B, : M(|Du|) > NA}) <C ( 51 +€1> w(B,) < ew(By)

ig+1
€

by Lemma 1.2 and choosing J,€; small enough satisfying the last inequality. Therefore, we
finish the final proof of this lemma. O

Now we are ready to finish the proof of the main result, Theorem 1.5.
Proof. Letu € Wl}]’CG(Q) be the local weak solution of (1.1),
E = {x € By : M(|Du|)(x) > NAAy}
and
F={x€By: M(|Du|) > AAg}U {x €B:g ! (Mi(n)) (x) > MAO} for any A > 1,

where

1
Cs Cz)"/
Ao = — Du| + 1dx. 2.35

0 N‘ Bl | < € Bz ‘ ’ ( )

It follows from the weak 1-1 estimate that
1

C3 € v
: < —
[{x € By M(IDul)(x) > NAN}| < 5 /B] \Duldx < (C2> 1B,

which implies that
w ({x € By : M(|Du|)(x) > NAAo}) < ew(By)
by Lemma 1.2. Therefore, we apply Lemma 2.9 and Lemma 2.14 to have
w (E) < Cew (F). (2.36)
Next, we divide into two cases.

Case 1: r = +o0. From (2.36) we conclude that
[w ({x € B : M(|Du|)(x) > NAAo})]7 < Cei [w ({x € By : M(|Dul)(x) > AAo})]7

+Cet [w({x € B g™ (Mi(p)) (x) > 6AAo} )|

==

for any A > 1, which implies that
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1
[IMUDu|) || g (g, == sup NAAg [w ({x € By : M(|Du|)(x) > NAAo})]?
>

< CNet sup Ao [w ({x € By : M(|Du|)(x) > Ado})]7 + Cho
A>1
1 1
CNET upsro [w ({x €B:g  (Mi(n)) (x) > 5AA0}>] i
A>1

< Caet | M(IDul) | g ) + C(8,€)l1g ™ (Ma () g, + Cho-

_|_

Then, by selecting € small enough such that C4€% = 1/2 and using an approximation argu-
ment by choosing |V, := min{Vu, k} like the one in [8], we deduce that

1Dullpgesyy < IMUDuD s,
< Cllg™ (My()) 35, + Cho
< Cllg™ (Mi(1) llg(s,) + C/B |Dul +1dx.
2

Case 2: 0 < r < 4o0. From (2.36) we find that
[w ({x € By : M(|Dul)(x) > NAA})]#
— [w(E)]7 < Cei [w (F)]
< Cei [w ({x € By : M(|Du|)(x) > AAo})]7
+Cei [ ({x € By g™ (Mi()) (x) > 5Ado} )|

Actually, by applying an iteration procedure we can also prove

=%

[w ({x € By : M(|Dul)(x) > N"Ao})]i
< Ce' [w({x € By : M(|Du|)(x) > Ag})]7

+Cie?’ @ ({x € Br: g™ (Mi(w) () > N" 7620} ) |

==

(2.37)

Now we select € small enough satisfying N 'ei < 1 and then apply Lemma 2.10 to observe
that

il N"™ Ay [w ({x € By : M(|Du|)(x) > NmAO})]é

==

<CRNTR Y [ ((re Breg (Ma0) () > N o))

—|—Ci N"™ e A [w ({x € By : M(|Dul)(x) > Ag})]7
m=1
< ;ie’q’ i On=0rgag [w ({x € By : g™t (Ma(p)) (x) > z\fm*f(m@})]5

i M8
Z
&‘S

<Clig™ ( ( D Wiar 5,y + CAo < +oo,
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which implies that

1Dl < IMUDu] g s,y < Clig™ (Ma(p)) gy +C [ 1Dl + 1.
2

Thus, this finishes the proof of the main result in this work. O
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