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Abstract. In the present paper, we further study the asymptotical behavior of the fol-
lowing higher order nonlinear difference equation

x(n + 1) = ax(n) + b f (x(n)) + c f (x(n − k)), n = 0, 1, . . .

where a, b and c are constants with 0 < a < 1, 0 ≤ b < 1, 0 ≤ c < 1 and a + b + c = 1,
f ∈ C[[0, ∞), [0, ∞)] with f (x) > 0 for x > 0, and k is a positive integer, which has been
recently studied in: On global attractivity of a higher order difference equation and its
applications [Electron. J. Qual. Theory Diff. Equ. 2022, No. 2, 1–14 pp]. We obtain some
new sufficient conditions for the global attractivity of positive solutions of the equation,
and show the applications of these results to some population models..
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1 Introduction

Consider the following higher order nonlinear difference equation

x(n + 1) = ax(n) + b f (x(n)) + c f (x(n − k)), n = 0, 1, . . . , (1.1)

where a, b and c are constants with 0 < a < 1, 0 ≤ b < 1, 0 ≤ c < 1 and a + b + c = 1,
f ∈ C[[0, ∞), [0, ∞)] with f (x) > 0 for x > 0 and k is a positive integer. The case when the
sum of the main coefficients of a higher order difference equation is equal to one is of a great
interest and has been studied a lot see, e.g., [1,2,19–23] and the related references therein. One
of the reasons is that such difference equations frequently model some processes in nature or
society. Recently, asymptotic behavior of positive solutions of Eq. (1.1) has been studied in [1].
Among other results, the following one was presented therein.
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Theorem A. Assume that f (x) has a unique positive fixed point x̄ and satisfies the negative feedback
condition

(x − x̄)( f (x)− x) < 0, x > 0, x ̸= x̄. (1.2)

Suppose also ax + b f (x) is increasing, and f (x) is L-Lipschitz with

c
1 − ak+1

c + akb
L ≤ 1. (1.3)

Then every positive solution {x(n)} of Eq. (1.1) converges to x̄ as n → ∞.

In addition, by using a different approach, a new result on the global attractivity of positive
solutions of Eq. (1.1) was obtained in [2] for the special case that f is unimodal, that is,
f (x) = xg(x) where g ∈ C[[0, ∞), [0, ∞)] is decreasing.

In the present paper, we are still interested in the study of global attractivity of positive
solutions of Eq. (1.1), but for the case that f is decreasing, and furthermore for the case that
f is an S-map, that is, f : [0, ∞) → [0, ∞) is three times differentiable with (S f )(x) < 0 and
f ′(x) < 0 for x > 0 where S is the Schwarzian derivative

(S f )(x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

.

Clearly, if we let
x(−k), x(−k + 1), . . . , x(0) (1.4)

be k + 1 given nonnegative numbers with x(0) > 0, then Eq. (1.1) has a unique positive
solution with initial condition (1.4).

In the next section, we establish two sufficient conditions on the global attractivity of
positive solutions of Eq. (1.1) under the conditions that f is a decreasing function and f is an
S-map, respectively. Our results can be applied to several difference equations derived from
mathematical biology. We show these applications in Section 3.

In the following discussion,we always assume that f is decreasing. In addition, for the
sake of convenience, we adopt the notation ∏n

i=m s(i) = 1 and ∑n
i=m s(i) = 0 whenever {s(n)}

is a real sequence and m > n.

2 Main results

Since f is decreasing, f has a unique positive fixed point x̄ and satisfies the negative feedback
condition (1.2). Hence by Lemma 2.1 in [1], every positive solution {x(n)} of Eq. (1.1) is
bounded and persistent.

In the following, we establish two sufficient conditions for every positive solution of
Eq. (1.1) to converge to x̄ as n → ∞. By an argument similar to that in the proof of Theo-
rem 2.2 in [1], we know that every nonoscillatory solution of Eq. (1.1) converges to x̄. Hence
we need to obtain conditions for every oscillatory solution of Eq. (1.1) to converge to x̄ also.

The following lemma on the asymptotic behavior of oscillatory solutions of Eq. (1.1) is
needed in the proof of our main results.

Lemma 2.1. Assume that ax + b f (x) is increasing and let {x(n)} be a positive solution of Eq. (1.1)
which oscillates about x̄. Then for any nonnegative integer m ≥ 0, there is a positive integer Nm such
that

u(2m) ≤ x(n) ≤ u(2m + 1) for n ≥ Nm (2.1)
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where {u(n)} is defined by{
u(n) = c 1−ak+1

c+akb f (u(n − 1)) + ak(b+ac)
c+akb x̄, n = 1, 2, . . . ,

u(0) = ak(b+ac)
c+akb x̄.

(2.2)

Proof. Let y(n) = x(n)− x̄. Then {y(n)} satisfies the equation

y(n + 1) = ay(n) + b( f (y(n) + x̄)− x̄) + c( f (y(n − k) + x̄)− x̄) (2.3)

and {y(n)} oscillates about zero.
Let y(i) and y(j) be two consecutive members of the solution {y(n)} such that

y(i) ≥ 0, y(j + 1) ≥ 0 and y(n) < 0 for i + 1 ≤ n ≤ j. (2.4)

and let
y(r) = min{y(i + 1), y(i + 2), . . . , y(j)}.

Then by an argument similar to that in the proof of Theorem 2.2 in [1] (the increasing property
of ax + b f (x) is needed in the proof) we may show that

r − (i + 1) ≤ k (2.5)

and

y(r) ≥ 1 − a
c + akb

ar
r−1

∑
n=i

c
an+1 [ f (y(n − k) + x̄)− f (x̄)]. (2.6)

Noting f (y(n − k) + x̄) ≥ 0, f (x̄) = x̄ and (2.5), we see that

y(r) ≥ −x̄
1 − a

c + akb
ar

r−1

∑
n=i

c
an+1 = −x̄

1 − a
c + akb

c
(

1 − ar−i

1 − a

)
≥ −cx̄

1 − ak+1

c + akb

and so it follows that

y(n) ≥ −cx̄
1 − ak+1

c + akb
, i ≤ n ≤ j.

Since y(i) and y(j) are two arbitrary members of the solution with property (2.4), we see that
there is a positive integer N′

0 such that

y(n) ≥ −cx̄
1 − ak+1

c + akb
def
= z(0), n ≥ N′

0. (2.7)

Next, let y(i) and y(j) be two consecutive members of the solution {y(n)} with N′
0 + k ≤

i < j such that

y(i) ≤ 0, y(j + 1) ≤ 0 and y(n) > 0 for i + 1 ≤ n ≤ j (2.8)

and
y(t) = max{y(i + 1), y(i + 2), . . . , y(j)}.

Then by a similar argument, we may show that

t − (i + 1) ≤ k (2.9)
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and

y(t) ≤ 1 − a
c + akb

at
t−1

∑
n=i

c
an+1 [ f (y(n − k) + x̄)− f (x̄)]. (2.10)

Since

z(0) + x̄ =

(
1 − c

1 − ak+1

c + akb

)
x̄ =

ak(b + ac)
c + akb

x̄ > 0,

f (z(0) + x̄) is well-defined. Since z(0) < 0 (see (2.7)) and f is decreasing, we see that

f (y(n − k) + x̄) ≤ f (z(0) + x̄) for n ≥ N′
0 + k.

Hence, it follows from (2.9) and (2.10) that

y(t) ≤ 1 − a
c + akb

at
t−1

∑
n=i

c
an+1 [ f (z(0) + x̄)− f (x̄)] ≤ c

1 − ak+1

c + akb
[ f (z(0) + x̄)− x̄],

which yields

y(n) ≤ c
1 − ak+1

c + akb
[ f (z(0) + x̄)− x̄], i ≤ n ≤ j.

Since y(i) and y(j) are two arbitrary members of the solution with property (2.8), we see that
there is a positive integer N0 > N′

0 such that

y(n) ≤ c
1 − ak+1

c + akb
[ f (z(0) + x̄)− x̄] def

= z(1), n ≥ N0.

Then, by an easy induction, we see that for each m ≥ 0, there is a positive integer Nm such
that

z(2m) ≤ y(n) ≤ z(2m + 1) for n ≥ Nm, (2.11)

where {z(n)} is defined by{
z(n) = c 1−ak+1

c+akb [ f (z(n − 1) + x̄)− x̄], n = 1, 2, . . . ,

z(0) = −cx̄ 1−ak+1

c+akb .
(2.12)

Let u(n) = z(n) + x̄, n = 0, 1, . . . Then (2.11) and (2.12) become (2.1) and (2.2), respectively.
The proof is complete.

Theorem 2.2. Assume that ax + b f (x) is increasing and

c(1 − ak+1)

ak(b + ac)x̄
(x f (x))′ > −1, x > 0. (2.13)

Then every positive solution {x(n)} of Eq. (1.1) tends to its positive equilibrium x̄ as n → ∞.

Proof. As indicated at the beginning of the section, every nonoscillatory solution of Eq. (1.1)
converges to x̄. Hence we only need to show that every oscillatory solution converges to x̄
also. To this end, let {x(n)} be an oscillatory solution of Eq. (1.1). Then by Lemma 2.1, {x(n)}
satisfies (2.1). Since u(0) ≤ u(1), from (2.2) and the monotonicity of f it is not difficult to
see that {u(2m)} is increasing, {u(2m + 1)} is decreasing and u(2m) ≤ x̄ ≤ u(2m + 1), m =

0, 1, . . . Hence,
lim

m→∞
u(2m) = l ≤ x̄ and lim

m→∞
u(2m + 1) = L ≥ x̄
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exist, and l and L satisfy the equations{
l = c 1−ak+1

c+akb f (L) + ak(b+ac)
c+akb x̄

L = c 1−ak+1

c+akb f (l) + ak(b+ac)
c+akb x̄.

(2.14)

We now show that l = L = x̄. To this end, let

g(x) = c
1 − ak+1

c + akb
x f (x) +

ak(b + ac)
c + akb

x̄x, x > 0

and observe that

g′(x) = c
1 − ak+1

c + akb
(x f (x))′ +

ak(b + ac)
c + akb

x̄, x > 0.

In view of (2.13), we see that g′(x) > 0. However, it follows from (2.14) that g(l) = g(L) = lL.
Hence l = L = x̄ and so limn→∞ u(n) = x̄. Then from (2.1) we see that x(n) → x̄ as n → ∞.
The proof is complete.

For the proof of the next theorem, we need the following lemma which is extracted
from [12].

Lemma 2.3. Consider the following difference equation

x(n + 1) = h(x(n)), n = 0, 1, . . . (2.15)

where h : [0, ∞) → [0, ∞) is an S-map. Assume that x̄ is the unique fixed point of h and |h′(x̄)| ≤ 1.
Then x̄ is a global attractor of all solutions of Eq. (2.15).

Theorem 2.4. Assume that ax + b f (x) is increasing and f is an S-map with

c
1 − ak+1

c + akb
f ′(x̄) ≥ −1. (2.16)

Then every positive solution {x(n)} of Eq. (1.1) tends to its positive equilibrium x̄ as n → ∞.

Proof. We only need to show that every oscillatory solution of Eq. (1.1) converges to x̄. Let
{x(n)} be an oscillatory solution. Then {x(n)} satisfies (2.1). Hence, to show that x(n) → x̄
as n → ∞ it suffices to show that u(n) → x̄ as n → ∞. To this end, let

h(x) = c
1 − ak+1

c + akb
f (x) +

ak(b + ac)
c + akb

x̄.

Clearly, h : [0, ∞) → [0, ∞), x̄ is the unique fixed point of h, h′(x) = c 1−ak+1

c+akb f ′(x) < 0 and
(Sh)(x) = (S f )(x) < 0 for x > 0. Hence, h is an S-map. In addition, (2.16) yields |h′(x̄)| ≤ 1.
Therefore, all the conditions assumed in Lemma 2.3 are satisfied and so u(n) → x̄ as n → ∞.
Then it follows that x(n) → x̄ as n → ∞. The proof is complete.

Remark 2.5. By comparing Theorems 2.2 and 2.4 with Theorem A, we see that when f is a
decreasing function, the condition (2.13) is different from the condition (1.3); while when f is
an S-map, the condition (2.16) is better than the condition (1.3).
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3 Applications

In this section, we apply our results obtained in the last section to some difference equations
derived from mathematical biology.

Consider the following system of difference equations
x(n + 1) = (1 − ϵ) f (x(n)) + ϵy(n),

y(n + 1) = (1 − ϵ)y(n) + ϵ f (x(n)),

x(0) ≥ 0, y(0) ≥ 0, x(0) + y(0) > 0,

n = 0, 1, . . . , (3.1)

where 0 < ϵ < 1 is a positive constant and f ∈ C[[0, ∞), [0, ∞)] with f (x) > 0 for x > 0.
Sys. (3.1) is a population model proposed by Newman et al. [18] which assumes symmetric
dispersal between active population x(n) and refuge population y(n). The chaotic behavior
of positive solutions of Sys. (3.1) is studied in [18] by numerical simulations, whereas in
[3] various properties of solutions of (3.1) are studied and several results on the asymptotic
behavior of solutions of (3.1) are obtained. Recently, a sufficient condition on the global
stability of positive solutions of (3.1) is obtained in [1].

Notice that Sys. (3.1) can be converted into the second order difference equation

x(n + 1) = (1 − ϵ)x(n) + (1 − ϵ) f (x(n)) + (2ϵ − 1) f (x(n − 1)), n = 0, 1, . . . (3.2)

When f is decreasing and ϵ ≥ 1/2, Eq. (3.2) is in the form of (1.1) and f has a unique
positive fixed point x̄. Clearly, x̄ is the unique positive equilibrium of Eq. (3.2) and (x̄, x̄) is
the unique positive equilibrium of Sys. (3.1).

By Theorems 2.2 and 2.4, we may have the following result on the global attractivity of
positive solutions of Sys. (3.1).

Corollary 3.1. Assume that 1/2 ≤ ϵ < 1, f is decreasing and x + f (x) is increasing. Suppose also
that either x f (x) is differentiable with

(2ϵ − 1)(2 − ϵ)

2(1 − ϵ)2 x̄
(x f (x))′ > −1, x > 0 (3.3)

or f is an S-map with
(2 − ϵ)(2 − 1/ϵ) f ′(x̄) ≥ −1. (3.4)

Then every positive solution (x(n), y(n)) of Sys. (3.1) tends to its positive equilibrium (x̄, x̄) as
n → ∞.

Proof. As indicated above, Sys. (3.1) can be converted into (3.2) which is in the form of Eq. (1.1)
with a = b = 1 − ϵ, c = 2ϵ − 1 and k = 1. By the assumption, ax + b f (x) = (1 − ϵ)(x + f (x))
is increasing. In addition, noting

c(1 − ak+1)

ak(b + ac)
=

(2ϵ − 1)(2 − ϵ)

2(1 − ϵ)2 (3.5)

and

c
1 − ak+1

c + akb
= (2 − ϵ)(2 − 1/ϵ) (3.6)
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we see that when (3.5) or (3.6) holds, (2.13) or (2.16) holds respectively. Then by Theorems 2.2
and 2.4, every positive solution {x(n)} of Eq. (3.2) converges to x̄ as n → ∞. Then from (3.1)
we see that

ϵy(n) = x(n + 1)− (1 − ϵ) f (x(n)) → x̄ − (1 − ϵ) f (x̄) as n → ∞,

which yields
y(n) → x̄ as n → ∞.

Hence, it follows that every positive solution (x(n), y(n)) of Sys. (3.1) converges to (x̄, x̄). The
proof is complete.

Next, consider the following difference equation in the form

x(n + 1) = αx(n) + βg(x(n)) + γg(x(n − k)), n = 0, 1, . . . , (3.7)

where 0 < α < 1, β ≥ 0 and γ ≥ 0 with β + γ > 0 are constants, g ∈ C[[0, ∞), [0, ∞)] and k is
a positive integer, observe that it can be written as

x(n + 1) = αx(n) +
β(1 − α)

β + γ

[
β + γ

1 − α
g(x(n))

]
+

γ(1 − α)

β + γ

[
β + γ

1 − α
g(x(n − k))

]
, (3.8)

which is in the form of (1.1) with

a = α, b =
β(1 − α)

β + γ
, c =

γ(1 − α)

β + γ
and f (x) =

β + γ

1 − α
g(x).

Assume that x̄ is the unique positive fixed point of f (x), that is, x̄ is the only positive number
satisfying

g(x̄) =
1 − α

β + γ
x̄.

Clearly x̄ is the unique positive equilibrium of Eq. (3.7). Observing that

c(1 − ak+1)

ak(b + ac)x̄
=

γ(1 − αk+1)

αk(β + αγ)x̄

and

c
1 − ak+1

c + akb
f ′(x̄) =

γ(1 − αk+1)(β + γ)

(1 − α)(γ + αkβ)
g′(x̄),

we see that the following corollary on the global attractivity of x̄ is a direct consequence of
Theorems 2.2 and 2.4.

Corollary 3.2. Assume that g is decreasing and αx + βg(x) is increasing. Let x̄ be the unique positive
equilibrium of Eq. (3.7) and suppose that either xg(x) is differentiable with

γ(1 − αk+1)

αk(β + αγ)x̄
(xg(x))′ > −1 (3.9)

or g is an S-map with
γ(1 − αk+1)(β + γ)

(1 − α)(γ + αkβ)
g′(x̄) ≥ −1. (3.10)

Then every positive solution of Eq. (3.7) tends to x̄ as n → ∞.
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When γ = 0, Eq. (3.7) reduces to

x(n + 1) = αx(n) + βg(x(n)), n = 0, 1, . . . (3.11)

Clearly, (3.9) is automatically satisfied since the left side is 0. From Corollary 3.2 we know that
when g is decreasing and αx + βg(x) is increasing, every positive solution {x(n)} of Eq. (3.11)
tends to its positive equilibrium x̄ as n → ∞ where x̄ is the unique positive number satisfying
x̄ = β

1−α g(x̄).

When β = 0, Eq. (3.7) reduces to

x(n + 1) = αx(n) + γg(x(n − k)), n = 0, 1, . . . , (3.12)

which includes several discrete models derived from mathematical biology. For instance,
when g(x) = 1

1+xp where p is a positive constant, Eq. (3.12) is a discrete analogue of a model
that has been used to study blood cells production [13]; when g(x) = e−qx where q is a positive
constant, Eq. (3.12) is a discrete version of a model of the survival of red blood cells in an
animal [25]. Due to its theoretical interest and applications, asymptotic behavior of positive
solutions of Eq. (3.12) and some related forms have been studied by numerous authors, see,
for example, [1, 2, 4–11, 13–25] and the references cited therein. As a special case of Eq. (3.7),
our results can be applied to Eq. (3.12) also.

In the following, we discuss the global attractivity of positive solutions of Eq. (3.7) when
g(x) = 1

1+xp and g(x) = e−qx where p and q are positive constants, respectively. When
g(x) = 1

1+xp , Eq. (3.7) becomes

x(n + 1) = αx(n) +
β

1 + xp +
γ

1 + xp(n − k)
, n = 0, 1, . . . (3.13)

Clearly, g is decreasing and has a unique positive number x̄ satisfying g(x̄) = 1−α
β+γ x̄ which is

the only positive equilibrium of Eq. (3.13). When β = 0, αx + βg(x) = αx is increasing; when
β > 0 and p ≥ 1, noting

g′(x) =
−pxp−1

(1 + xp)2

and

g′′(x) =
−pxp−2((p − 1)− (p + 1)xp)

(1 + xp)3

we see that g′(x) takes minimum at x∗ = ( p−1
p+1 )

1/p and

g′(x∗) = − 1
4p

(p − 1)1−1/p(1 + p)1+1/p.

Hence, if p ≥ 1 and
β

4p
(p − 1)1−1/p(1 + p)1+1/p ≤ α, (3.14)

then

(αx + βg(x))′ ≥ α + βg′(x∗) = α − β

4p
(p − 1)1−1/p(1 + p)1+1/p ≥ 0

and so αx + βg(x) is increasing.
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Next, observe that

(xg(x))′ =
1 + (1 − p)xp

(1 + xp)2

and

(xg(x))′′ =
pxp−1((p − 1)xp − (p + 1))

(1 + xp)3 .

We see that when p ≤ 1, (xg(x))′ > 0 and so (3.9) is true; when p > 1, (xg(x))′ has minimum
at x∗ =

( p+1
p−1

)1/p. Hence in this case,

(xg(x))′ ≥ (xg(x))′|x=x∗ = − (p − 1)2

4p
. (3.15)

Clearly, if
γ(1 − αk+1)

αk(β + αγ)x̄

(
− (p − 1)2

4p

)
> −1,

that is,
γ(1 − αk+1)

αk(β + αγ)x̄
(p − 1)2

4p
< 1, (3.16)

then by noting (3.15) we know that (3.9) is satisfied. Furthermore, by a simple calculation, we
find that for p > 1,

(Sg)(x) =
g′′′(x)
g′(x)

− 3
2

(
g′′(x)
g′(x)

)2

=
1
2
(1 − p)(1 + p)x−2 < 0, x > 0,

that is, g is an S-map. In addition, by noting

g′(x̄) = − px̄p−1

(1 + x̄p)2 = −px̄p−1g2(x̄) = −px̄p−1
(

1 − α

β + γ
x̄
)2

= −p
(

1 − α

β + γ

)2

x̄p+1

we see that if
γ(1 − αk+1)(β + γ)

(1 − α)(γ + αkβ)

(
−p
(

1 − α

β + γ

)2

x̄p+1

)
≥ −1,

that is,
γ(1 − α)(1 − αk+1)

(β + γ)(γ + αkβ)
px̄p+1 ≤ 1, (3.17)

then (3.10) is satisfied. Hence, by Corollary 3.2, we have the following conclusion: every
positive solution of Eq. (3.13) tends to its positive equilibrium x̄ as n → ∞ if one of the
following holds

(i) p ≤ 1 and β = 0;

(ii) p ≥ 1, (3.14) and (3.16) hold;

(iii) p > 1, (3.14) and (3.17) hold.

When f (x) = 1
1+xp , Sys. (3.1) becomes

x(n + 1) = 1−ϵ
1+xp(n) + ϵy(n),

y(n + 1) = (1 − ϵ)y(n) + ϵ
1+xp(n) ,

x(0) ≥ 0, y(0) ≥ 0, x(0) + y(0) > 0,

n = 0, 1, . . . , (3.18)
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and it can be converted into Eq. (3.13) with α = β = 1 − ϵ, γ = 2ϵ − 1 and k = 1. Since α = β,
(3.14) reduces to

1
4p

(p − 1)1−1/p(1 + p)1+1/p ≤ 1. (3.19)

Hence, when p ≥ 1 and (3.19) holds, x + f (x) is increasing. Note that f (x) = g(x). From
(3.15), (3.17) and the above discussion, we know that when p ≥ 1,

(x f (x))′ ≥ −(p − 1)2/(4p) (3.20)

and

f (x̄) = −p
(

1 − α

β + γ

)2

x̄p+1 = −px̄p+1. (3.21)

Clearly, (3.20) implies that if

(2ϵ − 1)(2 − ϵ)

2(1 − ϵ)2 x̄

(
− (p − 1)2

4p

)
> −1,

that is,
(2ϵ − 1)(2 − ϵ)

2(1 − ϵ)2 x̄
(p − 1)2

4p
< 1, (3.22)

then (3.5) is satisfied, and (3.21) implies that if

(2 − ϵ)(2 − 1/ϵ)(−px̄p+1) ≥ −1,

that is,
(2 − ϵ)(2 − 1/ϵ)px̄p+1 ≤ 1, (3.23)

then (3.6) is satisfied. In addition, from the above discussion, we know that when p > 1, f
is an S-map. Hence, by Corollary 3.1, we have the following conclusion: when 1/2 ≤ ϵ < 1,
every positive solution of Sys. (3.18) converges to its positive equilibrium (x̄, x̄) as n → ∞ if
either p ≥ 1, (3.19) and (3.22) hold, or p > 1, (3.19) and (3.23) hold.

Example 3.3. Consider the equation

x(n + 1) = (1/2)x(n) + (3/4)
1

1 + x2(n)
+ (1/4)

1
1 + x2(n − 3)

, n = 0, 1, . . . , (3.24)

which is in the form of Eq. (3.7) with α = 1/2, β = 3/4, γ = 1/4, k = 3 and g(x) = 1/(1 + x2).
Note that x̄ = 1 is the unique positive equilibrium of Eq. (3.24). Since p = 2,

β

4p
(p − 1)1−1/p(1 + p)1+1/p = (3/4)(1/8)33/2 < 1/2 = α,

that is, (3.14) is satisfied. In addition, observing that

γ(1 − αk+1)

αk(β + αγ)x̄
(p − 1)2

4p
=

(1/4)(1 − (1/2)4)

(1/2)3((3/4) + (1/2)(1/4))
· 1

8
=

15
56

< 1

we see that (3.16) is satisfied. Hence, from the above discussion, we know that every positive
solution of Eq. (3.24) tends to its positive equilibrium x̄ = 1 as n → ∞.
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Example 3.4. Consider the system
x(n + 1) = 7/15

1+x3(n) + (8/15)y(n),

y(n + 1) = (7/15)y(n) + 8/15
1+x3(n) ,

x(0) ≥ 0, y(0) ≥ 0, x(0) + y(0) > 0,

n = 0, 1, . . . , (3.25)

which is in the form of Sys. (3.18) with ϵ = 8/15 and f (x) = 1/(1 + x3). Since p = 3,

1
4p

(p − 1)1−1/p(p + 1)1+1/p = (1/12)22/344/3 < 1,

that is, (3.19) is satisfied. In addition, we know that f is an S-map. Sys. (3.25) has the
unique positive equilibrium (x̄, x̄) where x̄ is the unique positive fixed point of f . Observing
x̄(1 + x̄3) = 1, we see that x̄ < 1. Then it follows that

(2 − ϵ)(2 − 1/ϵ)px̄p+1 ≤ (2 − 8/15)(2 − 15/8)3 = 11/20 < 1

and so (3.22) is satisfied. Hence, from the above discussion, we know that every positive
solution of Sys. (3.25) tends to its positive equilibrium (x̄, x̄) as n → ∞.

When g(x) = e−qx, Eq. (3.7) becomes

x(n + 1) = αx(n) + βe−qx(n) + γe−qx(n−k), n = 0, 1, . . . . (3.26)

Since g is decreasing, there is a unique positive number x̄ satisfying g(x̄) = 1−α
β+γ x̄. Clearly x̄ is

the only positive equilibrium of Eq. (3.26). Noting

(αx + βg(x))′ = (αx + βe−qx)′ = α − qβe−qx

we see that αx + βe−qx is increasing when

α ≥ qβ. (3.27)

In addition, observing that

(xg(x))′ = (1 − qx)e−qx and (xg(x))′′ = q(qx − 2)e−qx

we find that (xg(x))′ takes minimum when x = 2/q and so

(xg(x))′ ≥ (xg(x))′|x=q/2 = −e−2. (3.28)

Hence, if
γ(1 − αk+1)

αk(β + αγ)x̄
(−e−2) > −1,

that is,
γ(1 − αk+1)

αk(β + αγ)x̄
< e2, (3.29)

then (3.9) is satisfied. Furthermore, by a simple calculation, we find that

(Sg)(x) =
g′′′(x)
g′(x)

− 3
2

(
g′′(x)
g′(x)

)2

= −(1/2)q2 < 0, x > 0,
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that is, g is an S-map. In addition, by noting

g′(x̄) = −qe−qx̄ = −q
1 − α

β + γ
x̄ (3.30)

we see that if
γ(1 − αk+1)(β + γ)

(1 − α)(γ + αkβ)

(
−q

1 − α

β + γ
x̄
)
≥ −1

that is,
γ(1 − αk+1)

γ + αkβ
qx̄ ≤ 1, (3.31)

then (3.10) is satisfied. Hence, by Corollary 3.2, we have the following conclusion: if (3.27)
holds and either (3.29) or (3.31) holds also, then every positive solution of Eq. (3.26) tends to
its positive equilibrium as n → ∞.

When f (x) = e−qx, Sys. (3.1) is
x(n + 1) = (1 − ϵ)e−qx(n) + ϵy(n),

y(n + 1) = (1 − ϵ)y(n) + ϵe−qx(n),

x(0) ≥ 0, y(0) ≥ 0, x(0) + y(0) > 0,

n = 0, 1, . . . , (3.32)

and it can be converted into Eq. (3.26) with α = β = 1 − ϵ, γ = 2ϵ − 1 and k = 1. Since α = β,
(3.27) reduces to q ≤ 1. Noting f (x) = g(x), from (3.28), (3.30) and the above discussion, we
know that

(x f (x))′ ≥ −e−2 (3.33)

and
f ′(x̄) = −qe−qx̄ = −q

1 − α

β + γ
x̄ = −qx̄. (3.34)

Clearly, (3.33) implies that if

(2ϵ − 1)(2 − ϵ)

2(1 − ϵ)2 x̄
(−e−2) > −1,

that is,
(2ϵ − 1)(2 − ϵ)

2(1 − ϵ)2 x̄
< e2, (3.35)

then (3.5) is satisfied, and if
(2 − ϵ)(2 − 1/ϵ)(−qx̄) ≥ −1,

that is,
(2 − ϵ)(2 − 1/ϵ)qx̄ ≤ 1, (3.36)

then (3.6) is satisfied. Hence, by Corollary 3.1, we have the following conclusion on the global
attractivity of positive solutions of Sys. (3.32): if q ≤ 1 and either (3.35) or (3.36) holds, then
every positive solution of Sys. (3.32) tends to its positive equilibrium (x̄, x̄) as n → ∞.

Example 3.5. Consider the equation

x(n + 1) = (2/3)x(n) + (1/3)e−2x(n) + (1/4)e−2x(n−3), n = 0, 1, . . . (3.37)
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which is in the form of Eq. (3.26) with α = 2/3, β = 1/3, γ = 1/4, k = 3 and g(x) = e−2x.
Noting q = 2, we see that (3.27) is satisfied. Let x̄ be the unique positive equilibrium of
Eq. (3.37). Then x̄ satisfies x̄e2x̄ = 7/4. By noting (1/2)e2(1/2) < 7/4, we see that x̄ > 1/2 and
so it follows that

γ(1 − αk+1)

αk(β + αγ)x̄
<

(1/4)(1 − (2/3)4)

(2/3)3((1/3) + (2/3)(1/4))(1/2)
=

65
24

< e2,

that is, (3.29) holds. Hence, from the above discussion, we know that every positive solution
of Eq. (3.37) converges to its positive equilibrium x̄ as n → ∞.

Example 3.6. Consider the system
x(n + 1) = (2/5)e−(1/2)x(n) + (3/5)y(n),

y(n + 1) = (2/5)y(n) + (3/5)e−(1/2)x(n),

x(0) ≥ 0, y(0) ≥ 0, x(0) + y(0) > 0,

n = 0, 1, . . . , (3.38)

which is in the form of Sys. (3.32) with ϵ = 3/5 and f (x) = e−(1/2)x. Note that q = 1/2 < 1.
Sys. (3.38) has the unique positive equilibrium (x̄, x̄) where x̄ is the unique positive fixed point
of f . Noting x̄e(1/2)x̄ = 1, we see that x̄ < 1. Then it follows that

(2 − ϵ)(2 − 1/ϵ)qx̄ ≤ (2 − 3/5)(2 − 5/3)(1/2) = 7/30 < 1

and so (3.36) is satisfied. Hence, from the above discussion, we know that every positive
solution of Sys. (3.38) tends to its positive equilibrium (x̄, x̄) as n → ∞.
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