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Abstract

Approximate solutions of systems of semilinear ordinarifedéntial
equations obtained by different splitting methods arestigated. The local
error in the numerical solution of such semilinear problésevaluated. The
order of different splitting methods coupled with numekiceethods of dif-
ferent order is calculated symbolically and on a test problehe spatially
discretized Fisher equation— numerically.

1 Introduction

Splitting methods have been fruitfully used to solve largsams of partial differ-
ential equations. To find the exact solution of a given pnolilepractice is usually
impossible. We can use numerical methods to obtain an ajpat solution of
the equations, although to solve the discretized model ke very difficult.
Reaction-diffusion models or models of transport proce$sere a structure that
allows a natural decomposition of the equations, thus geotte opportunity to
apply operator splitting schemes. Splitting methods hslpaduce the complex-
ity of the system and reduce computational time. With sptit is possible to
handle stiff terms separately and to solve each subproblgmanasuitable nu-
merical method chosen to the corresponding operator. Afhaur motivations
come from the investigation of reaction-diffusion equasipthis paper considers
the case of finite dimensional problems, we study systemediriary differential

*This paper is in final form and no version of it will be submittfer publication elsewhere.
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equations which can be splitinto a couple of a linear and dimesr subproblem.
Such a system of ODEs may come from spatial discretizatiarsgstem of partial
differential equations describing reaction-diffusiongesses. To solve a problem
in practice we use operator splitting and numerical schemmash we will call the
combined methadlhe use of operator splitting as well as the numerical natho
result in some error in the solution. The error generateelpusy splitting is
calledsplitting error. This is the difference of the exact solution and the approx-
imate solution obtained by splitting (assumed that we knogveéxact solutions
of the subproblems). Combined methods can generate battingpérror andnu-
merical error. The study of this common effect on the solution is our maimoeon

in this paper. Detailed study on the interaction of opergpditting and numerical
schemes fotinear problems can be found in [Csomos and Farag6]. They clas-
sify the errors that can occur using splitting methods anderical schemes, give
theoretical and numerical results on the order of the coatbmethod for linear
problems. Our aim is to characterize the error of this comthimethod therefore
we calculate the order of the combined method fooalinearproblem. We an-
alyze the order of the error in the light of the charactessstif the splitting error
and the numerical error. [Sanz-Serna] and [HundsdorfeNanger] discuss the
splitting error in a general framework. Here we intend t@rausly analyze the
interaction of splitting error and numerical error in theseaf a system of nonlin-
ear ODE that can be split into a linear and a nonlinear sulnof he structure
of our paper is as follows. In section 2 we introduce the baksa and notions
of operator splitting. In Section 3 we calculate the ordethefcombined method
for the type of problems mentioned above: split into linead aonlinear sub-
problems. In Section 4 we introduce the Fisher equation eadllrsome known
results on it. We show how we apply splitting to solve the Ergdguation. Section
5 contains the numerical results on the Fisher equation.

2 Operator splitting

2.1 The basic idea

Let us consider the following finite dimensional problem:

u'(t) =F(u(t)), u(0)=uo. (1)

Let X be a finite dimensional normed vector space BnK — X be an operator
with domain of definitiorD(F ) andup € D(F). Suppose that can be written as
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the sum of a linear and a nonlinear operator, successikely A+ R.
The most simple type of operator splitting is the sequesiitting. In this
case the split problem is:

uy(t) = Aug(t), uy(0) = U, (2)

ua(t) = R(uz(t)),  tz(0) = un(T). 3)

The basic idea of splitting is to decompose the operator emigjint hand side
into the sum of simpler operators, and to solve the subpnabErresponding to
the operators successively in each time step. More prgcisel solve the equa-
tion only with operatoA until time t (as if only the subprocess representedby
were present) and the solution in timewill be the initial condition of the equa-
tion with R. It means that we return to the initial time and solve the &qoawith
R as well. The solution of the second equation in time called the approximate
solution of the original problem in time. This procedure is then repeated on the
interval [1,21] etc. Thus, the simpler subproblems are connected to eaeh oth
through the initial conditions. It is clear, that the nungatitreatment of the sepa-
rate subproblems is simpler. The most significant advargagglitting is that we
can exploit the special properties of the operators of tfierdnt subproblems and
apply the most suitable numerical method for each of thenusTe can obtain a
more accurate solution in a shorter time.

We remark that the method can be used fruitfully in large ngder exam-
ple global models of air pollution transport, or combustmnmetabolic mod-
els, where the number of predicted variables is large anduh&ber of the pro-
cesses represented in the models is large. We refer to tikdhagzi et al.] on air
pollution models with application of operator splittingeain type of operator
splittings allows the parallelization of the problem whishalso advantageous in
reducing the computational time of large system.

2.2 Splitting schemes

We can define the different splitting methods by solving thbpsoblems suc-
cessively in different orders and for different time lergtirhe above described
simplest scheme is callesequentiakplitting (SEQ). We solve the subproblems
one after another using the same time lengthichematicallys;(7)S (1), where

S andS; denote the solution operator corresponding to (2) and &)aetively.

In Marchuk-Strangsplitting (MS) we usually solve the subproblem withfor
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time lengtht /2 then solve the other one witkhfor time lengtht and solve with
A again for time lengthr /2. Schematicall\g,(7/2)S(17)S1(7/2). In the case of
reaction-diffusion problemR is chosen to be the operator representing chemical
reactions, in general the operator that is stiff or nonlinéathis given order we
need to solve the second subproblem only one time which caf ibeportance
given the operator’s properties. See more in [Marchuk] &tchhg]. Inweighted
sequentiabplitting the solution in the next time step is a weightedrage of the
results of the two possible sequential splittir§$7)S(7) and S(17)S(7). In
the special case aymmetrically weightedplitting (SW) we take the arithmetic
mean of the results(S;(17)S(71) + S(7)S1(1))/2. The extra work with MS and
SW splittings benefits in second order accuracy compardugetirst order of SEQ
splitting. The nonsymmetric weighted splitting is of oraere. In later sections
we investigate the SEQ, the MS and the SW splittings couplddfaur different
numerical methods, all of different orders.

2.3 Splitting error, order of splitting

We discretize (1) in time in an equidistant manner with tirteppg. If we know
the exact solutions of (2) and (3) we can generate an appat&isolution to the
original full problem (1). In this case error originated piflom operator splitting
can arise. Let us denote the exact solutioruland the approximate solution by

Gsp|.

Definition 1 The local splitting error at the end of the first time step is

eSp|<T) =u(T) — l]spI(T)-

Here both solutions start from the common initial valye Naturally the local
splitting error can be defined at any point of timey(f) = Gsp(t) thenu(t + 1) —
Uspi(t + 7) is the local splitting error &t-+ 1.

Definition 2 We say that a given operator splitting is of order p if
&spi(T) = O(TP)

In general — infinite dimensional case included — for lineauried operators it
can be shown by Taylor expansion that the local order of SEGaledl since
the error becomess(T) = K12+ O(13). For nonlinear operators we need the
definition of theLie-operatorand we can perform the analysis with Taylor expan-
sion using the Lie-operators. We refer to [Hundsdorfer aechér] for detailed
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derivation of the nonlinear case. From the literature orratoe splitting it is well
known that the MS provides second order accuracy, so doedihsplitting, see
[Faragd and Havasi, 1] and [Faragb and Havasi, 2].

3 Order of combined methods

When we solve problem (1) we can use some kind of splittingveitcan not
avoid applying some numerical method as well. So in praetie@se a combined
method, a mixture of operator splitting and a numerical sehand generate an
approximate solution. Our aim is to calculate the order eflttal error of this
combined method for different splittings coupled with difint numerical meth-
ods. To do this we will use the Taylor-formula in arbitraryrmed vector spaces.
The Taylor-formula can be found in e. g. [Komornik]. Here vite the theorem:

Theorem 1 Let X and % be normed vector spaces. If:X; — X is n times
differentiable at a X; andd — 0, then

& +&(3)||3]|"

n
flats)— f k'(a)
y !

whered® = (5,...,0) e XK and(lsimos(é) =0.

Suppose that is the solution of the equation:
u'(t) = Au(t) + R(u(t)), u(to) = Uo. (4)

Remark 1 If we consider(4) to be originated from a PDE describing a reaction-
diffusion process then the linear A is the spatially diseedd analogue of the
operator representing diffusion and R is the analogue famoltal reactions (in
many practical cases a polynomial). The investigation obatiuous reaction-
diffusion model is complicated due to the unboundednes#fos$ion.

LetX = RY andA € R9*9 a matrix. Thus the mapping— A-xis a bounded linear
operator defined on the whole &4, it is infinitely many times differentiable and
A (x) = Afor everyx € RY. We suppose thak: RY — RY is a differentiable non-

linear mapping, for the following derivations we neledo be at least two times
differentiable. Henceforth we also assume that (4) hasfacguitly smooth solu-

tionu: Rt — RY. Based on (4) and the chain-ruléis a differentiable function,

thusu” (t) € RY exists for allt > 0.
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Under these above conditions we can use the Taylor-formitteXy = R and
Xo = RY for uin timety, it gives

1
Ur = U(to +T) = U(to) + U (to) T+ SU" (to) T+ £(1)7°

with lim £(1) = 0. We will neglect the norm as we did here sincacts onR ™ so

—0
T denotes a positive real numbetf(tp) is given by (4), we get’’ (tp) by differen-
tiation of (4):

u"(to) = A'(u(to)) o U'(to) + R (u(to) U (to) = AU (to) + R (u(to) U/ (to) =
= A%U(to) + R(u(to)) + R (u(to) )Au(to) + R (u(to) )R(u(to)).
We can express; with the known value ofip = u(tp) as:

Ur = Up+ (Aup+ R(Up)) T+ (5)

+% <A2uo + AR(Ug) + R (up)Aup + R'(uo)R(uo)) 124 &(1)12

with lim (1) = 0.
—0

Definition 3 The local error of a combined method gtit T is:
8oc(to+T) :=u(to+ 1) — G(to+ T) = ur — G,

assuming that (i) = G(tp), whered is the approximate solution generated by the
combined method. We say that a given combined method isef®ifl

Boc(lo+T) = O(TS+1)-

In the following examinations we will take the time step o thumerical method
equal to the splitting time step.

Theorem 2 The sequential splitting combined with the first order Edteward
scheme provides a first order method.

Proof. The proof will be given in two steps.

Step 1: linear-nonlinear case. If we use SEQ starting wigmitmlinear prob-
lem corresponding t& combined with Euler forward method for both subprob-
lems we get:

u* = Up+ TR(up)
{ Ur = U+ TAU
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whereu* is the intermediate value of The approximation of the solution is:
Gr = U™ + TAU" = Up + TR(up) + TA(Up + TR(Up) ).
SinceA s linear we have:
(i; = Ug+ TR(Ug) 4+ TAU + T?AR(Up). (6)

The local error generated in this step of lengtis the difference of (5) and (6):

2

up — Oy = (Azuo — AR(Ug) + R (ug)Aup + R (up) R(uo)> % +&(1)72

Step 2: nonlinear-linear case. If we use SEQ starting wighitiear problem
corresponding t&A combined with Euler forward method for both subproblems
we get:

u* = up+ TAU
{ Or = u* + TR(U").

The approximation of the solution is:
Or = u"+ TR(U") = up+ TAW + TR(Up + TAW).

Here we apply the Taylor-formula witk; = X, = RY for the functionR, the point
"a’ is up and theincrementd equals torAuy now. We get

R(up+ TAU) = R(Up) + R (Up) TAUp + £1(TAW) || TA ||

With
£(T) 1= &1(TAW) | Al
we obtain
R(ug + TAWp) = R(Up) + R (Up) TAW + £(T)T.
Then

{r = Uo+ TAU + T (R(Up) + R (Up) TAUp + £(T)T) =
= Ug+ TAUy + TR(Up) + R (o) T?Aug + £(T) T2,
Recall (5) here:
Ur = Up+ T(Aup + R(Up))+
2
T

+ (Azuo + AR(Up) + R (up)Aup + R'(uo)R(uo)> -+ (1)1
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Comparing this with the approximation we get:

2

Ur — iy = (A%o -+ AR(Uo) — R (Uo) Ao+ R (Uo)R(o) % +e(n)T2

0

Theorem 3 SW combined with the first order Euler forward method provide
method of first order.

Proof. Here we simply use the above results with same [0, 1] parameter:
Gr = w(up + T (R(Up) + Ap) + T2AR(Ug) ) +

+(1— w) (Ug+ T (Ao + R(up)) + R (uo) T?Alg) + £(T)T% =
— U=+ T (At R(Uo)) + (@AR(Up) + (1 — )(R (Uo)Ao)) 2+ (1) 72

For the local error we have:
U'[ - G'[ —
2

— (Azuo + (1 - 2w)AuwR(Ug) + (200 — 1)R (ug)Aug + R’(uo)R(uo)> % +&(1)12.

It is clearly of first order. Withw = 1/2 we have

2

up — Gy = <A2u0+ R (up) R(uo)> % +&(1)12

Remark 2 Although the SW is of second order its combination with tisednder
Euler method provides only first order accuracy.

The above derivation can be used to determine the order obio@eh methods
with higher order numerical schemes. The method can be @stefor schemes
of arbitrary order although the calculations become vemgiccated as the order
increases. As an example let us consider the improved Echense which is of
second order and combine it with SEQ:

Theorem 4 The second order improved Euler scheme combined with SEQ pro
vides a first order method.
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Proof. Again, the proof will be given in two steps.
Step 1: nonlinear-linear case.
T
u* = Up+ TA(Up + =Alp)
Ur = u*+ TR(U" + ER(U*))

The approximation of the solution is:

T
G :u*+TR( ) Uo + TA( uo+2Auo)+

+TR<U0 + TA(Up+ 2Auo) + %R(uo + TA(Up+ ;Auo)))

2 2
T T 1 T
= Up+TAW + EAzuojL TR(Uo—l— T (Auo + EAZUO + ER(UO +TAW + EA2u0)> ) :

The underlined part is now the increment in the argumerRR.ofhe first order
Taylor-expansion gives:

2
. T
0 = Ug + TAU + ?Azuo + TR(Up)+

1 2
+TR (uo)T (Auo + %Azuo + ER(UO +TAW + %A2u0)> +&(1)1?

expanding this we get

{r = uo+ T(Alg+ R(Ug) )+

2 2
+ <A2uo + 2R (Up)Aug + R (Ug) R(Up + TAUp + —A2u0)> +

r
2 2

3
—i—%R’(Uo)AZUo—i—E(T)TZ.

Taking the Taylor-expansion again, with the increment wlivoied:
{r = Uo+ T(Alg+ R(Ug) )+
(0 T° 2
+ (A Uo+ 2R (Uo) Ao+ R (o) (R(Uo) + TR (Uo) Al + R (o) A uo))> n
2

+e(T)1e =
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= Up+ T(Alg+ R(ug)) + %2 (Azuo + 2R (Up)Aup + R'(uo)R(uo)> +&(1)12,

The error becomes:

12

Ur — O = (AR(uo) - R’(uo)Auo> >+ e(1)12.

Step 2: linear-nonlinear case.
u* = Up+ TR(Up + IR(uo))
Or = U+ TA(U" + EAU*)
The approximation is:
r =u"+ TA(U* + %Au*).
Substituting the first equation:

~ T
(r = Up+ TR(Up + ER(uo))+

—H’A(Uo—l— TR(ug + %R(uo)) + %A(qur TR(ug + %R(Uo))»,

expanding the terms we get

. T
0r = Up+ TR(Up + ER(UQ)) + 1AW

2 3

T T T T
+T°AR(Uo + 5R(U0)) + — AU + —A°R(Uo + 5R(uo) ).

We apply the Taylor-formula foR and also forAo R with increment%R(uo),
where(AoR(x))" = A(R(x)) o R (x) = AR(X).

lr = U+ T (R(Uo) + 5 R(Uo) R (Uo) + AU+

2
T T
+T2AR(Up) + TZAR(UO)ER(U()) + ?Azuo +e(n)r?=

2

= Up+ T(R(Uo) +Aup) + % (R(UO)R’(UO) +2A(R(uo)) +A2uo) +&(1)12,
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The error becomes:

2

Ur — O = (R’(uo)Auo —AR(uo)> % +&(1)12,

O

As we can see this combined method is of first order althoughatiplied
numerical scheme ensures second order accuracy. The usguaingial splitting
results in order reduction. We followed the same ideas alulileied the orders
for combinations of the introduced splitting methods th€Sthe SW and the MS
splitting and four different numerical schemes. The exphkaler, the improved
Euler method which is of second order, the third order Heuwhthe fourth or-
der Runge-Kutta method. The first order and the improvedrBukthod were
defined, we give the algorithm for the Heun method appliedhenautonomous
equationu’(t) = F(u(t)):

- T 31 21 T
(r = Ug + ZF(UO) +ZF (uo—i-?F(uo-i— éF(uo))>,

and the one for the Runge-Kutta method used here:

- T T T T T T
G = Up+ EF(Uo) + §F(Uo—|—§F(uo)) +§F <u0+ EF(uo—l—EF(Uo)))—l—

T T T
+5F (uo—i- TF <uo-|— EF (uo+ EF(UQ)))).
The table below contains our results on orders of differphttsngs coupled with
different numerical methods. Symbolic calculations onéwample MS splitting
coupled with 4th order Runge-Kutta method becomes contplicaAn algorithm
was written inMathematicafor these symbolic calculations. The order of the

| s [ exp. Euler ()] impr. Euler (2)| Heun (3)| Runge-Kutta (4)|

SEQ(1) 1 1 1 1
SW(2) 1 2 2 2
MS (2) 1 2 2 2

Table 1: Local orders of combined methods for (4)

methods are in the parenthesis. A study of the order of combimethods for
bounded linear problems can be found in [Csomoés and Farabéir results say
that the order of the combined methodsis= min{p,r}, if pis the order of split-
ting andr denotes the order of the numerical method. The numbers aflibee
table are in accordance with their results.
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4 The Fisher equation

The Fisher equation is:
qu(t,x) = a2u(t,x)+u(t,x)(1—u(t,x)) xcR,t>0 -
uox = n. @

There is only one chemical species present and one spatiablahere. This
equation was originally derived to describe the propagadioa gene in a popu-
lation [Fisher]. It is one of the simplest nonlinear models feaction-diffusion
equations. Such equations occur, e.g., in combustion, treassfer, crystalliza-
tion, plasma physics, and in general phase transition pnafl See a discussion
on reaction-diffusion models irEfdi and Toth] and [Murray]. For the initial con-
dition:

u(0,x) = 1
" (14+-kexp(x/v/6))2
wave form solution of the equation is known:
u(t,x) = ! 5
(1+ kexp(—2t+ %@x))
and for:
u(0,x) = 1
T (L kexp(—x/V8))?
u(t.x) = .

(14 kexp(—32t — £v/6x))2

A natural way to split the Fisher equation is to decompos#gatiwo subproblems:
one for the diffusion and one that corresponds to the reap@ot of the right hand
side. Thus the definitions of the subproblems are:

AUy (t,X) = d2uy(t,x)
{uaam — ) ®)

and

{@uz(t,x) = Up(t,x)(1—ux(t,X)) (9)

u2<07 X) = ’72(X)7
where the initial conditiomz(x) = u1(7,X) connects the equations.
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The exact solution of problem (9) is known, it is:
I’]z(X)et

Up(t,X) = (20)

1—r72(x)+n2(x)et'
Since ] (%) 2
. |1 when ny(x)#0
tlﬁouz(t’x)_{ 0 when ny(x)=0

the solution has two stationary states, namaly(t,x) = 0, ux(t,x) = 1. The
uz(t,x) = 1 solution is asymptotically stable, whereas zero is analnhstequilib-
rium. Knowing the exact solution of this subproblem as a fiomcof the initial
condition means that we can symbolically solve this sublgrabn each time step
during the splitting procedure. It might be worth using tkae solution for com-
parisons in the study of the effect of splitting.

5 Numerical experiments

Here we introduce our numerical results on the Fisher eguative solved both

subproblems (8), (9) using the for numerical methods o&diifit orders that were
mentioned and considered in Section 3. We investigate the #plitting methods
(SEQ, SW and MS). We calculated the errors and orders of ttaérmaal combined

methods numerically. Our test problem is the followingial#tboundary value

problem:
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dtU(t,X) = dX2U<t,X) + U(t,X)(l— U(t,X))
u(0,x) = 1+0.9sinx)

ut,0) =1 ’
u(t,4m =1

wherex € [0,4m] andt € [0,1]. We performed a spatial semidiscretization with

(11)

Figure 2: Reference solution generated by fourth order Bufgfta schemer =
0.0L

length parametehx = ‘é—g that is we dividedO0, 4] into 30 parts of equal length.
Our tests showed that finer divisions provides no signiflganbre accurate so-
lutions that is the obtained error is of the same magnitudeths30. We approx-
imated the spatial derivative with the well known secondeostheme:

U(t,Xi+1> - 2U(t,Xi> + U(t,Xi,]_))
AX2

After temporal discretization witln = 0.01 we solved the full problem (11) with
the fourth order Runge-Kutta method. Taking a smaller titep sesulted in so-
lution that differs only in a magnitude of 16. This is the reference solution
for our study. In the experiments we used the same spati@iaivin every
case, in fact we investigated the convergence of the sernsdés submodels to
the semidiscrete model: the reference solution. On theedion between the
convergence to a semidiscrete model and convergence tdiawmms model see
[Larsson and Thomée].

6)(2u(t,xi) ~
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5.1 Estimation of the local order of combined methods

We calculated the local error after the first time step that tsmet with different
time steps. We used the following values af:

51 [y 13 T4 I5 I6 17 13 Tog | T10 | T1a
0.02,0.03{004|005|006|0.07|{008/009|01]011|0.12

Since the time step of the reference solution w#&d @he evaluation of the error
is simple. For a method with local ordethe local error is:

Qoc(T) ~ - 5
for smallt-s, wherec is a constant which does not dependroiso for each:

8oc(Ti) = C- TisJrl

8oc(Ti) %( Tj )s+1
@oc(Ti+1) Ti+1

We can take the logarithm of both sides, then for eaeli, ..., 10:

and

8oc(Ti)

|Og Boc(Tit1)

log ="~

i+1

—1~s

Evaluation of the left side shall give us the same value fernev=1,...,10. We
usedMathematic& built—in procedures to fit a straight line of the fogm- axon

the dataset! ( log-"i-,log 2™ ) j =1 ... 10\. The following table contains
Tiv1 8oc(Ti+1)

the results of this calculation for different splittingsdamumerical methods. We

| s [ exp. Euler(1) | improved Eule(2) | Heun(3) | Runge-Kutta4) |

SEQ(1) 0.92 0.85 0.88 0.88
SW (2) 0.88 1.85 1.96 1.84
MS (2) 0.88 1.85 177 1.86

Table 2: Local order of combined methods for (11).

obtained values slightly closer to the expected ones byyamgpan extra additive
parameteb in the fitted function of the formy = ax+ b. The parametelb varied
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| s [ exp. Euler(1) | improved Eule(2) | Heun(3) | Runge-Kutta4) |

SEQ(1) 0.99 0.98 0.98 0.99
SW(2) 0.99 1.99 1.98 1.97
MS (2) 099 1.99 1.90 1.98

Table 3: Estimated local order with additive parameter.

in the range M05— 0.032 We note that with the explicit Euler method increas-
ing the order of splitting does not improve the results. Tama pattern can be
observed as in Section 3 namely that the local order of thebowed method is
the minimum of the local order of splitting and that of the rarroal method.

o) Y N AR B
-04 -03 -02 -01

70.2: .’
I l'nE

'3
] e
-0.4t U

't
8

s
.

Oge

-1.0¢

—1.2+

e

—14L

Figure 3: Local order estimations, for twelve different doned methods
Iog% against Iog[% is plotted. Steepness of a fitted line gives the order

of the method.
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On figure 3 we can observe the two separate class of data: ¢hwitinsteep-
ness 2 that is with order, henerated by using combined methods with SEQ or
with explicit Euler method and the one with steepnessith order 2, generated
by combined methods with SW or MS splitting combined with roxged Euler,
Heun or Runge-Kutta method.

5.2 Estimation of the global order

We evaluated the error at= 1. We used time steps in such a way that we reach
the end of the time interval = 1 in a round number of steps.

1| 2 13 Ty Ts T T7
0.2 0.1 | 0.0625| 0.05| 0.04 | 0.025| 0.02

As for the global error let us assume that it is of the form:
E(T,5)~C-1°-T

for eachi = 1,...,7, whereC is a constant which does not dependmnin this
case we can perform the same calculation as with the loaail. eFhus for each
i=1,...,7 we have:

Evaluation of the left side shall give us the same value fernev=1,....,7. The
following table contains the results of this calculation diafferent splittings and
numerical methods. Since the solution of (9) is given in @®a function of the

| P | exp. Euler| impr. Euler| Heun | Runge-Kuttal
SEQ(p—1) | 104 099 [108| 108
SW(p=2) 1.02 2.07 2.01 1.98
MS (p=2) 1.02 207 | 195| 1998

Table 4. Estimation of orders of combined methods for (11).

initial condition we can use it in calculations instead od thumerical solution.
The table below contains results generated by using (1&ah g#me step.
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| ph=1) [r=1]r=2|r=3[r=4|
SEQ(p=1) | 1.03 | 1.02 | 1.01 | 1.01
SW(p=2) | 101 | 2.06 | 1.95 | 1.98
MS (p=2) | 1.03 | 2.00 | 1.99 | 1.99

Table 5: Estimation of orders of combined methods for (1&na (10).

6 Discussion and perspectives

We presented symbolic calculations for orders of ODE sglvimethods. Our
motivation is to predict the order in the case when besideanioal procedures of
certain order operator splitting is also used. We calcdl¢te order of combined
methods applied for systems of semilinear ODE-s like (4emeta bounded linear
operator and a nonlinear operator is present. We preseantedrical calculations
on a test problem, the results are in accordance with ourétieal results. The
results indicates that the combined method inherits thélenmae of the order of
the splitting and the numerical method.

We intend to extend our investigations to methods where timeemnical time
step is different from the splitting time step. We plan to donerical investiga-
tions on more realistic chemistry models, a system with twtheee species and
two spatial dimensions.
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