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Abstract. In this paper we study the well-posedness for the periodic Cauchy problem
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1 Introduction

In the present work we consider the periodic Cauchy problem and the internal controllability
of the following one-dimensional system

i + 02 — 9t + 9, (79, D) =0,
1 (1.1)
@, 17— 0% + 5 (9:9)° =0,

which is a rescaled version of the system derived in [14] from the evolution of long water
waves with small amplitude in the presence of surface tension, where ® = ®(x, t) represents
the nondimensional velocity potential on the bottom z = 0 and the variable 1 = 7(x,t)
corresponds the free surface elevation.

As happens in water wave models, there is a Hamiltonian type structure which is clever
to characterize the space for the study of the Cauchy problem. In our particular system (1.1),
the Hamiltonian functional 1 = #(t) is defined as

H (g)) = ;/}R (172 + (0x7)? + (0,®)% + (32®)* + 7 (ax<I>)2> dx,
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and the Hamiltonian type structure is given by

() =(a) 7=(5)

We see directly that the functional H is well defined when
n(,1), @x(-,t) € H'(R),

for t in some interval. These conditions already characterize the natural space for the study
of solutions of the system (1.1). Certainly, J]. Quintero and A. Montes in [16] showed for the
model (1.1) the existence of solitary wave solutions which propagate with speed of wave 6 > 0,
i.e. solutions of the form

n(x, t) =u(x—06t), &(x,t)=0v(x—06t),

in the energy space H'(R) x V?(R), where H!(IR) is the usual Sobolev space of order 1 and
the space V2(R) is defined with respect to the norm given by

o0l y = 10" gy = [ ((@0')? + (a0 )?) .

They also showed, using the estimates of the Kato’s commutator, the local well-posedness for
the Cauchy problem associated to the system (1.1) in the Sobolev type space H*(R) x VST1(R),
with s > 3/2, where H*(IR) is the usual Sobolev space of order s defined as the completion of
the Schwartz class with respect to the norm

[l i) = 11+ 187 @(E) 122
and V**1(IR) denotes the completion of the Schwartz class with respect to the norm

leollyeiagry = I (141217 [E1@() 12,

where @ is the Fourier transform of w in the space variable x and ¢ is the variable in the
frequency space related to the variable x. Using Bourgain type spaces, in work [13] the authors
showed that the Cauchy problem associated to the system (1.1) is locally well-posedness in
the space H*(R) x V*™1(R) for s > 0.

On the case of the periodic domain T = R/(27tZ) (the one-dimensional torus), it was
proved in [15] the local well-posedness of the Cauchy problem associated to system (1.1) in
the space H*(T) x VST1(T), for s > 3/2, where the periodic Sobolev space H*(T) is defined
by

H(T) = {w= Y we™ : ¥ (14 k)i < +oof
kez kez
and the space V**1(T) is defined by the norm

1/2
mewm:[Zﬂ+MW%WWﬂ ,
keZ

where w, = @(k) denotes the k-Fourier coefficient with respect to the spatial variable x. In this
paper, we prove that the Cauchy problem associated to system (1.1) with the initial condition

7(x,0) =no(x), ®(x,0) = Po(x) (12)
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is locally well-posed in the space H*(T) x V*"1(T) for s > 0. Hence we improve the result
found in [15].
To study the Cauchy problem (1.1)-(1.2) we use its integral equivalent formulation,

t 1
(7(8), (1)) = (1) (10, Do) = | 8(2 = ¥) (03 (79:2), 5 (0:0)%) (¢, (13)
where S(t) (170, Pp) is the solution of the linear problem, that is

5(t) (10, o) = (S1(t) (170, Po), S2(t) (170, Po))

with

51(1) (10, @0) = ¥ e [ cos(9 (k) o (k) + K| sin((K)£)Bo (k)] ,
€Z

Sz(t)(UOICDO) — 2 ez‘kx |:_Sin(¢(k)t);7\0(k) +COS(¢(k)t)&\)0(k):| ,

keZ |k|

and the function ¢ defined as

(k) = [k* + [K|

is the Fourier symbol associated to the spacial linear part of the system (1.1).

The method of proof will be the application of the contraction mapping principle in a suit-
able Banach function space C ([0, T] : H¥(T) x VS*1(T)) N Z¢%, where the appropriated space-
time weight norm for Z° is determined by the knowledge of certain estimates for the solutions
of the linear part. This method, introduced by ]J. Bourgain in [2]-[3] and simplified by C. Kenig,
G. Ponce and L. Vega in [8]-[9], not only benefits of the above mentioned space-time estimates,
but also exploits structural properties of the nonlinearity.

As usual when dealing with dispersive models in Bourgain spaces, we slightly modify the
terms in the right-hand of (1.3) by means of a cut off function. In the following, let ¢ € C5°(R)
with support in (—2,2), such that 0 < ¢ < 1,and ¢ = 1in [—1,1]. Thus, for0 < T < 1 we
consider the following modified version of (1.3),

(10, B(6)) = POSE) 070, P0) — (1) [ S(t = 19(0) (00,0, 5 0.0 ) (V). (14

We will show the existence of a solution of the integral problem (1.4) using the Banach fixed
point theorem and appropriate linear and nonlinear estimates.

The second part of this paper is concerned with the internal control problem for the system
(1.1) on the periodic domain T: choose an appropriate internal control function

F=F(x,t) = (fi(x, 1), f2(x,1))
to guide the model
{m + 92D — ajtq>+ax(qaxq>) =fi, x€T, t>0,
(1.5)

D +1— axry+ (XCD)Z:fz, xeT, t>0,

during a time interval [0, T], from a given initial state to another preassigned terminal state,
in an appropriate function space of system states.

During the last years, there have been many contributions to the internal controllability for
different dispersive wave models. For instance, in the case of the Korteweg—de Vries equation
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D. Russell and B. Zhang in [18] showed that for T > 0 and functions ug, ur € H*(T), s > 0,
one can always find a control f so that the Cauchy problem

up+ Uty + Uy = f,  u(x,0) = up(x),
has a solution u € C ([0, T] : H*(T)) satisfying
u(x,T) =ur(x), xeT,

when the initial and terminal states are sufficiently small. A similar result was proved by
B. Zhang in [20] for the Boussinesq model,

Ut — Uy + (u2 + ”x’f)xx =f, u(x,0)=up(x), u(x,0)=m0vy(x),
with the condition
u(x, T) =ur(x), wu(x,T)=or(x),

in the space H*(T) x H*"2(T) with s > 2. In the work [5], E. Cerpa and I. Rivas showed
controllability for the Boussinesq equation in low regularity, this is, in the space H*(T) x
H*"2(T) with s > —1.

For the Benjamin—-Bona-Mahony equation, L. Rosier and B. Zhang in [17] proved that

Up + Uy — Uyyr + Utly = a(x + ct)h(x, t),

with a moving distributed control is controllable in H*(T) for any s > 1 in (sufficiently) large
time. The control time is chosen in such a way that the support of the control, which is moving
at the constant velocity ¢, can visit all the domain T.

C. Laurent, F. Linares and L. Rosier in [11] and F. Linares and L. Rosier in [12] considered
the control problem for the Benjamin—Ono equation,

up + H(uxy) +uuy = f, u(x,0) =up(x), u(x,T)=ur(x).

In the latter work, authors proved a controllability result in 12 (T) that allows to prove the
global controllability in large time.

Our main result in Theorem 5.4 gives a positive answer to the internal controllability for
the system (1.5) in a local sense. We will show that for T > 0 and initial an terminal states

(10, ®0), (7, ®r) € H(T) x V**I(T), s>0,

sufficiently small, there exists a control function F = (fj, f) such that the Cauchy problem
associated to the system (1.5) with the initial condition

Tl(xlo) = 770(3(), CDQ(X,O) = qDO(x)/ xeT, (16)
has a solution (17, ®) € C ([0, T] : H¥(T) x V*F1(T)) satisfying the condition
n(x, T) =nr(x), P(x,T)=>r(x), xeT.

Following the same approach used in the case of the KdV equation and Boussinesq equa-
tion, we restrict our attention to a control of the form

F(x,t) = (fi(x,t), fa(x, 1)) = (p1h1(x, t), p2h2(x, 1)),
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with p; being a smooth function defined on T. Thus
H(x,t) = (h(x,t),ha(x,t))

is a new control input. Here, the function p; can have a support strictly contained on the torus;
thus, it can represent a localization of the control 4;(x, t), which would be only able to act on
a part of the domain. First, we perform a spectral analysis for the operator

0 —(I —9%)d?
M: ( ),
—(-®) 0

defined in the space H*(T) x V¥™1(T). Using that the k-Fourier symbol for the operator M is

given by
0 (1+k2)k?
M = ( ) ,
—(144?) 0

we prove for M the existence of a discrete spectral decomposition since the eigenvectors form
a Riesz basis of the space H*(T) x V™1(T). Next, using this spectral analysis and the moment
method we establish that the linear system associated with (1.5),

+ 32D — 01d = fy,
b @ = (1.7)
Pr+ 11— = fo
is exactly controllable in the space H*(T) x Vs*1(T), with the conditions
7(0) =m0, n(T) =11, @(0) =P, H(T) = Pr. (1.8)

Finally, the nonlinear problem is treated as a perturbation by fixed point theory.

The paper is organized as follows. In Section 2, first we define the Bourgain spaces related
to our problem and next we establish all the linear estimates needed to proved the result
of well-posedness. In Section 3 we estimate the bilinear forms 9,(79,®) and (9,P)(9,P1)
associated to the nonlinear part of the system. The Section 4 will be dedicated to establish the
result of local well-posedness, via a standard fixed point argument. In Section 5.1, we perform
the spectral analysis for the operator M defined in the space H*(T) x V**1(T), for s > 0. In
Section 5.2, by solving a moment problem we found the characterization of the internal control
F = (f1, f2) for the linear problem (1.7)—(1.8). In Section 5.3, we prove the exact controllability
result for the nonlinear problem, by imposing smallness of the initial and terminal states. The
proof of this result is mainly based on the linear controllability and the Banach Fixed Point
Theorem.

2 Bourgain spaces and linear estimates

We star with the definition of the Bourgain type spaces. We consider the space ) of functions
w such that

(i) w: TxR—C, (i) w(x,-) € S(R) forallx €T,
(i) x — w(x,-) € C7(R), (iv) @(0,t) =0forallt € R,
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Definition 2.1. For s, € R we define the Bourgain spaces X*# to be the completion of the
space Y with respect to the norm

leoll s = 11¢k)* (] = (k) Pl 212,

where (a) =1+ |a|; @ denotes the time-space Fourier transform of w,

Wk, ) = 41? /IR /T eIy (x, £ dud;

and the function ¢ is defined as

(k) = |Kk|* + |K|.

The spaces Y*™f to be the completion of the Schwartz class Speror = S(T x R) with respect
to the norm

leollysss = I1KI{IT] = p(R)YP (k)| 212

We similarly introduce the spaces Z°, Wstl s € R, with the norms

[wllze = [[wllxs-12 + “<ﬁ{;ﬁsff?iizifg>

ey’

and

k| (k)*w(k, T)
([Tl = (k)

Also, we consider the spaces U°, Vstl s € R, where U? denotes the completion of the Schwartz
class Sper2r With respect to the norm

el = ollyeonva + | -

lwljus = llwlxs12 + || (k) @ (k, )l 211
and V5*1 denotes the completion of the Schwartz class Sper;n with respect to the norm
[wllys = [lwllysiaz + |||k (k) w(k, T) || 21

For T > 0 we denote by U} the space space of the restrictions to the interval [0, T] of the
elements w € U°® with norm defined by

7l = in {llwllus = 5(6) = () on[0,T]}.

and by Vit the space space of the restrictions to the interval [0, T] of the elements w € V**!
with norm defined by

[Pl = inf {lwllysos = D) =w(t) on [0,T]).
Next we look at some basic results.
Lemma 2.2. Let s € R, then there exists C > 0 such that
@ Nyl xs-172 < Cllyllxs-172,

(@) [[§p®@|lysir-12 < Cl[®llyssr-172,
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Proof. We will use the notation @(*) for the Fourier transform of w in the time variable t. Note

that
(k7)) = 41712/ / e ixkpmitT (/ eimlﬁ(”(}\)d}\) 1(x, t)dxdt

—/ P (A)i(k, T — A)dA
and also
HV”?H%(s,—l/z :k§<k>2 / (It] — ‘/ lP 7k, t—A d)x‘ dT.
Moreover
k§<k>zs/ (el = (k)] [ $9WikT =2 dA( dt
<k€22 /T+¢ ’/lp (kT — A d)\‘ dr
_ H T+ @(k) 2k /¢ it —vd|’ .
< [ IFOWIPI+900) 207k, 7= A) [yt
and
Ig(k)zs/ (It - ‘/ POk, T — A d)\‘ dr
suu /¢ s,
< [1FOM) BT = ¢l0) 2Tk, 7 mﬂ%dm

Next, using the inequality

|7l = ¢ (k)| < min{|T — ¢(K)|, [T+ @(K)},
we have for all A € R, (|t]| — ¢(k)) < (tE£¢(k)) < (T+AE£p(k))(A), and then

L IBOWRI (£ 9(0) 1/2<k>sﬁ(kT—A)|\§%L%d/\
_/ ¢ keZ /]R<T+Ai¢(k)>—1|ﬁ(k,r)|2dr)dA
AL 0 [ (A)(I7l = 9 (k) ik, ) P ) da
keZ

= (|7l — (k) "1/ (k WIQ%/R<A>Ilf“)(A)lsz
< Cligllzs-1s2-

Thus, we conclude that
[pnllxs-12 < Clinllxs-1r2-
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In a similar fashion we have that
B ORI (£ 9(0) 2kl (k) Bk, T = A) 5

< (Il = (k) 2 K| (k) @7 /RWW“)(A)\ZM < Cll® 311

Therefore
@ yssr-172 < Cl|D||yst1,-172.

Similarly, we have also the following lemma.

Lemma 2.3. Let s € R, then there exists C > 0 such that

(i) ’ Y kT ‘ (k)*77(k,7)
=000 [l 2y = Cl 6007 | 21
1) {0 )

i |4 o, < R

In the following lemmas we establish estimations related with the semigroup S(#)

Lemma 2.4. Let s € R, then exists C; > 0 such that

1 (£)S1(8) (170, Po) [[us < Cull (10, Po) | b= (1) =1 (),

14 (£)Sa(t) (170, Do)

vsrr < Cll (0, Po) | s () svs+1(m)-
Proof. We see that

[9() ¥ e e ®50] (k) =70 ()$) (x F ¢(K)).

keZ
So that

H‘P 2 elxke:tlcp ‘

keZ

wan = L ZWMMF/uﬂ—¢w»@wu¢¢@m%r
eZ
< D IP0F [[(019"(0)Fdr < Clolf
€Z

Also, we note that

\M%mzﬂﬁwwﬂ

keZ

keZ
< Cllollfs(xy

e ([ e e

In a similar fashion,

o) X2 etesio00 iy k)|

s1/2
keZ Xs

= Y (k) k[*[ Do (k I/ITI P (T F p(k))PdT < C[|Do|3sn
keZ
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and

= Y (k)*|k|*| Do (k) (/ 19" (T F ¢(k ))\dr>2

keZ
S CHq)0||Vs+1(T)

| R [w(e) X eheivt W%mr

kez

211

Thus, from the previous estimates we obtain that

[ (£)S1() (110, Po)[lus < Call (0, Po) |l s (1) vs+1 (1) -

Similarly we have that

pikx pEig (k) k N
e &7 Tl - L W0 [ (7] - 60001 (98 P
||770||H5(T)
and
s ka il('b( )t ﬂo(k) _ 25
[ [o & =] |, = TP ([ 130 pw)iac)

< Cllol s (xy

Also, we have that

Hl’b Z ke EiP ()G (k)

keZ

= Z<k>25\k|2|3>o(k)!2/]R<\r| — ¢(0) 9 (T F (k) Pd

kez
S CHCI)OH%)S-H(T)

ys+1,1/2

and

H IK| (K)® [¢(t) Z eikxeii(p(k)tq) ]

kez

= LR IRPIB0) ([ 19 (0 9(k))lar)

kez
S CH(DOH%;sH(T)

2Ly

Then we conclude that

[ (£)S2(t) (110, Po) [l ys+1 < Cull (10, Po) || s (1) vs+1 (1) -

Lemma 2.5. Let s € IR, then there exists Co > 0 such that

(i) ||p(t) [ f(£)dr

g S C2 (Ul + 122 FO )

(i) |[$(t) Jy Su(t— ) (7, )(¥) dt’

1 = oz + [Pl

(Illze + [[@flws) -

(i) |[p(t) [y Sa2(t — ') (1, @) (') dt’ o =C2
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Proof. For the inequality (i) see Remark 3.13 of [4]. To prove the inequality (ii), first we note
, A
Z ezxk +i(t—t') )ﬁ(k, tl)dt/> (k, t)

that
CIy

=) [ 0
b ,

— iRy (p) / TR Gk, ¢)dt = eF9EIG (K, 1),
0

where w(x,t) = y(t) [ eT#®)¥y(x, t')dt'. Then we obtain that

[t /zevf’f =0k, #)ar | (k1) = Bk T F 9(K).

0 kez

Using the fact that

max{||7 + ¢ (k)| — ¢(k)],

Pk — (k) [} < 7|

we have that

H¢ /0 Z otk pEi(t—t') M7 (K, ')

keZ

T+ (k)| — p(k))|@(k, T)[dT

= D o0
< LW [ latofar = ¥ 6]al;

Hl/z
keZ

By using part (i) we have that

(@ = 3 (k)™

keZ keZ

S C( Z <k>2s

keZ

+ ) (k)?

keZ

b
w(o) [ ek )

H}/?

TRk, 1) Hz

Ht—l/2

1 [Tk, 1) v ; )

<[ L0 [ (Il = ¢k (k) Par

kez

+ 3 (k) (/ |~cr—¢<k>>—1|ﬁ<k,r>|dr)2].

keZ

Thus 5
Hlp / 1xk iz t—t")gp(k )ﬁ(k, t/)dtl
0

,1/2
keZ X#

< Clln|l2-

Let ¢ a smooth cutoff function in the time variable, supported in A = |

/ Z ezxk +i(t—t) )ﬁ(k ¢ Z ezxk/
0

t
pTito(k 77(k/ 7) (/ et (T¥¢(k))dt1) dt
kez kez R 0

. oiTt _ it (k)
X k,T)dt =581+ S, — 53,
v L e e ez gy 1)

—1,1]. Then
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where
oiTt _ it )

) o [y " (e F o)k, D),

€Z

k% zxk/ 1_T;I¢§)))]ﬁ(klr)ei7td,fl

xkkt [1—o(rF¢(k)] -
() e |ty Tk e

Now,

() (pit(T79E) _ 1) "

ixk
e - '(mb( )

©F ¢(k))7j(k, T)dT

kez
kzzexw /21 TN o gy, e
nin— 1
= () Y, (L etk /rw(k)) ot F 9(K))ij(k, 1)t ).
n>1 : keZ

Thus, using the notation

(k) Z/]Ri”*l(T?Mk)) o(T F (k)i (k, T)dt,  wu(t) = (D),

we see that
S1(k,7) = gt (xkEtgp(k (k kT
- [ 52
= ¥ L Fa0al) (05 p(k))
n>1
Therefore
1RSI0 < € X 00 (Ixal = pe)if kTulen,/\wn (v (k) ldr)

kezZ

< ¢ Y 7 ( [ rF900) itk 0ldr)” = CIRI (el - 9(6)) Ty

keZ

Now, if we use the notation

gk, 7) = [i(r ¥ ¢(k))] "' [1 = o(r F ¢ (k)71 (k, 7)
then
ST = 1 [ e e g™ (x axat = §(x) x gk, 7).
So that, from Young’s inequality,

(kY S2 172y < Z 190 (D)7, gk, T)I17

2
SONG </ (TF (k) xs(t F ¢(k)7 (K, T)\dr)

keZ
< Cl (] = p(e) 1%y,
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where B = {7 : |t| > 1}. Next, let

i) = [ i F 9(0)] 1~ e F p(0)]i K 7).
Then
106" Sal2y = KPR (2 F (8 [y
< ¢ Y (07 ( [ (0 906) (e T 9Ktk Dlde)

keZ
< ClRY (Il = (k) 77l

Hence, from the previous estimates we conclude that
ixk :tlt (k) / NH < s _ -1z
#00) [) X ettt 00506 0yar] | < CINRY (el = 009) gy
In what follows we will use similar arguments. First

/0 Y e 00 Bk, )t | (k,7) = Bk, T F p(K)).

keZ

where v(x,t) = () fot e T |k|®(x, t')dt’. Then we obtain that

H”b /O 2 ezxk +i(t—t') |k|q)( < E ZSHUHHUZ

keZ

<c| ¥ IkPw /rw N B(k, T T

kezZ

+ X0 W0 ([ e o) k0 lar) |

kezZ
< ClI® |-

Now,
/ Y ek it=t)00 KB (k, ')A’ = Sy + S5 — Se,
0 kez

where

eitt _ pEitp(k)

kg lxk/]R I (T¢¢(k))|k|<f>(k,r)dr,

Z zxk/ T:F(P( ))]|k|q~>(k,T)eiTth,

keZ T:F(P )
ikt [ L—e(TF¢K)],, %
) kge /]R Tretn) Kk )T
We note that
pn— 1

Se=p(t) T (X 0 [ (x5 9(0)" T o(x ¥ 9(0) kD (K, i),

n>1 ! kez
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Thus, if we use the notation

Cn(k) = /IRi"_l(fﬂF<P(k))”_1Q(T$<P(k))|k|5f>(kff)dff wn(t) = P(6)E",

we obtain that

Su(k,T) = [ _ (kzz gl (kb (k k))] (k, 7)
—gn,én &) (% p(k)).

Therefore

1067 Sillsy < B0 (5 yrlen(t)] [ 12 (e 7 904 ar)

n>1

< CkZ ) lxa(t F ¢(k)) k| (k, )17,
ez

= ClIIk[¢k)*(IT] = p(k)) 7y

Using the notation g;(k, 7) = [i(T F ¢(k))]*[1 — o(t F ¢(k))]|k|®(k, T) we see that

S5tk 1) = [9() ¥ [ "k, mdt] (k) = 59 (7) * 1k, )
keZ
Hence
10Ssly < X 02100 Ry g1 () 2,
keZ

< ClIkI K] = p(0) "By,

Now, let iy (k) = [[i(T F ¢(k))]'[1 — o(t T ¢(k))]|k|®(k, T)d. Then

2
146 Bally, = W30 ([ 199 (ke

keZ
< CllIKI k) (I7] = p(K) DI,

Consequently, from the previous estimates we have that

< KRl = ¢(0) Bl

kLt

/ zxk +i(t—t") ’k|q>(k t)dt}
0 kezZ

Therefore, we conclude that

o) [ st =) @)@yar| < (Il + I @lwen).

Similarly we obtain the other inequality in (iii). O

In the following lemma we show the continuous embedding of the space U* x V**1 in the
class C(R : H*(T) x V*T1(T)) for s € R.
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Lemma 2.6. Let s € R, then there exists C > 0 such that

H(’7/‘13)||C(R;Hs(ir)xvs+l(1r)) < Cll(17, P) [l us xyssr-
Proof. First we prove that U° C L*(R : H*(T)). Since
N 2,1/2
In(®)llery < (X 00> [ ikoldT) ) < il
kez R
we have that [|77| .~k gs(m)) < [|7]]us- Now,
NI 2s itT it' Ty 2
I (e) = () By < X 7 ([ 1™ = el i, 0)la)
kez R

Then, using the Dominated Convergence Theorem,

7 (t) = n(E)[gsxy = 0, £ =t

Thus 7 € C(R : H*(T)) and moreover ||77]|c(r: ms(t)) < Cl|77]|us- Finally,

o~ 2\ 1/2
[@(8) gy = (X K20 [ @k mdr] ) < [@llyeor

keZ

Hence, as in the previous case, || ®[/c(g.ys+1(1)) < C[|®||ys+1 and then

H(W/q’)||C(R:Hs(1r)xw+l(1r)) < Cll(17, P) us xysr- O

3 Bilinear estimates

Before proceed to the proof of the bilinear estimates, we state some elementary calculus in-
equalities that will be useful later, and whose proofs can be seen, respectively, in Lemma 5.3
of [10], Lemma 2.5 of [19], and Lemma 4.2 in [6].

Lemma 3.1. If u > 1/2and v =v(k,T) > 0, then

1
sup

< +0o0,
(k,r)erle]yZ:z (v + |k + arky + an| )

where w1 = a1(k, T) and ay = ap(k, T).

Lemma 3.2. If uy > 1/3and v =v(k,T) > 0, then

1
sup < o0,

(k7)€Z xR klze:z (V3 + |k} + a1 k? + aoky + az|)*
where oy = a1(k, T), 00 = ap(k, T) and az = az(k, T).

Lemma 3.3. For p,q > 0and r = min{p,q,p +q — 1} with p +q > 1, we have that

dx C
/IR (x — AP (x —u)T = (A=) (3.1)
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The following nonlinear estimates constitute an important result for this work. We prove
these estimates using a method originally due to Bourgain (see [2,3]) and considerably im-
proved by Kenig, Ponce and Vega (see [8,9]).

Lemma 3.4. Let s > 0, then exists C3 > 0 such that

(D) [[0x(179x®) || xs-112 < Callpll xs/2 [ @l ys1172,

(i) [[(9x®)(9xP1)lys+1.12 < Ca[@lyst1a2]| D1 [lyss1172.
Proof. First we note that

[0x (70 P) || xs-1/2 -
= [[{| ] = (k) k() (77 * 9:@) (k, ) [ 212

= sup Z /2 k{k)*(|t| — <P(k)>—1/2,7(k —ky,T— Tl)klé(kl, 7 )h(k,T)dtdn|.
Hh||f%L%:1 kk€eZ
Thus, by letting

flk,T) = (Tl = (R 2 (k)77 (K, T),  g(k,7) = {|T| = (k)" (k)*kD(k, T),

we have that (i) is equivalent to

(8 < Clfllgizligl el gz, (32)
where
flk—ky,7—mn)g(ks, n)h(k, T)dtdTy
sl szv'e:z/ ) (Il = ¢V 2(|Tul — p(k)) V(T — 1| = plk — k1))1/2

For to perform the inequality (3.2), we analyse all possible cases for the sign of 7, 73 and
T — 11. To do this we split Z? x R? into the following regions

Iy ={(kk,t,1)€Z*xR*>: 1y <0,T—7 <0},
Iy ={(kk,1,1) €EZ*xR*: 1, >0,T—1 <0,T >0},
I3 = {(k ki, 7, Tl)ezleRz 1 >0,71—-1<0,7<0},
s={(kk, 1) €Z*xR?*: 1, <0, T—1 > 0,7 >0},
( )
( )

=

Is={(kk,1,1) €EZ*xR*: 1, <0,T—71 > 0,7 <0},
Te = {(kki,T,11) € Z> xR*> : 1y > 0,7 — 11 > 0}.

We note that 1 < 0 and T — 1y < 0 implies T < 0,and 773 > 0 and T — 73 > 0 implies T > 0.
Thenthecases 1 <0, T—11 <0, T>0and @ >0, 7T— 1 > 0, T < 0 cannot occur. Now,
since

1+ [k < (1+ ki) (1 + [k — o),

then for s > 0 we see that

<k>2s
TG E S b (3.3)
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So, we will prove the inequality (3.2) with Z(f, g, h) instead of J(f, g, h), where

kf( kz,Tz (k1, )h(k, T)dtdT
Z(f, g h) Z / 1/2

kirez (01)1/2(02)1/2

with ko = k — ki, » = T — 71 and o, 01, 02 belonging to one of the following cases

(Co=T1+kP+ k|, o0 =1+ |k |2+ ki, 02 = T2 + |k |? + | Ko,
(C)o=T1—|kP = k|, 1 =11 = [ka |’ = |k1|, 02 = T2 + [k2* + [ K2,
(Co=T1+ kP + k|, 1 =711 — [ki|? = [k1|, 02 = @2 + |ka* + | K2,
(Coo=1— kP = k|, on = 7 + ks |* + [k1], 02 = 72 = |k2f* — [k,
(Cs)o=Tt+ kP + k|, o0 =1+ |k |2+ k1|, 02 = T2 — |k | — | Ko,
(Co)o =T — kP = |k, o1 = 11 = [ka |’ = k1], o2 = 2 — [ka|® — | K2.

By hypotheses we have that 77(0,¢) = 0, for all + € R. Thus, if k = k; then f(k;, 72) = 0.
Similarly if k; = 0 then g(k1, 1) = 0. Then, we will estimate Z(f, g, h) when k # 0, k1 # 0 and
k—ky # 0.

By symmetry it is sufficient to estimate Z(f, g, 1) into the following set

R={(kk,t,11) € Z* xR? : |0o| < |oq]}.

Now, we write Z(f, g, h) as the sum S; + Sy, where

3 _22// kf( kz,Tz (k1, 7 )h(k, T)XR dtdt

1/2<0_1>1/2<0_2>1/2 7 ]: 1/2/
and the sets Rj, R, are defined by
Ri={(kki,7,m) ER : || <|o|}, Ro={(kk;,7,71) €ER : |o] < |o1|}.

We first consider o, 07,0, as the case (Cp). We will use the notations Yy Fy(k), [ F(x)dx
to indicate that the sum or the integral are calculated, respectively, at some subset of Z or R.
Using the Cauchy-Schwarz inequality,

15,2 < ||h||m22/<2/\f (ko 22)g(k1, 71)| dTl) (2/ XR1|k|2dT1 )dT

We will prove that the expression

P Gk i _ - T thin

is bounded. But, by using inequality (3.1) in Lemma 3.3 we have that

dTl C
< .
/1R (t+ kP + [k [) (T =71 + [ka P + 2 |) = (T4 [P + [ka | + [R2 + [k )

Then we will prove that there exists C > 0 such that

k|2 1

<(C, onRj.
[ P ) & (o TP Tl + = TP+ =) = !
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Since for k 7é 0, kl 7& 0 and k 75 kl/ |k’ = |k1+(k—k1)‘ < ’k1’—|— ’k—kl‘ < 2‘k1(k—k1)’

Then )
k
? < ’kkl(k - kl)|~ (34)

Moreover, we observe the relation

T+ |k|3 + ‘k‘ — [T1 + ’k1’3 + ‘k1| + 1T + ‘kz‘?’ + |k2|]
= [k + [k = [k |> = lk1| = [ka> = [kl. (3.5)

If (k, ki, T, Tl) € Ry then
72+ [ka + o] < 71+ [k + || < 7+ [KP + [K] .
Hence, using the triangle inequality in (3.5) we conclude that

[IK[* + [k = [kt > = ks | = [ka* — [ka| < 3|7 + [K[* + |K]|- (3.6)

Assume ki1 > 0 and k — k1 > 0. Then k > k; > 0 and, using Lemma 3.1, we obtain that
1 1

<
kZl: (T+ k1P + k1| + [k — k]2 + [k — kq]) — kgz (T + k3 + k — 3k2ky + 3kk?)
1
< sup

ez xRz (s + [ — K+ &+ 5 +1])
<C,
where Z* := Z \ {0}. Moreover,
k|® + k| = k1 = k1| = |k2]® = |ko| = K2 +k =K — ki — k3 — kyp = 3kky(k — k;) > 0.

So, from (3.6) and inequality (3.4) we see that

2
|T+ K+ k| > |kky(k —k1)| > |k2|
Thus
K[>
— 2 __<cC
(T4 [k[> + |k[) —

Assume k1 < 0 and k — k1 < 0. Then k < k1 < 0 and, using Lemma 3.1, we see that

1 1
<
% <T+ |k1|3+ ’kﬂ + ’k—k1’3+ ‘k—k1‘> - k;Z <T—k3 —k+3k2k1 —3kk%>
< sup 1
T hr)ez xRk ey (ﬁ + ‘k% k- E 4B+ %D
<C.

Moreover

|1K]> + k] — k1] = k1| = |2 — Kol | = | =2 =k + K] + k1 + K + k| = 3B|kkq (k — k1)
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Hence from (3.6) and (3.4) we obtain that

IT— 13 —k| > |kky (k — k)| > L L
= V= (t—K—k ~—
Assume ki > 0 and k — k; < 0. Using Lemma 3.2,
Z 1
T (T P+ | + [k = KaP + [k = K )
1
<
= k§z (T + 2% 4 2ky — k¥ — k + 3k2k; — 3KkK3)
< sup L ; <C.
koezxriez (14§ - 3k + ki + 3Rk + T - 5 — §])
Moreover, if k > 0 then
k\2 15Kk* 15
3 TR TR ol _k S 22
K+ ] = 51 = el = lel® = hal] =20k =kl | (k= )+ 5 +1] = T8

If k <0,

3

3k>2 15k? 1 >15k2
16 -

I+ 161 = e = ol = P el | = 20| | (ks = )+ o+

Thus, from inequality (3.6) we have that

T+ [k + [k|| > 52 and L <C
~ 8 (T [P +[K]) =
Assume ki < 0 and k — k; > 0. Using Lemma 3.2,
Z 1
T+ [k P+ [k + [k =k P+ [k = Ka )
1
< sup S <C.
woezxriz (§+ |k — 3k + ki + 3k — 5 -5 — §))

Now, if k > 0 then

?;k)2 15k2 ] S 15k2
p— 8 .

I+ 1 = 61 = el = el® = hal] = 20kl | (k= 5) - 1

and if k < 0 then

k\2  15k? 15
3 3 3 2
K+ ] = 0P = el = Def® = hal] =20k =kl | (k= )+ - 1] = T

Thus, by using (3.6),

kZ ‘k‘Z

5
T4 |k]? + k|| > = d ——~ <C.
T+ [k + [k|] = g M TP S
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Consequently, from the previous estimates there exists C > 0 such that

2
|k| Z/ dTl , on Rl-
Therefore

2/ £ ks, ) Pt )

i < Clll; 1 [ lsthom) P
kez

< Cllf Iy ||gr|mz .

In a similar fashion,

1S2]? < HgH%Lg kng{(;/ |f(k2,T2)h(k,T)|2dT> (;/%)dﬁ.

We will prove that the expression

Z/ XR2|k’2dT _ /XR2|k|2dT

is bounded. Using inequality (3.1) in Lemma 3.3 we have that

dt C
< .
/IR (TH kP + k) (T — 71 + [k2? + [k2]) = (7 + [k[3 + [k] — [k2[? — |k2])

Thus, we will show that there exists C > 0 such that

1 y [k[?
(t1+ k1P + k) G (1 4 kP 4 k[ = [k = ko[> = [k = Ka )

<(C, onR,.

We note that if (k, k1,7, 71) € Ry,
[T kP + K< rt kP + TRl 2+ el + kel < 71+ [kl + [kl |
So, using the triangle inequality in (3.5) we see that

|[K[% + k] = [kt * = [ka] = [kal® = [kel[ < 3|71 + [ka|* + [Ka || (37)

Assume k > 0 and k — k; > 0. Thus

K[>

Y K[>
T (T4 kP A+ k] = [ka[® — [kal)

ZZ (11 + 3 + Ky + 3k2k; — 3KkK3)

| A

=: 1.

Moreover, if k1 > 0 then, using inequality (3.4),

3k2
kP + [k = [k1|® = [ka| = |ko|® = [ka|| = 3|k (k — k1)| > —

and if k; < 0 then

15k? 15k2
g

3k 2
3 _ 3 . 3 _ B 15k*
1K+ k| = k1 P = [ka| = [k = [ka| z|k1|[(k1 Z) +oe 1
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Hence, from (3.7) there exists C > 0 such that
|T1 + |k1|3 + |k1|| > Ck?

and consequently, using Lemma 3.1, we obtain

L h<C sup ) 1 < C.

3 2 >~
Pl ez S (g e b S )

Assume k < 0 and k — k1 < 0. Thus

[k[?

R e )

K[>
<T1 — k‘? — ky — 3k%k; + 3kk%>

<
ke

=: a.

N

Moreover, if k1 > 0 then

3 Bl 3 B  Bk\2 15k 15k2
[ K] = aP = k| = [kal® = el | = 2ka] | (R = )+ T +1] > =

If k1 < 0 then, using (3.4),

3k?
[kl 4 k| = [k > = fhea| = [ka | = [kal | = B[y (k — ko) | > =~

Thus, from (3.7) there exists C > 0 such that
71+ k1 * + k|| > CK?

and so

1 1
i s € osup <C
<T1 + k? + k1> (ki 11)€Z* xR kGZZ <T1 - k? —ky — 3k%ky + 3kk%>

Assume k > 0 and k — k; < 0. Then k; > k > 0 and

2 2
y K <y i
= (1 + k[P + k| = |k = K1]® = [k = ka|) = &5 (11 + 2k3 + 2k — 3k?ky + 3kk3 — k3 — k1)

Moreover, we see that

=: J3.

15k> 5k2
Hk‘3+ k| — k1 |® = |k1| — |ko® — = 5 and |7+ K+ k| > <
Consequently
1 1
———3<C su
(11 + K + k) ’ (kl,mg%mkg (T4 + 23 + 2k — Bk%k + 3kk3 — k3 — kq)
1
< sup ) <C.
(k1,1)€ZxRkeZ (% + ‘k3 3k k4 3+ -5k )
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Assume k < 0 and k — k1 > 0. Then

y k|
= (o K+ K = k= k= [k = Fal)
k|2
< =: 4.
kezz< T 2k K+ Ky 3Rk, 3k !
Also we see that
15k2 5k2

[P+ [k = i = Jla] = [lal® = kel 2 = and 1+ K | > 2

Thus, using (3.7),

2
I+ K k| > 5’§
So that
1 1
—J, <C su
<T1 + k:i’ + k1> 4 (kl,T1)€pZ><]RkeZZ <T1 —2k3 — 2k + 3k2k1 — 3kk% + k‘;’ + k1>
<C sup 2 L 5 <C.

(myezxricz (1 + [k — 3k +k+ 3G - 3 -4 - 4

Hence, from previous estimates we see that there exists C > 0 such that

k|?dT

1
W;/ ) <C, onR,.

Therefore
52| < CHfHﬁiL%HgH szHhH/sz

The proof of the others is similar to case (C;). Finally, note that

H (axCI)) (axq)l) || ys+1,-1/2

= sup | ), /2k<k>s<\r1—¢(k)> V2(k — k) ®(k — k1, T — 7)k1®1 (k1,70 ) h(k, T) drdTy |
HhH[%L%=1 kkez 'R

Then, by letting
flk,7) = (It| = 9(0)) /2 (k)*kD(k,T), ok, T) = (|T| = P(K))"/*(k)*kP1 (K, T)

we have that (ii) is equivalent to

K(F, fi, )] < Cllfll ez | fill ez 1Bl oz, (38)
where
f(k — kl, T— Tl)fl (kl, Tl)]’l(k, T) deTl
Kb kkEeZ/]Rz ) (k= k1)® (IT] = (k) /2(|Ta| — (k) 2(|T = 7a| — p(k — ky))1 /2

The proof of (3.8) is analogous to the proof of (3.2). O
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The proof of the following estimates is analogous to the proof of Lemma 3.4.

Lemma 3.5. Let s > 0, then there exists C4 > 0 such that

8, (10, 9)] ™ (k1)
@ H EEG)

< Callyllxsrr2 | Dllyss1172,

2Ll

(i) H [k | {k)° [(0:P) (9xP1)] ™ (k,T) < Cyl|®|yss1ar2|| P | yssiase.

(Itl=¢(k)) 2L~
Proof. First, notice that
H 9x(19x )]~ (k, T)
IT | = ¢(k )> GLY
k(k)® flk—ki,t—n)g(ki, 1)dn

H (It] = ¢(k)) kng/R (k)3 (k = ka)s(|r| = (k1)) 2(|T — 1| — Pk — k1))1/2
=J(f,8),

211

where

flk,T) = (|l = p(0)) 2 (k)77 (k, T), gk, T) = (|| = p(k))/ 2 (k) kD (K, T).

In view of inequality (3.3) we will prove inequality in (i) with Z(f, g) instead of J(f,g)

where fk )
k 2, 2)8(ki, 11)dT
2(£,8) = |1 / .
(f.8) () kZejZ (1) 1/2 (03172 llaws
More exactly, we will study the expression
f k2, Tz (k1, 71) xr, AT ,
B H 2/ 72 (0)172 » J=L2
(02) 2L

with kp = k — k1, » = T — Ty; 0,01, 02 belonging to one of the cases (C;)-(Cs); and the sets R
Ri, R, are defined by

R={(k,k,t,11) € 7?2 x R? : lon| < |ow|},

Ri={(kki,7,m) € R:|1| <|o|} and Ry, ={(k ki, 7,71) €R : |o] < |o|}.

Using a duality argument we see that

kf( kz,Tz (k1,71 )h(k) xr,dTdT)
V(01)1/2(0)1/2 ’

Zy(f,g) = sup

Il 2= 1
Now, consider ¢, 01,07 as in the case (C;) and note that

kf (ky, )g (ky, 7)1 (k) | x g, dTdTy 7
[ZZ//|f 2, )8 011>1T/12)<0(2>)1|/7§R TTl]

kK

< lgli || T 10 [ \flha, ) P
1

keZ

Z//XlekfszdTl
1
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Then we will prove that the expression

) 1 Xz, 4T
2K /<0)2</<01><02>)dT

is bounded. In fact, if (k, k1,7, 71) € Ry,

|72+ [k + [ka| | < |7+ [aP + [ || < 7+ [P+ (K] (39)

Hence, using inequality (3.1) in Lemma 3.3, we have for 0 < r < 1/4 that

1 dTl
(T+ kP + k)2 / (T+ k1P + [ka ) (72 + [kal® + [ka )
< 1 / dn
T AT RPN TR (T [k P A [ )T (2 + [ A k2 )1

C
< .
=T P KP4 [ P |+ [P+ R}

So, for 0 < r < 1/4, we will prove that there exists C > 0 such that

dt
k2/ <(C, onRj.
;’ | (T4 [k + [K[)2A=D(T + [ka [P+ [k | + [ko P + [k )17 !

The importance of the choice of » will be noted later. We have the relation
T [P+ k| = [+ [k P+ e + 7 + [k + [k
= kP’ + |k = ka® = k1| = k2 — [Ka]. (3.10)
Using the triangle inequality in (3.10) and inequality (3.9) we obtain that
[1K[? + 1k] = [t * = [ka] = [kaf* = Jkeal| < 3|7+ [k[> + |K|]. (3.11)

Assume k1 > 0 and k — k1 > 0. Then
k|® + |k| — |k1® — |ki| — |k2|® + |k2| = 3kki(k — k1) > 0.
Thus, from (3.4) and (3.10) we see that

[k[>

T+ K+ k| > |kky(k —k1)| > =

and consequently, for 0 < r < 1/4, we have that

Z’k‘z/ dt

p (T4 [k[® + [K[)20=(T + ke [3 + k| + [k — Ky [ + [k = kg [ )1+
_ Z|k|2/ dt

7 <T+k3+k>2(1*r)(r+k?+k1+(k—k1)3+(k—k1)>1+r

1 dt
<C / |
- keZZ:* K24 R (T + K3 + k — 3k%ky + 3kKkG) 1+

Assume k; < 0 and k — k1 < 0. Then
K+ [k = [k1 > = [ka| = [k2f* + [Ka|| = 3kk1 (k — k1)].
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So, using (3.4) and (3.11) we see that

3 [k|?
Tk — k| = by (k= k)| = 5

Hence, for 0 < r < 1/4,

Z|k|2/ dt
p (T K[+ D2 (T + [k [+ | 4 [k = ka]® + [k — K [) 1+

1 dt
<cC / .
- kGZZ:* |k|2—4r (T — k3 + 3k2ky — 3kk% — k)17
Assume k1 > 0 and k — k1 < 0. Hence, if k > 0 then

k > 2 15k2 } 15 kz

1K+ K] = [kt = k| = Vel = [kl | = 20k ko] | (ko = )+ S +1

and if k < 0 then

3k> 15k2 1} 15k2

K+ K] = kP = ko] = kel = [kl | = 2lkt] [ (ke = )+ - +1] 2 5

So, from inequality (3.11) we conclude that

o kP =+ [kl = 2R
and
ZWZ/ dt
P (T+ |k|3 + |[Y2O= (T + [k P + k| + [k — kg2 4 [k — Ky [)1+7
at
<C / .
kEZZ:* k\2 ¥ JR {7+ 283 + 2k1 — k® + 3K2ky — BKK2 — k)1 o7

Assume ki < 0 and k — k1 > 0. Hence, if k > 0 then

3 3 3 _ 3k 15k2
P + Il = il = | = o = [zl | = 20kl [ (1 = 5F) o+ 25 1]

15k2
8
and if k < 0 then
k\2 15k% 15
3 _ 3 . 3 _ _ _ 2
[P+ k] = [ka P = r] = el = kol | = 20k = k[ (k1 = )+ = +1] > T4
Thus, using (3.11),

5
[+ P+ el > 3

kZ

and so

IR - o

g (T+ IkP + [k[)2A=(T 4 [k P 4 [k | + [k — k1|3 4 |k — kq )17

dt
<C / .
keZZ:* \2 4 JR (T — 2k3 — 2ky + k3 — 3k2ky + 3kk3 + k)17
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Therefore, for any & € {7 we have that

21 < Clsliys (L 1n0F X 1tk ) e)

keZ
< CIF By s 2

Next, choosing 1/2 < r < 3/4 we see that

|k| £ ( szfz (ki, T1)|xr,dT1
(o7) 1/2 (02)1/2

// |kf( k2,T2 )g(k1,7)|h(k, T) xr,dTdT1
AN {(01) 172 () 172 :

1Z5] <

212

=C sup
1
HhH@Lg

As before, for 1/2 < r < 3/4 it is possible to prove that there exists C > 0 such that

1 [k[?

<C, onR.
{7+ [k P + [ka ) ; (1 + [K[ + k| = [k = k1 P = [k = kg [y20-7) — ?

and, by using Lemma 3.3, we have that

dt C
< v
/ (T4 k[P + [K[)20= (12 + [ka|® + K2|) — (71 + [k + [K| — [k2[® — |ka[)2(1-7)

then the expression
XR
ey 2 [ e
is bounded. Therefore, for any h € éiL% we have that

XR2|k’2dT

72 < Cllaliys T f (2 ] 16wt P ) (5 [ o )0

< cufuﬁmugnwuhuw.

In a similar way we have the rest of the proof.

As a direct consequence of previous lemmas we have the following corollary.
Corollary 3.6. Let s > 0, then there exists Cs5 > 0 such that

(i) [|P0x(79xP)||zs < Cs ||yl xs12 | D[ ys11172,

(ii) [[ip(9x17) (9xP1)[wsr1 < Csl|@llysrnara || Palysinsz.

4 Well-posedness

25

In this section we establish the local well-posedness for the model (1.1) in the space U° x V°*.
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Theorem 4.1. Let s > 0, then for all (170, Do) € H*(T) x V¥TY(T) we have that there exist a time
T = T(||(10, Po) | s (1) xvs+1(T)) > 0 and a unique solution (17, P) of the Cauchy problem (1.1)-(1.2)
such that

n €C(0,T] : HY(T))NU; and & € C([0,T] : V() NVt

Moreover, for all 0 < T’ < T there exists a neighborhood V of (10, ®o) in H*(T) x VH(T) such
that the map data-solution is Lipschitz from V in the class

C([0,T'] = H*(T) x V*TH(T)) n (U5 x V3.
Proof. For (19, ®9) € H*(T) x V*T1(T) we consider the operator I' = (I';,T,) where

1

37, @) (1) = 9516010, @0) — 9(0) [ $1(6 = E)p(F) (:12:®), 5 2:)2) (¢

and
207, @) () = 952010, @) —~ 9(0) [ Sa(t ~ E)p(¢) (3u(10.®),  (0.0)7) (1)t
Let Zj the closed ball of radius M centered at the origin in U° x ystl)
Zu = {01, ®) € U x V¥ 1 (5, @)y < M},

We will show that the correspondence (17, ®) — I'(y,®P) maps Zy into itself and defines a
contraction if M is well chosen. In fact, using Lemma 2.4, Lemma 2.5, and Corollary 3.6 we
have that

1721, @) s < Call (010, @0) 5wy + Co (190 (70:) 122 + 119252 s )
< Cill (110, P0) sy v () + CoCs (1 x| @lysnase + @)
< Ca | (10, L) [| s (1) vs 1 (1) + C2C | (17, P I3 s

and also that
IT20, @)y < Call (10, @) sy vty + Ca (1902 (792 @) 122 + 19 (2:0) s )
< Cill (10, P0) 1 1 (1) xv=+1 () + C2Cs | (11, @) | Fs s
so that
IT (7, @) [[us s < Cull (0, o) | psyvsa ) + C2Cs [l (7, @) [ ey (4.1)
Choosing M = 2C1 || (170, Po) || s (1) x v=+1 () such that
Ky = 4C1GoCs | (170, Po) [l s (1) st (1) < 1,

we obtain that

177, @) s scvsr < Cull (0, Po)l| sy vy (1 + 4C1C2Cs | (170, o) [ s () sws1 1))
< 2G| (0, Po) | s (1) x vss1 () = M
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and that I' maps Zy; to itself. Now, let us prove that I is a contraction. In fact, if (1, ®),
(11, ®1) € Zpy, using Lemma 2.5 and Corollary 3.6 we have that

IT1(17, @) = T1 (71, P1) [l
< G (|192x (10 — 3. ®1) |z + [|9((0:®) = (3:91)) e )
< Co (194 (72(®@ = @1)) | + [3((17 — 11)2x®1) | 2
+ [0(® — ©1)ax(@ + D1) -1
< GGs <H77Hxs,1/2 |® = P1lyserar2 + [l = 71l xs12 ][ P1[lyss11r2
@ = @allyecrara|[ @+ @1 e
< CGsl[(n, @) = (71, P)luswvssr (107, P lusevstr + [ (72, P1) |
In a similar fashion we see that
IT2(17, @) — T2 (71, @1) [|ys s
< o (10 (70, — 119:®1) 12 + [ $((0:2)* — (2:01)2) | )
< CoGsl[(n, @) = (71, P [ussevssr (107, P usswssr 4 1 (71, @) [fus s -
Then, we conclude

IT (7, @) = T (7, 1) s sysnn
< GGl (7, @) = (71, @) s sevsta (17, @) lussevser + 1071, Po) lussevs1) - (42)
So, if (4) holds we obtain that

IT(n, @) — T (171, @1) lusyser < Kall(17, @) — (171, P1) [ s ey

and then I' is a contraction in Z;. Thus, the contraction mapping principle guarantees the
existence of a unique fixed point (1, ®) of I in Zy;, which is solution of the truncated integral
problem (1.4). Now, if (71, ®1) is a restriction of (7, ®) on [0, T], then using Lemma 2.6 we
have that

us ><Vs+1) .

m € C([0,T] : H¥(T))NUs, & €C([0,T]: V(T))nvstt
and (771, ®1) is a solution of the integral problem (1.3) on [0, T].
By the fixed point argument used we have the uniqueness of the solution of the truncated

integral problem (1.4) in the set Z)s. We will use an argument as in [1] to obtain the uniqueness
of the integral problem (1.3) in the space U5 x Vitl.

Let T > 0 and (17,®) € U° x V**! be the solution of the truncated integral problem
(1.4) obtained above and (71, ®;) € U5 x fol a solution of the integral problem (1.3) with
the same initial data (179, ®9) € H*(T) x V**1(T). Fix an extension (775, ®,) € U® x V! of
(111, ®1), then, for some T* < T < 1 to be fixed later, we have that

26) = 910010, 0) — (1) [ (6= )9 (1 120:02), 5 (0:1)?) (1)

and

(1) = 9(0)S2(8) (10, @0) — (1) [ 20t~ )p(¢) (3u120:2), 3 (0:01)2) (1),

0
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forall t € [0, T*].

Now, by definition of U5 x VTS;H we have that for any € > 0, there exists (w, 9) € U® x Vs+1
such that for all t € [0, T*],

w(t) =n(t) —m(t), 9(t) = S(t) — Do(t)

and
lwllus < ll7 = 12llug, +e 1By <[ = Daff s +e. (4.3)

We define

wi(t) = —(t) /0 CSi(t— V() (ax(naxﬁ) + 04 (WD D), %axﬂax(cp + q>2)) (t)dt',

0 (t) = —y(t) /Ot Sa(t—t)yp(t) <8x(178x19) + 0y (wd, D7), %axﬁax(d) + <I>2)) (t)dt'.

Then we have that w1 (t) = 17(t) — 12(t) and 94 (f) = P(t) — (¢t) for all t € [0, T*]. Thus, from
Lemma 2.5 and Corollary 3.6 we obtain that

17 =2l < llwrllus

< CaCsll (@, B)lugevesr (1101, @) sscysia + 1112, @) sy
S 2C2C5NH (CU, 19) HUSXVS-H (44)

where we assume that

max{|| (17, @) |lusxvs1, |72 P2)|[gssevssa} < N.

In a similar fashion we have that

[ = @2l ysn < [1llysnasz < CoColl(, ) ugseress (1107 @)l sevssr + 1171, @) gy )

S 2C2C5NH((U, 19)Hus><vs+1. (45)
If 4C,CsN < 1/2, then we obtain, using (4.3), (4.4) and (4.5), that
117 = m2lluy, + 1D = P2zt < 4CENI[(@, ) [[useysen

1
< 5 (I = nalluy. + e+ 110 — 2|

V;:rl +€).
So, we see that
7 — 772HUST* + [|® - q)ZHV_}"_:rl < 2e.

Therefore 7 = 1, and ® = P, on [0, T*]. Now, since the argument does not depend on the
initial data, we can iterate this process a finite number of times to extend the uniqueness result
in the whole existence interval [0, T].

Combining an identical argument to the one used in the existence proof with Lemma 2.6,
one can easily show that the map data-solution is locally Lipschitz. O
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5 Internal controllability

5.1 Spectral analysis

In this section we perform the spectral analysis for the operator

M= (Lol ),

defined in the space H*(T) x V**1(T). The result in this analysis will be the basis to transfer
the internal controllability of the associated linear system to the nonlinear system. Let us

define .
et 0
Eip = ( 0 ) , Exp = (ieikx> ,

for k € Z* = Z\ {0}. If we set

B 0 (14 k?)k? B 0 (1+Kk)k .
Mk_(—(1+k2) 0 ) Z’<_<—(1+k2)k 0 > kez

then we see directly that
Mi(Ex, Exx) = (Erp, B )Xk, k€ Z™.
Moreover, we have that the eigenvalues for X are
My =iy (1+K2)2k2, Ay = —iy/(1+k>)2k2, keZ,

with corresponding eigenvectors

1 1
él,k = ( )\1,k ) 7 €~2,k - ( )\Z,k ) 7 k 6 Z*.
A+kD)k A+k2k
Thus, we have that

M(E1x, Ex i) (€1, €2k) = (Evk Ex ) 2k (Brk, E2)
= (A k(Ev, Exk)@1ps Aok (Evk, Exp)eag), k € Z7,

meaning that A;; and A, are the eigenvalues for the operator M with corresponding eigen-
vectors
Nik = (El,kr EZ,k)éj,k/ ] =12, ke Z,

- 1 N 0 1 0
AMo=A20=0, &= <0) , b= <1> , Eip= <O> , Exp= (1> .

On the other hand, we see that

lim 7)\1’](
k—+oo (1 4+ k2)k

where

. . vy .
=i, lim -2 =
Yot kT T
Then
(11 . o
]}g?o(e],k, b)) = (j:i $i> and kh_r)glo det(é)x,62k) = F2i # 0.
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In other words, {v1,v20, V11, V2x : k € Z*} forms a Riesz basis for H*(T) x V*}(T) with
Vik = 717j'k
P ks v

Moreover, we also have for j = 1,2 that Vig = Bj,keikx with
0< By <|[bjill <By ke€Z s>0. (5.1)
From the above discussion we have the following result.

Theorem 5.1. Let Ay and ¢jx, j = 1,2 be given by

A = isign(k)y/(1+Kk2)%k?2, keZ,

o V1,ks k:0,1,2,3,... _ V1,—ks k:1,2,3,...
Pri = Vg, k=-1,-2,-3,..., P2k = vy, k=0,-1,-2,-3,...

then we have that

(i) The spectrum of the operator M is (M) = {Ax : k € Z}, in which each Ay is a double
eigenvalue with eigenvectors ¢y i and ¢ .

(ii) The set {¢1x, ¢ox : k € Z} forms an orthonormal basis for the space H*(T) x VS*1(T) such
that any (17, ®) € H3(T) x VSTY(T) has the following Fourier expansion

(17/ (D) = Z (al,kcpl,k + aZ,k‘PZ,k) s [Xj,k = <(17/ cD)l (Pj,k>Q/ ] = 1/ 2/ k S Z/
kez

where Q = L?(T) x L2(T).

5.2 Linear controllability

In this section we consider the internal control problem for the linear system

2D —0td = fi,
Nt + dy x2 fl (5'2)
q)f+77_ax77 :f2/
with the initial condition
n(x,0) =no(x), P(x,0) = Po(x). (5.3)

Theorem 5.2. Suppose that p = (p1,p2) is a non-zero smooth function defined on T. Let s > 0 and
T > 0, then for any (170, ®o), (n7, ®1) € H*(T) x VSTL(T) there exists a function H = (hy,hy) €
L? (0, T; HS(T) x V*Y(T)) such that if

F=(fi(x,t), f2(x, 1)) = (p1h1(x, 1), p2(x)h2(x, 1))
we have that the problem (5.2)—(5.3) has a unique solution
(n,@) € C ([0,T] : H(T) x V**'(T))

satisfying
n(x,T) =nr(x), @(x,T) = Pr(x).

Moreover, there exists C = C(T) > 0 such that

HHHLZ(O,T;Hs(T)xvs+1(1r)) <C (H(’?O/ CDO)HHS(T)XVS“(T) + |y, 1) HS(T)xvsH(T)) -
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Proof. For sake of simplicity in the proof we will consider p, = ®y = &7 = 0. For any function
h = h(x,t), we define the control operator L by

(Lh)(x, t) = p1(x)h(x, ).
If fi = Lh and f, = 0, then we rewrite the problem (5.2)—(5.3) as the following first order

linear
Ty _ Ui
(CI>>t_M<CD> + Bh, (5.4)

7(x,0) =no(x), D(x,0)=0 (5.5)

- (3).

In this case for i € L?(0, T; H*(T)), the solution of the linear problem (5.4)—(5.5) is given by

with the initial condition

where

t
(1), (1) = (2) (10,0) + [ S(t =7)Bh(x)d.
Now, using the spectral analysis on the operator M we have that

(1), (1)) = ) e (arurn + a2n2,n)

nez

+ Z/ M (B (D) p1n + Bon(T)P2.n) AT (5.6)

nez

where &, and B;,, for j = 1,2, n € Z, are given by
= ((10,P0), Pjn) s Bin(t) = (Bh Pjn) - (5.7)
We verify easily that L is a self-adjoint operator in L?(T) such that
(Bh, (11, ®)) g = ((Lh,0), (1, ®)) g = (L) 21y = (I Lip) 2wy s

then we have that
_ (1) ‘ _ ) (1)
= (093 ) gy Bin(®) = (R0 LLD)

where ¢(") denoting the m component of ¢.
The internal control problem consists of finding a h € L2(0, T; H*(T)) such that

n(x,T)=nr(x), ®(x,T)=0.

Then, let 779 and 5 be having the following decompositions

=Y (andly +a2adsy), 10 =Y (v109lh + 120950 )

nez nez

(1)’

where v;, = (17, (p](.;) ) 12(1)" But, we know that

(7(x,T), @(x, T)) = ), " (arufrn + azn2n)

nez

+ Z / ﬁ’ln( )471,;1 +ﬁ2,n(T)¢2,n) T

nez
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So, in each node, we have for j = 1,2 and n € Z that

oc]n+/ —MTg T)dT = Yjne AT,

Now, from [7] we have that P = {eM' : k € Z} is a Riesz basis for its closed span
Pr = gen P generated in L?(0, T), with a unique dual Riesz basis given by £ = {g : k € Z}
satisfying that

T _
/ g(H)eidt =6, LkezZ.
0

We assume that fi has the form f; = Lh with h given by the expansion

= Y ai(®) (eriL(@f) + el (9))) (538)

leZ

where the coefficients c;; and c; are to be determined so that, among other things, the series
(5.8) is appropriately convergent. In this case, for j = 1,2 and n € Z we have that

/OTeMﬁj,m)dr:/oTe M<< L) g 40
(L ) / (é / e Mdr(cuL<q>1,>+czzL<¢<>>))efkydy
(L 4>]n ) / (e (@f) + canL(pll)) )e™ dy

<L L) gy o2 (LD LOE))

Cln

(1)’

where (L(gb](’ln) ), = ( L((p](’ln))) (k). Now, using the computations above, for n € Z, we have that
c1,» and ¢, must satisfy the linear system

<011 a21> (Cl,n> _ (—061,11 + 71,n€)‘”T>

aip 4 Con —pp + ’Y2,n€7A"T ’

where a;; = (L ((p] . ‘Pl " > r2()- Using the fact that L(cp( ) ) and L((,b( )) are linear indepen-
dent, we obtain that

B =det (110 21) — LD o IS Bcry — LD, L8 o 0

12 ax
Moreover, using that 1/]-(;1) = bﬁl)ei”x and the estimate (5.1), we have that
1 1
(@) 22y ~ [0 > C > 0. (5.9)

In addition (see the estimations by B. Zhang for the Boussinesq equation in [20]), it is not hard
to prove that

(LGN L@S)) =0, n— oo
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Hence there exists € > 0 such that |A,| > €. So, we conclude that ¢; , and ¢y, are uniquely
determine by

AT AT
—01y + Yiue " an a1 —&1,n + Y1e€ "
AT AT
—0oy + Youe " axm ap —0ou + Yo "
Cly = , Cop = . (5.10)
Ay Ay

It remains to show that i defined by (5.8)—(5.10) belongs to the space L?(0, T; H*(T)) pro-
vided that 5o, yr € H*(T). To this end, let us write

=Y aue™, g = (L(q?]%)))k, LkeZ, j=1,2
kez

Thus
h(x,t) = hi(x,t) + ha(x,t),

x,t) = Z Z Cj,l”j,lkﬂl(t)eikx, j=1,2.

leZ ke

where

From this, we conclude that

Hh'Hiz (0,T;Hs(T))

_/ Y (L kD2 (5, 0)), [Pt = / ¥ (14 k2| X ajuepuan(t)] e
keZ keZ leZ
=), (L+[k)* / ‘ Z ajkcjiqi (t ‘ dt <C Y (T+ kN> Y lejal?lajnl®
keZ kez 1eZ
=C) lel? Yy 1+ |k’)25|ﬂj,lk\2,
1eZ keZ

where the constant C > 0 comes from the Riesz basis property of £ in Pr. Now, using (5.1), if
01 = Lonez pre™ we have that there exists C > 0 such that

= (0 ) = 00,
‘m;me< i e’mx ik >L2 ‘ — ‘mgzpm< i ellxezmx eikx>L2(T) ‘
<C’/ x(k=1) Zp1e””xdx‘<C}pk ,‘
meZ

Then we see that

Yo+ kD)=l < € 3 (1 + kD@ loxy > < C ) (1 + [k +1)¥|pp

kez kez kez

< CL+ D Yo+ KD Iorl? = L+ 1ID* loal )
kezZ

On the other hand, we can to see that

le11|* < C(laza|* + |a21 ) (Jang [* + g |* + [v > + [724]7)
_ (1) (1) 2 2 2 2 2
= ISty + [ (L)) L@ ) o [ ) (sl 4 laas P+ rag? + rasl?)
< C (Jag > + ’042,1|2 + [+ 1r2al?) -
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Similarly,

2
1 1
le2al? < CIL@I ) + | (LD LOED) oy, [) % (@al o+ a4 111 + 2, )
< C (Jag)* + |f’42,lf'2 + vl + r2l?) -

From this, we conclude that

Il E2(0, 20y < Cllon s r (Z T+ 1D (Jal? + lagg|? + |y =+l ))
z

< Clipa Iy (Wmoll3scry + ey ) -

Now we consider p; = 79 = 5t = 0. Since the proof is similar to the previous case, we
only present some ideas. The solution of the linear problem

<g))t M (g) + B, (5(x,0),®(x,0)) = (0, Bo(x))

with

(Bh)(x,t)

QU&%6>:(mWiwﬁ>

is given by

(n(t),® ZeA” (01,0P1,0 + 2,0P20) + Z/ An(t=7) (B1,n(T)p10n + Bon(T)P2,n) dT
nez

nez

where &;, and B, for j = 1,2, n € Z are given by

i = (P09 oy Bin(®) = (hCD, LN,

Then, using the decompositions

2(T)

®= Y (w9l +2at), Or= Y (v1u900 + 720980 ),
nez

nez

where 7;,, = (P, ¢;§1)>L2(T), then we have for j = 1,2 and n € Z that

T
Xjn+ /0 e_)‘"Tﬁj,n(T) dt = 'y]-,ne_)‘”T.

Now, we take the control / to have the form

ZQZ <CllL 4’11>+C21L(¢21>)

leZ
with

T _
/ g dt =, LkezZ.
0
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Then, for j = 1,2 and n € Z we have that

/OT Mg (T)dr =Y (L(l)](i)))/()TeAnT</Eh(y’T)eikydy> at

kez

= ¥ (L4), [ (el @) + conLigf)) e ay

keZ

= (LOED L@,y 2 (LOEDLOED) L o -

Thus, the coefficients c; , and ¢y, are uniquely determine by

‘ —1,, + ’Yl,nefA"T a a1 —&1 + ’Yl,nefA"T
—an + Yaue M ap app  —ao, + yaue Mt
Cln = A ;o Con = A ’
n n
where o o
_ 2 2
an = (L@ L)) Lo,
and
2 2 2 2
An = IL@ED 2 IL@E) oy — LGN, LGN 2

Finally, we write
2 ,
p2 =) 0k we™, L(¢ ]1 =) ”Jlke Y A = (L(<P]§,z)))kr LkeZ,j=12.
kezZ kez

Then

=Y N cpanai(t)e® + Y Y copan e (£)e™.

leZ keZ leZ keZ

Hence, we see that

2 2
oy = 1o X0 RO+ K[| 3 ayucyua o)
j=lkez leZ
2
<C Z Y el Yo KIP(1 + [K])*Sa ]
j=11eZ keZ

The fact |aj ;| < C|p7_,| implies

2 2
Y KPP+ kD lajul> < C Y Ik + 120+ k1) < CHP A+ 1) o2l -
keZ keZ

Then, using
lcial* < C (Jaag® + laog [* + [v1al* + [72417) s

we conclude that

1 20,0101y < Clloallein (Z P+ 1) (o P+ lag [ + [y ? + |’h,1|2)>
lez

< CllpalZry (1900wss gy + 107 13scr) ) - 0
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Remark 5.3. If T > 0 and (170, ®o), (7, P1) € H¥(T) x VST(T) with s > 0, the Theorem 5.2
implies that there is F such that

T
S(T) (110, o) + /0 S(T — 7)F(7) dt = (7, ®7).
Moreover, we have that there exists C = C(T) > 0 such that

IE (220,755 w1y < € (100, Po) [ s swsr + 177, @1 [ 1) -

5.3 Nonlinear controllability

Now we turn to the nonlinear system

1t + 020 — 91D + 0y (70 @) = f1,
{ @ity - B+ 5 @0 = fo o
with the initial condition
7(x,0) =no(x), D(x,0) = Dy(x), (5.12)

Theorem 5.4. Let s > 0 and T > 0 be given, then there exists 6 > 0 such that for any (19, Do),
(7, 1) € H*(T) x VSH1(T) satisfying

| (70, Po) | s (mysvssremy, 11, P s (my s (1) < 65

there exists a control function F = (f1,f2) € LY(0,T; H(T) x V¥TY(T)) such that the solution
(n,®) € C([0,T] : H(T) x VS*Y(T)) N U5 x Vi of the problem (5.11)~(5.12) satisfies

n(x,T) =nr(x), @(x,T) = r(x).
Proof. We rewrite the Cauchy problem (5.11)—(5.12) in its equivalent form:
t
(7(£), @(8)) = S(#) (170, o) +/O S(t —t)F(t") at’
; 1 (5.13)
- / S(t = 1) (3:(19<®), 5 (2:®)?) (1)t
0 2

Now, for any (17, ®) = (17(x, t), ®(x,t)) we define

T / 1 2 / /
w((n,@),7) = [ S(T—1) (0. (12:0), 5 (0:0)° ) (#)
According to Theorem 5.2, for given (10, o), (71, 1) € H¥(T) x VSTL(T), if one chooses
F=Foo)

such that .
S(T) (0, 90) + [ S(T = )Fy (¥t = (g, 1) +0((,9), T)
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in the equation (5.13), then
016, @(6)) = 5(6) (10, @) + [ S(¢— ')Fqy (1)
- /0 "S- 1) (a:(r2.), %(axcp)z) (¥, (5.14)
with (7(0),®(0)) = (10, Po) and

(1), @(T)) = S(T) (0, @) + [ S(T )y (1)

—/OTS(T—t’)<8 (70 cp),%(a q>) )(#)ar
w(

= (n1,@1) +w((n,®),T) (7,®),T) = (1, Pr).

This suggests that we consider the map
t
(1, @) = S(5)(10,®0) + [ S(t =)0 ()t

~ st - ) (a:r.®), 007 (e

If the map I is shown to be a contraction in an appropriate space, then its fixed point (7, )
is a solution of (5.11)-(5.12) and satisfies (7(x,T), ®(x,T)) = (y7(x), Pr(x)). We show this is
the case in the space U® x Vst

As in the case of the KdV equation in [18], we modify the map I' = (I';,T2) as follow:

Ty (n, @) (t) = 1(£)S1(t) (170, Do) + 1 (t) /Ot S1(t — )2 (t') Fy o) (1) dt’
—n(0) [ St = () (2: (72:9), 3 (0,97 ) ()i,

and

207, 9) (1) = 41(652(6) (o, o) + 911 [ Sa(t = )t i (1)
—a(6) [ 52t 9t (0 (1), 5 2: )7 ) ()i,

where 1 is a smooth function with its support inside the interval (T —1, T+ 1) and ¢4 () =
for t € [T, T], and ¢, is a nonnegative smooth function with suppy, C (=T —1,T +1)
satisfying 1, (t) = 1 for any f in the support of .

As in Theorem 4.1, let Zy be the closed ball of radius M centered at the origin in U® x Vsl
Using Remark 5.3 and slight modifications of results in Lemmas 2.2-2.6 we have that

(7, ®) T lees = || [ ST =) (3a0), 5 @e)? ) )|
< sup Hllh /t (£ = t)ga(t') (2 (ﬂaxq’)r% (0:0) ) (£) Hoxpst
< c|lite) [ st~ e (22 (r2), 5 @0 )|

< € (1103 (3x®) Iz + I 2x®)* w1
< € (Ilylherrz@llysnae + [@[Fcrsa)
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and also that

17207, @)l < ST) (100 D0 sscry v my + Wiy vy )
+ CaCs (Il a2 [ @y + @132
< C(T) (00 Do) 5 xyvorcmy + 07 @) vy + 101, @) o)
and

IT2(17, @) [ ys+1 < C(T) (1170, Po) | s (my w1 ¢y + 1077, @) sy vy + 1101, @) s st ) -
So that

T (7, @) [usvesr < CAT) (1| G0, P) ars(myxvesamy + 1077, @) ey svesa y + 1107 @) sy
Choosing § > 0 and

M = 2(T) ( (70, o))

Hs(jr)xys+1 + H<77T, ¢T)HH€ ><Vs+1( ))

in such a way that
2C3(TYM <1, 2C(T)6 < M,

then we conclude for any (17, ®) € Zy that
701 @) v < T (1107090} s rym) + 11017, 90 sy ) (1 4+ 4C%(T) M)

< 20(T) (11070, @o) 52y vy + 1077, @1 |y o))
<2C(T)6 < M

provided that || (170, Po) || s (1) xv=r1 (1) + [ (117, PT) || (1) 0 ys+1(my < 9. Now, using the same of
computations, we have that F isa contractlon on Zyy, and so, the Banach Fixed Point Theorem
guaranties the existence fixed point (7, ®) of I' in Zs. This fixed point (17, P) is a unique
solution of the integral equation

016, ®(5) = (DS (0, B0) + 916 [ S(t = )l Foy (1)
— () /0 'St — ) (t) <ax(178x<b),% (0:9)% ) (1)t
In particular for t € [0, T],
(16, @(6)) = ()10, ®0) + [ St — ) (¢ Fy ()
t 2 ! !
= [ st= 0 (3. (:), 5 @0 ) (1)
That is to say, (17, ®) € C ([0, T] : H¥(T) x Vs"1(T)) solves
Nt + 03® — 93D + 9y (79xP) = f1,
{ D + 17— Iy + % (0:D)* = fo,

with the conditions

1(x,0) =no(x), @(x,0) =Po(x), 7(x,T)=rnr(x), @xT)=>r(x) O
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