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1Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
2Department of Applied Mathematics and Computer Science, Technical University of Denmark,

2800 Kgs. Lyngby, Denmark
3University of Zagreb, Faculty of Science, Horvatovac 102a, 10000 Zagreb, Croatia

Received 9 October 2023, appeared 26 March 2024

Communicated by Armengol Gasull

Abstract. In this paper we define the notion of slow divergence integral along sliding
segments in regularized planar piecewise smooth systems. The boundary of such seg-
ments may contain diverse tangency points. We show that the slow divergence integral
is invariant under smooth equivalences. This is a natural generalization of the notion of
slow divergence integral along normally hyperbolic portions of curve of singularities in
smooth planar slow–fast systems. We give an interesting application of the integral in a
model with visible-invisible two-fold of type VI3. It is related to a connection between
so-called Minkowski dimension of bounded and monotone “entry-exit” sequences and
the number of sliding limit cycles produced by so-called canard cycles.
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1 Introduction

The notion of slow divergence integral [6, Chapter 5] has proved to be an important tool to
study lower and upper bounds of limit cycles in smooth planar slow–fast systems (see e.g.
[5–7, 10, 11] and references therein). In this paper by “smooth”, we mean differentiable of
class C∞. One of the main goals of this paper is to define the slow divergence integral in
regularized planar piecewise smooth (PWS) systems with sliding and to prove its invariance
under smooth equivalences (by smooth equivalence we mean smooth coordinate change and
a multiplication by a smooth positive function). This is a natural generalization of [25] where
the slow divergence integral is defined only for a PWS two-fold bifurcation of type visible-
invisible called VI3 and the switching boundary is a straight line (for more details about
two-fold singularity VI3 see [28] and Sections 2 and 3). In this paper we define the slow
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divergence integral along sliding segments with a regular sliding vector field [16] (Section
2.1), and extend it to tangency points when only one vector field is tangent to switching
boundary (Section 2.3), two-fold singularities of sliding type VV1, I I1, VI2 and VI3 [28], and
to a visible-invisible two-fold singularity when the sliding vector field vanishes at the two-fold
point (Section 2.2).

Consider a smooth planar slow–fast system

Xϵ,λ = fλYλ + ϵQλ + O(ϵ2)

defined on open set V ⊂ R2, where 0 < ϵ ≪ 1 is the singular perturbation parameter,
λ ∼ λ0 ∈ Rl , fλ is a smooth family of functions and Yλ and Qλ are smooth families of vector
fields. We suppose that X0,λ has a curve of singularities Cλ for all λ ∼ λ0 (Fig. 1.1). We
further assume that ∇ fλ(p) ̸= (0, 0) for all p ∈ {(x, y) ∈ V | fλ(x, y) = 0} and that Yλ has
no singularities for each λ ∼ λ0. Then we have Cλ = { fλ = 0} and Cλ is a smooth family of
1-dimensional manifolds.

The orbits of the flow of X0,λ are located inside the leaves of a smooth 1-dimensional
foliation Fλ on V tangent to Yλ (Fλ is called the fast foliation of X0,λ). If p ∈ Cλ, then
DX0,λ(p) has one eigenvalue equal to zero, with eigenspace TpCλ, and the other one equal to
div X0,λ(p) (i.e., the trace of DX0,λ(p)) with eigenspace Tplλ,p (lλ,p is the leaf through p). We
say that p ∈ Cλ is normally hyperbolic if div X0,λ(p) ̸= 0 (attracting when div X0,λ(p) < 0 and
repelling when div X0,λ(p) > 0). We can define the notion of slow vector field on normally
hyperbolic segments of Cλ. Let p ∈ Cλ be a normally hyperbolic singularity and let Q̄λ(p) ∈
TpCλ be the projection of Qλ(p) on TpCλ in the direction of Tplλ,p. Q̄λ is called the slow vector
field and its flow the slow dynamics. The time variable of the slow dynamics is the slow time
t̄ = ϵt where t is the time variable of the flow of Xϵ,λ. We point out that the classical definition
of the slow vector field using center manifolds is equivalent to this definition. For more details
see [6, Chapter 3].

mλ

Cλ

Fλ

Figure 1.1: The dynamics of X0,λ with the curve of singularities Cλ (blue) and
the fast foliation Fλ. A normally hyperbolic segment mλ ⊂ Cλ (red) along
which the slow divergence integral can be defined.

We define now the notion of slow divergence integral (see [6, Chapter 5]). If mλ ⊂ Cλ is
a normally hyperbolic segment not containing singularities of Q̄λ, then the slow divergence
integral along mλ is defined by

I(mλ) =
∫ t̄2

t̄1

div X0,λ(zλ(t̄))dt̄ (1.1)

where zλ : [t̄1, t̄2] → R2, z′λ(t̄) = Q̄λ(zλ(t̄)) and zλ(t̄1) and zλ(t̄2) are the end points of mλ (we
parameterize mλ by t̄). This definition is independent of the choice of parameterization zλ of
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mλ and the slow divergence integral is invariant under smooth equivalences (see [6, Section
5.3]).

If both eigenvalues of the linear part of X0,λ at p ∈ Cλ are zero, then we say that p is a
(nilpotent) contact point between Cλ and Fλ. The slow divergence integral can also be defined
along parts of Cλ that contain contact points, using its invariance under smooth equivalences
and normal forms near contact points (see [6, Section 5.5]).

We come now to a natural question: can we define the notion of slow divergence integral if
we replace the slow–fast system Xϵ,λ with a regularized planar PWS system? In Section 2 we
give a positive answer to the question. Instead of X0,λ we consider a λ-family of planar PWS
systems (2.1) defined in Section 2. The switching boundary Σλ defined after (2.1) plays the
role of the curve of singularities Cλ, and the Filippov sliding vector field Zsl

λ on sliding subsets
of Σλ (see (2.2)) plays the role of the slow vector field Q̄λ on normally hyperbolic portions of
Cλ (see Proposition 2.1). The function that will be integrated (Definition 2.2 in Section 2.1) is
the divergence of a smooth slow–fast vector field visible in the scaling chart of a cylindrical
blow-up applied to regularized PWS system (2.4) (for more details see [25] and the proof of
Proposition 2.1). The notion of slow divergence integral in the PWS setting is well-defined
when the sliding vector field Zsl

λ has no singularities (see Definition 2.2).

We show that the slow divergence integral from Definition 2.2 is invariant under smooth
equivalences (see Theorem 2.4 in Section 2.1).

VI3 VV1

Figure 1.2: Limit periodic sets in planar PWS systems through two-fold points
with sliding (the VI3 case and the VV1 case). They can be located in a region
with invisible fold point (green) or in a region with visible fold point (red).

In Sections 2.2 and 2.3 we define the slow divergence integral near tangency points, as
already mentioned above (tangency points in Σλ play the role of contact points between Cλ

and Fλ). We use the invariance of the slow divergence integral under smooth equivalence.
The extension of the slow divergence integral to tangency points has proved to be crucial
when we study the number of sliding limit cycles (i.e., isolated closed orbits with sliding
segments) of a regularized planar PWS system produced by so-called canard limit periodic
sets or canard cycles (for more details see [25]). In [25] only the VI3 case has been studied,
with canard cycles located in the region with invisible fold point (see the green closed curve in
Fig. 1.2). Canard cycles contain both stable and unstable sliding portions of the discontinuity
manifold (often called switching boundary). For example, it has been proved in [25] that the
number of sliding limit cycles (produced by the canard cycles) of regularized quadratic PWS
systems is unbounded.

A canard cycle can also be located in a region with visible fold point (for example, red
closed curves in Fig. 1.2), and again the slow divergence integral associated to the segment of
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the switching boundary contained in the canard cycle plays an important role when studying
sliding limit cycles (see [24]).

Besides sliding cycles, crossing limit cycles can exist for PWS systems and for example J.
Llibre and co-workers have obtained upper bounds for a number of classes [13, 29, 32]. See
also [2, 4, 17, 18, 20, 21, 30, 31] and references therein.

Section 3 is devoted to applications of the slow divergence integral from Section 2. In
Section 3 we focus on the model used in [25] (visible-invisible two-fold VI3) and read upper
bounds of the number of sliding limit cycles and type of bifurcations near so-called gener-
alized canard cycles (Fig. 3.1) from fractal properties of a bounded and monotone sequence
in R defined using the slow divergence integral and the notion of slow relation function
(see Section 3.1). The main advantage of this fractal approach is that, instead of computing
the multiplicity of zeros of the slow divergence integral (like in [25]), it suffices to find the
Minkowski dimension [14] of the sequence. There is a bijective correspondence between the
multiplicity and the Minkowski dimension (see Section 4). A similar fractal approach has been
used in [8,22,23,26] where one deals with smooth slow–fast systems. See also [12,35] and the
references therein. We point out that there exist simple formulas for numerical computation
of the Minkowski dimension of the sequence (see e.g. [23]). In Section 3.2 we state the main
fractal results (Theorems 3.4–3.6), and in Section 4 we prove them.

For the sake of readability, in this paper we work in R2 using the Euclidean metric. We
believe that the notion of slow divergence integral in regularized PWS systems on a smooth
surface could also be defined. We point out that the slow divergence integral [6] is defined for
slow–fast systems on a smooth surface.

2 The slow divergence integral in PWS systems with sliding

First we recall the basic definitions in PWS theory [9, 19] (switching boundary, sliding set,
crossing set, sliding vector field, tangency point, two-fold singularity, etc.). Then we define
the notion of slow divergence integral of a regularized PWS system along a sliding segment
(not containing singularities of the sliding vector field) and prove that the integral is invariant
under smooth equivalences (see Section 2.1). In Section 2.2 we extend the definition of the
slow divergence integral to segments consisting of a stable sliding region, an unstable sliding
region and a two-fold singularity between them. If the two-fold singularity is visible-invisible,
then we assume that the sliding vector field is regular or has a hyperbolic singularity in the
two-fold point. In Section 2.3 we define the slow divergence integral near a tangency point
where the tangency (quadratic or more degenerate) appears only in one vector field.

Consider a λ-family of PWS systems in the plane

ż =

{
Z+

λ (z) for z ∈ Σ+
λ ,

Z−
λ (z) for z ∈ Σ−

λ ,
(2.1)

where z = (x, y), λ ∼ λ0 ∈ Rl and the switching boundary is a smooth λ-family of 1-
dimensional manifolds Σλ given by

Σλ = {z ∈ R2 | hλ(z) = 0} ∩ V,

with an open set V and a smooth family of functions hλ such that ∇hλ(z) ̸= (0, 0), ∀z ∈ Σλ.
The switching boundary Σλ separates the open set Σ+

λ = {z ∈ V | hλ(z) > 0} from the open
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set Σ−
λ = {z ∈ V | hλ(z) < 0}. We assume that the λ-family of vector fields Z+

λ = (X+
λ , Y+

λ )

(resp. Z−
λ = (X−

λ , Y−
λ )) is smooth in the closure of the λ-family Σ+

λ (resp. Σ−
λ ). In this paper

“smooth” means “C∞-smooth”.

The subset Σsl
λ ⊂ Σλ consisting of all points z ∈ Σλ such that

Z+
λ (hλ)(z)Z−

λ (hλ)(z) < 0

is called the sliding set, where Z±
λ (hλ)(z) := ∇hλ(z) · Z±

λ (z) is the Lie-derivative of hλ with
respect to the vector field Z±

λ at z. A sliding point z ∈ Σsl
λ is stable (resp. unstable) if

Z+
λ (hλ)(z) < 0 and Z−

λ (hλ)(z) > 0 (resp. Z+
λ (hλ)(z) > 0 and Z−

λ (hλ)(z) < 0). We write
Σsl

λ = Σs
λ ∪ Σu

λ where Σs
λ (resp. Σu

λ) is the set of all stable (resp. unstable) sliding points. In Σs
λ

(resp. Σu
λ) the vector fields Z±

λ point toward (resp. away from) the switching boundary. We
call the set Σcr

λ ⊂ Σλ of all points z ∈ Σλ such that

Z+
λ (hλ)(z)Z−

λ (hλ)(z) > 0

the crossing set.

At each point z ∈ Σcr
λ the orbit of (2.1) crosses the switching boundary Σλ (it is the con-

catenation of the orbit of Z+
λ and the orbit of Z−

λ through z). Along the sliding set Σsl
λ , the flow

is given by the Filippov sliding vector field [16]

Zsl
λ (z) =

1
(Z+

λ − Z−
λ )(hλ)

(
Z+

λ (hλ)Z−
λ − Z−

λ (hλ)Z+
λ

)
(z), z ∈ Σsl

λ . (2.2)

The sliding vector field Zsl
λ defined in (2.2) is tangent to Σsl

λ , i.e., Zsl
λ (z) is equal to the convex

combination τZ+
λ (z) + (1 − τ)Z−

λ (z) with

τ = τλ(z) =
−Z−

λ (hλ)

(Z+
λ − Z−

λ )(hλ)
(z) ∈]0, 1[. (2.3)

We say that z ∈ Σsl
λ is a pseudo-equilibrium of (2.1) if Zsl

λ (z) = 0.

A point z ∈ Σλ where Z+
λ (hλ)(z) = 0 or Z−

λ (hλ)(z) = 0 is a PWS singularity called
tangency. We say that z ∈ Σλ is a fold singularity (or a fold point) of Z+

λ (resp. Z−
λ ) if

Z+
λ (hλ)(z) = 0 and (Z+

λ )
2(hλ)(z) ̸= 0 (resp. Z−

λ (hλ)(z) = 0 and (Z−
λ )

2(hλ)(z) ̸= 0). The fold
point is visible if (Z+

λ )
2(hλ)(z) > 0 (resp. (Z−

λ )
2(hλ)(z) < 0) and invisible if (Z+

λ )
2(hλ)(z) < 0

(resp. (Z−
λ )

2(hλ)(z) > 0).

We say that z ∈ Σλ is a two-fold singularity if z is a fold point of both Z±
λ . A two-fold

singularity z ∈ Σλ is said to be visible-visible (VV) if z is visible in both Z±
λ , invisible-invisible

(I I) if z is invisible in both Z±
λ , and visible-invisible (VI) if z is visible in Z+

λ and invisible
in Z−

λ or visible in Z−
λ and invisible in Z+

λ . Following [28], there exist 7 (generic) cases for
two-fold singularities taking into account the direction of the flow of Z±

λ and Zsl
λ : 2 visible-

visible cases (denoted by VV1 and VV2 in [28]), 2 invisible-invisible cases (I I1 and I I2) and 3
visible-invisible cases (VI1, VI2 and VI3). For more details we refer to [1,19,27,28]. In Section
2.2 we define the notion of slow divergence integral near two-fold singularities of sliding type
(VV1, I I1, VI2 and VI3). The four sliding cases are illustrated in Fig. 2.2. We also treat a
visible-invisible two-fold singularity where the sliding vector field points toward (or away
from) the two-fold singularity on both sides (Fig. 2.3).

We consider a regularized PWS system [25]

ż = ϕ(hλ(z)ϵ−1)Z+
λ (z) + (1 − ϕ(hλ(z)ϵ−1))Z−

λ (z) (2.4)



6 R. Huzak, K. U. Kristiansen and G. Radunović

where 0 < ϵ ≪ 1 and ϕ : R → R is a smooth regularization function. We assume that ϕ is
strictly monotone, i.e.,

ϕ′(u) > 0 for all u ∈ R, (2.5)

and ϕ has the following asymptotics for u → ±∞:

ϕ(u) →
{

1 for u → ∞,

0 for u → −∞.
(2.6)

Moreover, we assume that ϕ is smooth at ±∞ in the following sense: The functions

ϕ+(u) :=

{
1 for u = 0,

ϕ(u−1) for u > 0,
, ϕ−(u) :=

{
ϕ(−u−1) for u > 0,

0 for u = 0,

are smooth at u = 0.
Using the asymptotics of ϕ given in (2.6), the system (2.4) becomes the PWS system (2.1)

in the limit ϵ → 0. Combining this with the fact that ϕ is smooth at ±∞, we have that, for
z kept in any fixed compact set in V \ Σλ, the right hand side of (2.4) is an o(1)-perturbation
of the right hand side of (2.1) where o(1) is a smooth function in (z, ϵ, λ) and tends to 0 as
ϵ → 0, uniformly in (z, λ). Thus, the PWS system (2.1) describes the dynamics of (2.4), for
ϵ > 0 small, as long as z is kept uniformly away from Σλ.

Near Σsl
λ , the dynamics of (2.4), with 0 < ϵ ≪ 1, is given by Proposition 2.1 (see also [33]).

2.1 Definition and invariance of the slow divergence integral

Proposition 2.1. Suppose that the PWS system (2.1) has a stable (resp. unstable) sliding point p ∈
Σsl

λ0
. Then, for each 0 < ϵ ≪ 1 and λ ∼ λ0, (2.4) has a locally invariant manifold near p with foliation

by stable (resp. unstable) fibers, and the reduced dynamics on this manifold (when ϵ → 0) is given by
sliding vector field Zsl

λ defined in (2.2).

Proof. Without loss of generality, we can assume that
∂hλ0
∂y (p) ̸= 0. Then the switching bound-

ary Σλ (locally near p) is the graph of a smooth function y = fλ(x). Using hλ(x, y) = ϵỹ, the
system (2.4) multiplied by ϵ > 0 becomes a slow–fast system

ẋ = ϵ
(
ϕ(ỹ)X+

λ (x, fλ(x)) + (1 − ϕ(ỹ))X−
λ (x, fλ(x)) + O(ϵỹ)

)
,

˙̃y = ϕ(ỹ)Z+
λ (hλ)(x, fλ(x)) + (1 − ϕ(ỹ))Z−

λ (hλ)(x, fλ(x)) + O(ϵỹ).
(2.7)

When ϵ = 0, the curve of singularities of (2.7) is given by ỹ = ϕ−1 (τλ(x, fλ(x))) where τλ is
defined in (2.3). Each singularity (x, ϕ−1 (τλ(x, fλ(x)))) is semi-hyperbolic with the nonzero
eigenvalue equal to the divergence of the vector field (2.7), with ϵ = 0, computed in that
singularity:

(Z+
λ − Z−

λ )(hλ)(x, fλ(x))ϕ′
(

ϕ−1 (τλ(x, fλ(x)))
)

. (2.8)

The reason why the eigenvalue in (2.8) is nonzero is because Z+
λ (hλ)Z−

λ (hλ) < 0 and ϕ′ > 0
(see (2.5)). The curve of singularities is attracting (resp. repelling) if p is a stable (resp.
unstable) sliding point. The result follows now from Fenichel’s theory [15]. Notice that the
reduced dynamics of (2.7) along the curve of singularities is given by the vector field(

τλX+
λ + (1 − τλ)X−

λ

)
(x, fλ(x)). (2.9)
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We divided the x-component in (2.7) by ϵ and let ϵ → 0 with ỹ = ϕ−1 (τλ(x, fλ(x))). We get
the same expression (2.9) if we use the definition of the slow vector field introduced in Section
1. This completes the proof.

Following [6, Chapter 5] or Section 1 in the smooth slow–fast system (2.7) one can define
the notion of slow divergence integral along normally hyperbolic curve of singularities ỹ =

ϕ−1 (τλ(x, fλ(x))) when the sliding vector field in (2.9) has no singularities: it is the integral of
the divergence in (2.8) where the variable of integration is the time variable of the flow of the
sliding vector field. This is our motivation for the definition of the notion of slow divergence
integral of regularized PWS system (2.4) (see also [25]).

Definition 2.2 (Slow divergence integral). Let mλ ⊂ Σsl
λ be a bounded segment (Fig. 2.1) not

containing pseudo-equilibria of the PWS system (2.1). Let zλ : [t1, t2] → R2 be a solution of
z′(t) = Zsl

λ (z(t)) where zλ(t1) and zλ(t2) are the end points of mλ (zλ is a parameterization of
mλ). Then we define the slow divergence integral of regularized PWS system (2.4) associated
to mλ as

I(mλ) =
∫ t2

t1

Eλ(zλ(t))dt (2.10)

where
Eλ(z) = (Z+

λ − Z−
λ )(hλ)(z)ϕ′

(
ϕ−1 (τλ(z))

)
, z ∈ Σsl

λ .

Remark 2.3. Note that the definition of the slow divergence integral given by (2.10) is inde-
pendent of the choice of zλ. Indeed, if ẑλ is another solution to z′(t) = Zsl

λ (z(t)) and p ∈ mλ,
then there exist t̃ ∈ [t1, t2] and t̄ such that zλ(t̃) = ẑλ(t̄) = p. Then we have zλ(t) = ẑλ(t+ t̄− t̃)
due to uniqueness of solutions. Now, we get

∫ t2+t̄−t̃

t1+t̄−t̃
Eλ(ẑλ(s))ds =

∫ t2

t1

Eλ(zλ(t))dt,

where we use the change of variable s = t + t̄ − t̃.

If mλ is stable (resp. unstable), then I(mλ) is negative (resp. positive).

The slow divergence integral from Definition 2.2 is invariant under smooth equivalences
(Theorem 2.4.1 and Theorem 2.4.2). Theorem 2.4.3 tells us how to compute I(mλ) for an
arbitrary parameterization of mλ (see also [6, Proposition 5.3]).

mλ

Σsl
λ

Figure 2.1: A segment mλ ⊂ Σsl
λ (blue).
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Theorem 2.4 (Invariance of the slow divergence integral). Let us denote the family of vector field
in (2.4) by Zϵ,λ and let mλ ⊂ Σsl

λ be as in Definition 2.2. The following statements are true.

1. Let T : Vw → Vz ⊂ V (w 7→ z = T(w)) be a smooth coordinate transformation, with open sets
Vw, Vz ⊂ R2. Let I(mλ) be the slow divergence integral of Zϵ,λ along mλ ⊂ Vz. Then the slow
divergence integral I(T−1(mλ)) of the pullback of the vector field Zϵ,λ|Vz along T−1(mλ) ⊂ Vw

is equal to I(mλ).

2. Let g be a smooth strictly positive function defined in a neighborhood of mλ. Then the slow
divergence integral of Zϵ,λ along mλ is equal to the slow divergence integral of the equivalent
vector field g.Zϵ,λ along mλ.

3. Let pλ : [v1, v2] → R2 be a parameterization of mλ. Then we have

I(mλ) =
∫ v2

v1

Eλ(pλ(v))dv
| p̃λ(v)|

,

where p̃λ is a smooth λ-family of nowhere zero functions satisfying

Zsl
λ (pλ(v)) = p̃λ(v)p′λ(v).

Proof. Statement 1. The pullback of the vector field Zϵ,λ|Vz can be written as

T∗(Zϵ,λ|Vz)(w) =ϕ(hλ ◦ T(w)ϵ−1)W+
λ (w) + (1 − ϕ(hλ ◦ T(w)ϵ−1))W−

λ (w)

where W±
λ (w) = DT(w)−1(Z±

λ ◦ T)(w). It is not difficult to see that the Lie-derivative of hλ ◦ T
with respect to the vector field W±

λ is given by

W±
λ (hλ ◦ T)(w) = Z±

λ (hλ)(T(w)). (2.11)

Using (2.11) and Definition 2.2 we find that the slow divergence integral of T∗(Zϵ,λ|Vz) along
T−1(mλ) is given by

I(T−1(mλ)) =
∫ t2

t1

Eλ(T(wλ(t)))dt

where wλ : [t1, t2] → T−1(mλ) is a solution of w′(t) = Wsl
λ (w(t)) (the Filippov sliding vector

field along T−1(mλ) is given by Wsl
λ (w) = DT(w)−1Zsl

λ (T(w))). Since T ◦ wλ : [t1, t2] → mλ is
a solution to z′(t) = Zsl

λ (z(t)), the result follows.

Statement 2. From Definition 2.2 it follows that the slow divergence integral of g.Zϵ,λ along
mλ is equal to

I(mλ) =
∫ t̂2

t̂1

Eλ(ẑλ(t̂))g(ẑλ(t̂))dt̂ (2.12)

where ẑλ : [t̂1, t̂2] → mλ and ẑ′λ(t̂) = g(ẑλ(t̂))Zsl
λ (ẑλ(t̂)). We make in the integral in (2.12) the

change of variable t = ρ(t̂) =
∫ t̂

t̂1
g(ẑλ(v))dv with t̂ ∈ [t̂1, t̂2]. Then we have

∫ t̂2

t̂1

Eλ(ẑλ(t̂))g(ẑλ(t̂))dt̂ =
∫ ρ(t̂2)

0
Eλ(ẑλ ◦ ρ−1(t))dt.

Since (ẑλ ◦ ρ−1)′(t) = Zsl
λ ((ẑλ ◦ ρ−1)(t)), t ∈ [0, ρ(t̂2)], this integral is the slow divergence

integral of Zϵ,λ associated to mλ. This completes the proof of Statement 2.
Statement 3. The proof of Statement 3 is similar to the proof of Statement 2.
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Remark 2.5. It follows directly from Definition 2.2 that the slow divergence integral of −Zϵ,λ

along mλ is equal to the slow divergence integral of Zϵ,λ along mλ multiplied by −1.

We will use the invariance of the slow divergence integral under smooth equivalences in
Section 2.2 and Section 2.3.

If mλ ⊂ Σsl
λ contains pseudo-equilibria, then the slow divergence integral associated to mλ

is not well-defined.

2.2 The slow divergence integral near two-fold singularities

In this section we suppose that the sliding vector field Zsl
λ , given by (2.2), is defined around

a two-fold singularity. Our goal is to define the notion of slow divergence integral near such
a two-fold singularity. Since the slow divergence integral (2.10) is invariant under smooth
equivalences (Theorem 2.4), we use a normal form of (2.1), locally near the two-fold singular-
ity, in which hλ(x, y) = y and the two-fold point corresponds to the origin p = (0, 0). Notice
that such normal form coordinates exist because ∇hλ(z) ̸= (0, 0), ∀z ∈ Σλ, in (2.1).

Using hλ(x, y) = y the two-fold p satisfies

Z±
λ (hλ)(0) = Y±

λ (0) = 0, (Z±
λ )

2(hλ)(0) = X±
λ (0)∂xY±

λ (0) ̸= 0, (2.13)

and the sliding vector field Zsl
λ near p can be written as

Xsl
λ (x) =

det Zλ(x)
(Y−

λ − Y+
λ )(x, 0)

(2.14)

where
det Zλ(x) := (X+

λ Y−
λ − X−

λ Y+
λ )(x, 0).

Remark 2.6. The notation det Zλ comes from [1]. In [25] a similar notation has been used for
−(X+

λ Y−
λ − X−

λ Y+
λ ).

Since we assumed that the sliding vector field Xsl
λ is defined around the two-fold p, we

find that X+
λ (0)X−

λ (0) > 0 if the folds have the same visibility (visible-visible or invisible-
invisible) and X+

λ (0)X−
λ (0) < 0 if the folds have opposite visibility. We have p ∈ ∂Σs

λ ∩ ∂Σu
λ.

These properties follow directly from (2.13) and the definition of visible and invisible folds
(see [1, Lemma 2.8]), and imply that ∂x(Y−

λ − Y+
λ )(0) ̸= 0 and ∂xY+

λ (0)∂xY−
λ (0) < 0.

Using ∂x(Y−
λ − Y+

λ )(0) ̸= 0 it is clear that the sliding vector field in (2.14) has a removable
singularity in x = 0 and

Xsl
λ (x) = ν + O(x), ν =

(det Zλ)
′(0)

∂x(Y−
λ − Y+

λ )(0)
. (2.15)

From [1, Lemma 2.9] and [1, Corollary 2.10] it follows that ν ̸= 0 and sgn(ν) = sgn(X+
λ (0))

if the folds have the same visibility (VV1 and I I1 in Fig. 2.2), and that ν ̸= 0 and sgn(ν) =

− sgn
(
X+

λ (0)(det Zλ)
′(0)

)
if the folds have opposite visibility and (det Zλ)

′(0) ̸= 0 (VI2 and
VI3 in Fig. 2.2). If the folds have opposite visibility, we assume that ν ̸= 0 in (2.15) or x = 0 is a
hyperbolic singularity of the sliding vector field Xsl

λ (or, equivalently, x = 0 is a zero of multiplicity 1
or 2 of the function det Zλ). We refer to Fig. 2.3 (the multiplicity of the zero x = 0 of det Zλ is
2).
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VI3VI2

I I1VV1

Figure 2.2: The different types of two-fold singularities with sliding: the folds
in VV1 and I I1 have the same visibility, while the folds in VI2 and VI3 have
opposite visibility.

From ∂x(Y−
λ −Y+

λ )(0) ̸= 0 and ∂xY+
λ (0)∂xY−

λ (0) < 0 it follows that the function τλ defined
in (2.3) has the following property when x → 0:

lim
x→0

τλ(x, 0) = lim
x→0

−Y−
λ

Y+
λ − Y−

λ

(x, 0) =
∂xY−

λ (0)
∂x(Y−

λ − Y+
λ )(0)

∈ ]0, 1[. (2.16)

Let us now compute the slow divergence integral along [x0, x1], with 0 < x0 < x1. We
assume that x1 is small enough such that [x0, x1] does not contain any singularities of the
sliding vector field Xsl

λ . We use Theorem 2.4.3. We take pλ(x) = (x, 0), x ∈ [x0, x1], in
Theorem 2.4.3. Then we have

p̃λ(x) =
det Zλ(x)

(Y−
λ − Y+

λ )(x, 0)
, Eλ(pλ(v)) = (Y+

λ − Y−
λ )(x, 0)ϕ′

(
ϕ−1 (τλ(x, 0))

)
.

This implies

I([x0, x1]) =
∫ x1

x0

|Y−
λ − Y+

λ |(Y+
λ − Y−

λ )(x, 0)
|det Zλ|(x)

ϕ′
(

ϕ−1

(
−Y−

λ

Y+
λ − Y−

λ

(x, 0)

))
dx. (2.17)

Finally, we define the slow divergence integral along [0, x1] (the left end point of [0, x1] is the
two-fold point).

Definition 2.7. Let mλ = [0, x1]. Then the slow divergence integral along mλ is defined as

I(mλ) = lim
x0→0+

I([x0, x1])

where I([x0, x1]) is given in (2.17).

Remark 2.8. Notice that the function x 7→ ϕ′ (ϕ−1 (τλ(x, 0))
)

in (2.17) can be defined at x = 0
such that this function is smooth and positive on the segment mλ (see (2.5), (2.6) and (2.16)).
If the folds have the same visibility, then I(mλ) is well-defined (finite) because ν ̸= 0 in (2.15).
Since we assume that the multiplicity of the zero x = 0 of det Zλ does not exceed 2 when the
folds have opposite visibility, I(mλ) is finite.

Remark 2.9. The slow divergence integral along mλ = [x0, 0], with x0 < 0, can be defined in a
similar way: I(mλ) = limx1→0− I([x0, x1]) where I([x0, x1]) has the same form (2.17).
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(b)(a)

Figure 2.3: Non-generic visible-invisible two-fold singularities. The (extended)
sliding vector field has a hyperbolic singularity at the two-fold points. (a) The
sliding vector field points toward the two-fold singularity. (b) The sliding vector
field points away from the two-fold singularity.

2.3 The slow divergence integral near one-sided tangency points

In this section we define the slow divergence integral near a tangency point p ∈ ∂Σs
λ ∪ ∂Σu

λ

where both vectors Z±
λ (p) are nonzero and precisely one of them is tangent to Σλ at p (see e.g.

Fig. 2.4). Like in Section 2.2, the switching boundary Σλ is locally given by hλ(x, y) = y and
p = (0, 0). Since we suppose that p ∈ ∂Σs

λ ∪ ∂Σu
λ, there is a side of p (without loss of generality

we take x > 0) where the sliding vector field is defined, and given by (2.14). If the (nonzero)
vector Z+

λ (0) (resp. Z−
λ (0)) is tangent to Σλ, then X+

λ (0) ̸= 0, Y+
λ (0) = 0 and Y−

λ (0) ̸= 0 (resp.
X−

λ (0) ̸= 0, Y−
λ (0) = 0 and Y+

λ (0) ̸= 0) and

Xsl
λ (x) = X+

λ (0) + O(x)
(

resp. Xsl
λ (x) = X−

λ (0) + O(x)
)

. (2.18)

Since X+
λ (0) ̸= 0 (resp. X−

λ (0) ̸= 0), the sliding vector field Xsl
λ in (2.18) is regular near x = 0.

Thus, the segment [x0, x1], with 0 < x0 < x1, does not contain any singularities of Xsl
λ if x1

is small enough and we can define the slow divergence integral along [x0, x1] exactly in the
same way as in Section 2.2. The slow divergence integral is given by (2.17) and we use the
same notation I([x0, x1]).

(c)(b)(a)

Figure 2.4: (a) The sliding vector field is defined on one side of the tangency
point. (b) The sliding vector field is defined on both sides of the tangency point.
(c) A crossing region around the tangency point (in this case the slow divergence
integral near the tangency point is not defined).

We can now define the slow divergence integral near the tangency point p.

Definition 2.10. Let mλ = [0, x1]. Then the slow divergence integral along mλ is defined as

I(mλ) = lim
x0→0+

I([x0, x1]).
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Remark 2.11. The slow divergence integral I(mλ) from Definition 2.10 is well-defined. Indeed,
limu→±∞ ϕ′(u) = 0 (due to the smoothness of ϕ at ±∞ given after (2.6)). Moreover, we have

(a) limu→1− ϕ−1(u) = +∞, (b) limu→0+ ϕ−1(u) = −∞ (see (2.6)) and finally (c) −Y−
λ

Y+
λ −Y−

λ

(x, 0)

tends to 1 (resp. 0) as x → 0+ when Z+
λ (0) (resp. Z−

λ (0)) is tangent to Σλ. It follows from
(a), (b) and (c) that the integrand in (2.17) can be defined at x = 0 (0 for x = 0) and that the
integrand is continuous on the segment mλ. This implies that I(mλ) is well-defined.

3 Limit cycles and fractal analysis through visible-invisible two-
fold V I3

3.1 Model and assumptions

We consider a PWS system (2.1) where we assume that λ ∼ λ0 ∈ R, and hλ(x, y) = y (the
switching boundary is the line y = 0).

Assumption A. Suppose that there are η− < 0 and η+ > 0 such that the PWS system (2.1) for
λ = λ0 has stable sliding for all x ∈ [η−, 0[ (i.e., Y+

λ0
(x, 0) < 0 and Y−

λ0
(x, 0) > 0 for x ∈ [η−, 0[)

and unstable sliding for all x ∈]0, η+] (i.e., Y+
λ0
(x, 0) > 0 and Y−

λ0
(x, 0) < 0 for x ∈]0, η+]).

Moreover, we assume that the Filippov sliding vector field Xsl
λ given by (2.14) is positive for

x ∈ [η−, η+] \ {0} and λ = λ0.

Assumption A implies that Y±
λ0
(0) = 0 and the origin z = 0 is therefore a tangency point

(see Section 2). We assume that z = 0 for λ = λ0 is a two-fold singularity. Moreover, we
suppose that the two-fold singularity is visible from “above" and invisible from “below", i.e.,
the orbit of Z+

λ0
through z = 0 is contained within y > 0 near z = 0, and the orbit of Z−

λ0

through z = 0 is not contained within y < 0 (Section 2).

Assumption B. We assume that the origin z = 0 in the PWS system (2.1) is a visible-invisible
two-fold for λ = λ0: Y±

λ0
(0) = 0 and{

X+
λ0
(0) > 0,

∂xY+
λ0
(0) > 0,

{
X−

λ0
(0) < 0,

∂xY−
λ0
(0) < 0.

(3.1)

Additionally, we assume that (det Zλ0)
′(0) < 0 where det Zλ is defined in (2.14).

Remark 3.1. From (3.1) it follows that ∂x(Y−
λ0
−Y+

λ0
)(0) < 0. This, together with (det Zλ0)

′(0) <
0 and (2.15), implies that Xsl

λ0
(0) > 0. Thus, Xsl

λ0
(x) > 0 for all x ∈ [η−, η+] (see Assumption

A).

Assumption B and the Implicit Function Theorem imply the existence of smooth λ-families
of fold singularities z+ = (x+(λ), 0) from above and fold singularities z− = (x−(λ), 0) from
below, for λ ∼ λ0, with x±(λ0) = 0. The following assumption deals with non-zero velocity
of the collision between z+ and z− for λ = λ0 at the origin z = 0:

x′+(λ0)− x′−(λ0) =

(
−

∂λY+
λ0

∂xY+
λ0

+
∂λY−

λ0

∂xY−
λ0

)
(0) ̸= 0

where ∂λY±
λ0

means the partial derivative of Y±
λ w.r.t. λ, computed in λ = λ0.
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Assumption C. We assume that

∂λY−
λ ∂xY+

λ ̸= ∂λY+
λ ∂xY−

λ (3.2)

at (z, λ) = (0, λ0).

We consider a regularized PWS system (2.4) with hλ(x, y) = y:

ż = ϕ(yϵ−2)Z+
λ (z) + (1 − ϕ(yϵ−2))Z−

λ (z) (3.3)

where 0 < ϵ ≪ 1 and ϕ : R → R is a smooth regularization function that satisfies the
assumptions given after (2.4). More precisely, we have

Assumption D. We suppose that ϕ satisfies (2.5) and (2.6) and that ϕ is smooth at ±∞.

It is more convenient to write ϵ−2 in (3.3) instead of ϵ−1 so that we can directly use results
from [25] (see Section 4).

s0
s1s2Γ0

s
S

x = ψ−(s) x = ψ+(s)

Figure 3.1: A fractal sequence (sn)n∈N near the canard cycle Γ0.

Let S be an open section transversally cutting orbits of Z−
λ , parametrized by a regular pa-

rameter s ∼ 0 (Fig. 3.1). We assume that s increases as we approach the origin z = 0. For
λ = λ0, let Γs be the limit periodic set consisting of the orbit of Z−

λ0
connecting (ψ+(s), 0)

and (ψ−(s), 0), and the segment [ψ−(s), ψ+(s)] ⊂ {y = 0} (Fig. 3.1). We suppose that
[ψ−(s), ψ+(s)] ⊂ [η−, η+] for all s ∼ 0. In [25] Γs is called a canard cycle. From the cho-
sen parameterization of S it follows that ψ′

−(s) > 0 and ψ′
+(s) < 0. Following [25, Section 3],

to study the number of limit cycles of (3.3) produced by Γs for (ϵ, λ) ∼ (0, λ0) one can use the
slow divergence integral associated to the segment [ψ−(s), ψ+(s)]:

I(s) =
∫ ψ+(s)

ψ−(s)

(Y+
λ0
− Y−

λ0
)2(x, 0)

−det Zλ0(x)
ϕ′
(

ϕ−1

(
−Y−

λ0

Y+
λ0
− Y−

λ0

(x, 0)

))
dx. (3.4)

Remark 3.2. In (3.4) we use Definition 2.7 and Remark 2.9. Note that

I(s) = I(mλ0) + I(m̃λ0)

where mλ0 = [0, ψ+(s)] and m̃λ0 = [ψ−(s), 0].

Remark 3.3. We suppose that Assumptions A through D are satisfied and write

λ = λ0 + ϵλ̃
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with λ̃ ∼ 0. We say that the cyclicity of the canard cycle Γ0 inside (3.3) is bounded by N ∈ N

if there exist ϵ0 > 0, δ0 > 0 and a neighborhood U of 0 in the λ̃-space such that (3.3) has at
most N limit cycles, each lying within Hausdorff distance δ0 of Γ0, for all (ϵ, λ̃) ∈]0, ϵ0]× U .
We call the smallest N with this property the cyclicity of Γ0 and denote it by Cycl(Γ0).

If the slow divergence integral I in (3.4) has a simple zero at s = 0, then Cycl(Γ0) = 2 and,
for each small ϵ > 0, the λ̃-family in (3.3) undergoes a saddle-node bifurcation of limit cycles
near Γ0 when we vary λ̃ ∼ 0. Under the same assumption on I, there is a smooth function
λ̃ = λ̃(ϵ), λ̃(0) = 0, such that (3.3) with λ = λ0 + ϵλ̃(ϵ) has a unique (hyperbolic) limit cycle
Hausdorff close to Γ0 for each small ϵ > 0.

If I has a zero of multiplicity m ≥ 1 at s = 0, then Cycl(Γ0) ≤ m + 1. When I(0) < 0 (resp.
I(0) > 0), then Cycl(Γ0) = 1, and the limit cycle is hyperbolic and attracting (resp. repelling).

We refer the reader to [25, Theorem 3.1] and [25, Remark 3.4].

We say that the canard cycle Γ0 is balanced if s = 0 is a zero of I(s) defined in (3.4)
(I(0) = 0). If Γ0 is balanced, then there exists a unique function G(s) satisfying G(0) = 0,
G′(0) > 0 and

∫ ψ+(G(s))

ψ−(s)

(Y+
λ0
− Y−

λ0
)2(x, 0)

−det Zλ0(x)
ϕ′
(

ϕ−1

(
−Y−

λ0

Y+
λ0
− Y−

λ0

(x, 0)

))
dx = 0 (3.5)

for s ∼ 0. This follows from the Implicit Function Theorem because I(0) = 0, ψ′
−(s) > 0,

ψ′
+(s) < 0 and the integrand in (3.4) is negative for x < 0 and positive for x > 0 (see

Assumptions A and D). We call G defined by (3.5) the slow relation function.

Assumption E. We suppose that Γ0 is balanced and that s = 0 is an isolated zero of I(s),
meaning that s = 0 has a small neighborhood ]− s̃, s̃[ (s̃ > 0) that does not contain any other
zero of I(s).

Assumption E implies that I is either negative or positive for s > 0 (I is continuous). Using
the above mentioned property of the integrand in (3.4) it can be easily seen that 0 < G(s) < s
for s > 0 when I is negative and G(s) > s for s > 0 when I is positive. Let s0 > 0 be small
and fixed. Thus, if I is negative (resp. positive), then the orbit of s0

U0 = {s0, s1, s2, . . . } (3.6)

defined by sn+1 = G(sn) (resp. sn+1 = G−1(sn)), n ≥ 0, tends monotonically to the fixed point
s = 0 of G. We want to study the Minkowski dimension of U0.

Let us first define the notion of Minkowski (or box) dimension (see [14, 34] and references
therein). Let U ⊂ RN be a bounded set. We define the δ-neighborhood of U:

Uδ = {x ∈ RN | d(x, U) ≤ δ},

and denote by |Uδ| the Lebesgue measure of Uδ. The lower u-dimensional Minkowski content
of U, for u ≥ 0, is defined by

Mu
∗(U) = lim inf

δ→0

|Uδ|
δN−u ,

and analogously the upper u-dimensional Minkowski content M∗u(U) (we replace lim infδ→0

with lim supδ→0). We define lower and upper Minkowski dimensions of U:

dimBU = inf{u ≥ 0 | Mu
∗(U) = 0}, dimBU = inf{u ≥ 0 | M∗u(U) = 0}.
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We have dimBU ≤ dimBU and, if dimBU = dimBU, we call it the Minkowski dimension of U,
and denote it by dimB U.

The upper Minkowski dimension is finitely stable. More precisely,

dimB(U1 ∪ U2) = max{dimBU1, dimBU2}, U1, U2 ⊂ RN .

If U1 ⊂ U2, then dimBU1 ≤ dimBU2 and dimBU1 ≤ dimBU2 (dimB and dimB are monotonic).
Furthermore, if 0 < Md

∗(U) ≤ M∗d(U) < ∞ for some d, then we say that U is Minkowski
nondegenerate. In this case we have necessarily that d = dimB U. Recall also that the notion
of being Minkowski nondegenerate is invariant under bi-Lipschitz maps. Namely, if Φ is a
bi-Lipschitz map and U is Minkowski nondegenerate, then Φ(U) is also Minkowski nonde-
generate (see [36, Theorem 4.1]).

We use these properties in Section 4.2.
Following [12], dimB U0 exists, it is independent of the choice of s0 > 0 and can take only

the following discrete set of values: 0, 1
2 , 2

3 , 3
4 ,. . . , 1 (see also Theorem 4.1). The set U0 is

defined in (3.6).

3.2 Statement of results

In this section we consider the family (3.3) that satisfies Assumptions A through E and assume
that λ = λ0 + ϵλ̃ with λ̃ ∼ 0.

Theorem 3.4. Let s0 > 0 be small and fixed and let U0 be the orbit of s0 defined in (3.6). If dimB U0 =

0, then the following statements hold.

1. (λ unbroken) There exists a smooth function λ̃ = λ̃(ϵ), λ̃(0) = 0, such that (3.3) with λ =

λ0 + ϵλ̃(ϵ) has a unique (hyperbolic) limit cycle Hausdorff close to Γ0 for each small ϵ > 0.

2. (λ broken) We have that Cycl(Γ0) = 2 and, for every small ϵ > 0, the λ̃-family (3.3) undergoes
a saddle-node bifurcation of limit cycles Hausdorff close to Γ0.

Theorem 3.4 will be proved in Section 4.1.

Theorem 3.5. Let U0 be the orbit of s0 defined in (3.6), for a small s0 > 0. If dimB U0 < 1, then
Cycl(Γ0) ≤ 2−dimB U0

1−dimB U0
.

Theorem 3.5 will be proved in Section 4.1.

Theorem 3.6. Let U0 be the orbit of s0 defined in (3.6), for a small s0 > 0, and dimB U0 = 0. The
following statements are true.

1. For λ̃ = λ̃(ϵ) given in Theorem 3.4.1 and for each small ϵ > 0, the Minkowski dimension of any
spiral trajectory accumulating (in forward or backward time) on the unique limit cycle of (3.3)
near Γ0 is equal to 1.

2. For each small ϵ > 0, the Minkowski dimension of any spiral trajectory accumulating (in forward
or backward time) on the limit cycle of multiplicity 2 of (3.3), born in a saddle-node bifurcation
of limit cycles Hausdorff close to Γ0, is equal to 3

2 and moreover, the spiral is Minkowski nonde-
generate.

Theorem 3.6 will be proved in Section 4.2. A small (Hausdorff) neighborhood of Γ0 in
which we consider spiral trajectories in Theorem 3.6.1 or Theorem 3.6.2 does not shrink to Γ0

as ϵ → 0 (see Section 4.2).
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4 Proof of Theorems 3.4–3.6

4.1 Proof of Theorems 3.4–3.5

Let s̃ > 0 be small and fixed. Suppose that F is a smooth function on [0, s̃[, F(0) = 0 and
0 < F(s) < s for all s ∈]0, s̃[. We define H(s) := s − F(s) and the orbit of s0 ∈]0, s̃[ by H:

U := {sn = Hn(s0) | n = 0, 1, . . . }

where Hn denotes n-fold composition of H. It is clear that sn tends monotonically to zero.
We say that the multiplicity of the fixed point s = 0 of H is equal to m if s = 0 is a zero of
multiplicity m of F (F(0) = · · · = F(m−1)(0) = 0 and F(m)(0) ̸= 0). If F(n)(0) = 0 for each
n = 0, 1, . . . , then we say that the multiplicity of s = 0 of H is ∞.

Theorem 4.1 ([12]). Let F be a smooth function on [0, s̃[, F(0) = 0 and 0 < F(s) < s for each
s ∈]0, s̃[. Let H = id−F and let U be the orbit of s0 ∈ ]0, s̃[ by H. Then dimB U is independent of
the initial point s0 and, for 1 ≤ m ≤ ∞, the following bijective correspondence holds:

m =
1

1 − dimB U
(4.1)

where m is the multiplicity of s = 0 of H (if m = ∞, then dimB U = 1).

If we denote by Φ the integrand in (3.4) and (3.5), then we have

I(s) =
∫ ψ+(s)

ψ−(s)
Φ(x)dx =

∫ ψ+(G(s))

ψ−(s)
Φ(x)dx +

∫ ψ+(s)

ψ+(G(s))
Φ(x)dx =

∫ ψ+(s)

ψ+(G(s))
Φ(x)dx

where in the last step we use (3.5). From ψ′
+(s) < 0, Φ(x) > 0 for x > 0 and The Fundamental

Theorem of Calculus it follows that there exists a negative smooth function Ψ(s) such that

I(s) = Ψ(s)(s − G(s)).

This implies that s = 0 is a zero of multiplicity m of I(s) if and only if s = 0 is a zero of
multiplicity m of s − G(s).

We will first suppose that the orbit U0 in (3.6) is generated by the slow relation function
G. If dimB U0 = 0, then Theorem 4.1, with H = G, implies that the multiplicity of the fixed
point s = 0 of G is 1. Thus, we have that s = 0 is a simple zero of I and Theorem 3.4.1
(resp. Theorem 3.4.2) follows directly from [25, Theorem 3.1] (resp. [25, Remark 3.4]). See also
Remark 3.3. If dimB U0 < 1, then the multiplicity of s = 0 of G is equal to 1

1−dimB U0
(see (4.1)).

Thus, s = 0 is a zero of multiplicity 1
1−dimB U0

of I and [25, Remark 3.4]) implies that

Cycl(Γ0) ≤ 1 +
1

1 − dimB U0
=

2 − dimB U0

1 − dimB U0
.

This completes the proof of Theorem 3.5.
If U0 is generated by G−1, Theorem 3.4 and Theorem 3.5 can be proved in the same way

as above (we use Theorem 4.1 with H = G−1 and the fact that G and G−1 have the same
multiplicity of the fixed point s = 0).
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4.2 Proof of Theorem 3.6

The Minkowski dimension of spiral trajectories accumulating on a hyperbolic or non-
hyperbolic limit cycle of planar vector fields (without parameters) has been studied in [35,37].
We prove Theorem 3.6 for spiral trajectories in a Hausdorff neighborhood of the canard cycle
Γ0 that does not shrink to Γ0 as ϵ → 0.

We will first prove Theorem 3.6.1. We assume that dimB U0 = 0 and λ̃(ϵ) is given in
Theorem 3.4.1. Let V̄ be a fixed neighborhood of Γ0. Then the unique limit cycle of (3.3) with
λ̃ = λ̃(ϵ) is located in V̄ for each ϵ > 0 small enough (see [25]). For such fixed ϵ > 0, let Γ
be any spiral trajectory in V̄ accumulating on the limit cycle (in the forward time if the limit
cycle is attracting or in the backward time if the limit cycle is repelling). We write Γ = Γ̃ ∪ Γ̄
where Γ̄ is the part of Γ sufficiently close to the limit cycle (we can apply the results of [35,37])
and Γ̃ is the rest of Γ (of finite length). It is clear that dimB Γ̃ = 1 and dimBΓ̄ ≥ 1. Since
dimB ≤ dimB, dimB is monotonic and dimB is finitely stable (see Section 3.1), we have

dimBΓ̄ ≤ dimB(Γ̃ ∪ Γ̄) ≤ dimB(Γ̃ ∪ Γ̄) = max{dimBΓ̃, dimBΓ̄} = dimBΓ̄. (4.2)

Since the limit cycle is hyperbolic (see Theorem 3.4.1), [35, Theorem 10] implies that dimB Γ̄ =

dimBΓ̄ = dimBΓ̄ = 1. Using (4.2) we obtain dimB Γ = 1. This completes the proof of Theorem
3.6.1.

The first part of Theorem 3.6.2 can be proved in the same way as Theorem 3.6.1. Since the
non-hyperbolic limit cycle is generated by a saddle-node bifurcation of limit cycles we have
dimB Γ̄ = dimBΓ̄ = dimBΓ̄ = 3

2 (see [35, Theorem 10] and [37, Theorem 1]). To prove the claim
about Minkowski nondegeneracy; first observe that M3/2(Γ̃) = 0 since dimB(Γ̃) = 1 < 3/2 so
that this part does not affect the upper and lower Minkowski content of Γ = Γ̃ ∪ Γ̄; hence, it
is enough to show that Γ̄ is Minkowski nondegenerate. To see this, we observe that Γ̄ can be
partitioned into finitely many pieces Γ̄i; i = 1, . . . , k such that each Γ̄i is bi-Lipschitz equivalent
to [0, 1[×U by the Lipschitz flow-box Theorem [3]. Note also that dimB U = 1/2 and it is
Minkowski nondegenerate which implies that [0, 1[×U is also Minkowski nondegenerate; see
the proof of [37, Theorem 4(b)]. Finally, the finite stability of Minkowski dimension and of
Minkowski nondegeneracy now complete the proof exactly as in the proof of [37, Theorem
4(b)].
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[36] D. Žubrinić, V. Županović, Fractal analysis of spiral trajectories of some vector fields in
R3, C. R. Math. Acad. Sci. Paris 342(2006), No. 12, 959–963. https://doi.org/10.1016/j.
crma.2006.04.021; MR2235618; Zbl 1096.37010
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