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Abstract

In this paper we study the asymptotic behaviour of so-

lutions of delay differential equations when the right

hand side of equation can be estimated by the maximum

function using a new method based on the Liapunov-

Razumikhin principle, differential inequalities and an in-

variance principle. This method can be applicable for

nonautonomous equations without local Lipschitz prop-

erty.
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1. Introduction

We investigate the asymptotic behaviour of solutions of

delay differential equations when the right hand side of

equation can be estimated by the maximum function.

The results in this study only concern autonomous or

periodic equations or they use linear maximum estimate.

For using linear maximum estimate it is necessary that

the right hand side of equation has the local Lipschitz

property [1,2,3,7].

In the present paper we develop a new method appli-

cable for nonautonomous equations without local Lips-

chitz property. The method is based on the Liapunov-

Razumikhin principle, differential inequalities and an in-

variance principle.

2. Preliminaries

Let r > 0. We define

Cr = {φ : [−r, 0] → R, φ is continuous},

M(φ) = max{φ(s) : s ∈ [−r, 0]},

m(φ) = min{φ(s) : s ∈ [−r, 0]},

‖φ‖ = M(|φ|).

For α ∈ R, we introduce

T (α) = {φ ∈ Cr : φ(0) = α, φ(s) < α, s ∈ [−r, 0)},

t(α) = {φ ∈ Cr : φ(0) = α, φ(s) > α, s ∈ [−r, 0)}.
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For α ∈ R and ǫ1, ǫ2 > 0, we define

S(α, ǫ1, ǫ2) = {φ ∈ Cr : α−ǫ1 ≤ φ(0) ≤ α, α ≤ M(φ) < α+ǫ2},

s(α, ǫ1, ǫ2) = {φ ∈ Cr : α ≤ φ(0) ≤ α+ǫ1, α−ǫ2 < m(φ) ≤ α}.

For α ∈ R, let H(α) be the set of continuous functions

h : R × R → R such that h(α, α) = 0, and the solutions

of the initial value problem u′(t) = h(u(t), α), u(0) = α

satisfy the left side uniqueness condition. That is, if u :

(t1, t2) → R, t1 < 0 < t2, u(0) = α, u is differentiable

and satisfies equation u′(t) = h(u(t), α) for t ∈ (t1, t2),

then u(t) ≡ α for all t ∈ (t1, 0].

Consider the equation

(1) x′(t) = f(t, xt),

where f : [0,∞) × Cr → R is continuous.

For A > 0, x : [−r, A) → R is a solution of Eq. (1), if x is

continuous, it is differentiable on (0, A) and satisfies Eq.

(1) on (0, A).

It is known that if φ ∈ Cr, then there are A > 0 and

x : [−r, A) → R such that x is a solution of Eq. (1) and

x(s) = φ(s), s ∈ [−r, 0].

We denote by X(φ) the set of solutions x of Eq.(1) exist-

ing on [−r,∞) with x0 = φ.

Let X = ∪φ∈Cr
X(φ).
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Claim 1. If f(t, φ) ≤ 0 for all t ≥ 0, α ∈ R, φ ∈ T (α),

and x ∈ X(φ), then M(xt) is monotone nonincreasing.

[4]

Claim 2. If f(t, φ) ≥ 0 for all t ≥ 0, α ∈ R, φ ∈ t(α),

and x ∈ X(φ), then m(xt) is monotone nondecreasing.

[4]

Theorem 1. Assume that for every α ∈ R there are

ǫ1, ǫ2 > 0 and h ∈ H(α) such that

if φ ∈ S(α, ǫ1, ǫ2) and t ≥ 0, then f(t, φ) ≤

h(φ(0), M(φ)).

Then for all x ∈ X either limt→∞ x(t) exists in R or

limt→∞ x(t) = −∞.

Theorem 2. If the assumption of Theorem 1 is true

and for every φ ∈ t(α), t ≥ 0, f(t, φ) ≥ 0, then for every

x ∈ X, limt→∞ x(t) exists in R.

Theorem 3. Assume that for every α ∈ R there are

ǫ1, ǫ2 > 0 and h ∈ H(α) such that

if φ ∈ s(α, ǫ1, ǫ2) and t ≥ 0, then f(t, φ) ≥ h(φ(0), m(φ)).

Then for all x ∈ X either limt→∞ x(t) exists in R or

limt→∞ x(t) = ∞.

Theorem 4. If the assumption of Theorem 3 is true

and for every φ ∈ T (α), t ≥ 0, f(t, φ) ≤ 0, then for every

x ∈ X, limt→∞ x(t) exists in R.

Theorem 5. Consider the following assumptions:

i) For every α ∈ R, t ≥ 0,

φ ∈ T (α) implies f(t, φ) ≤ 0,

φ ∈ t(α) implies f(t, φ) ≥ 0.
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ii) For every α, β ∈ R, α < β there are ǫ1, ǫ2 > 0 and h ∈

H(α), g ∈ H(β) such that either

φ ∈ s(α, ǫ1, ǫ2), t ≥ 0 implies f(t, φ) ≥ h(φ(0), m(φ)) or

φ ∈ S(β, ǫ1, ǫ2), t ≥ 0 implies f(t, φ) ≤ g(φ(0), M(φ)).

Then for every x ∈ X, limt→∞ x(t) exists in R.

3. The proof of Theorem 1.

If limt→∞ M(xt) = −∞, then limt→∞ x(t) = −∞. Sup-

pose that limt→∞ M(xt) = α ∈ R. Since T (α) ⊂

S(α, ǫ1, ǫ2) for every α ∈ R, ǫ1, ǫ2 > 0, and h(α, α) = 0,

Claim 1 implies that M(xt) is monotone nonincreasing,

so M(xt) ≥ α for all t ∈ [0,∞). By way of contra-

diction, assume that limt→∞ x(t) does not exist. Then

there is β < α such that lim inf x(t) = β. For this α let

h ∈ H(α) and choose ǫ1, ǫ2 > 0 such that β < α− ǫ1 and

f(t, φ) ≤ h(φ(0), M(φ)) for all t ≥ 0, φ ∈ S(α, ǫ1, ǫ2).

Then there is T > 0 such that M(xt) < α + ǫ2 for all

t ≥ T. There is a sequence (tn) such that tn → ∞ and

x(tn) = α − ǫ1. As M(xtn
) ≥ α, there are t′n, t′′n such

that tn ≤ t′n < t′′n ≤ tn + r, x(t′n) = α − ǫ1, α − ǫ1 <

x(t) < α, t ∈ (t′n, t′′n), and x(t′′n) = α. Then, for all

t ∈ (t′n, t′′n), we have x′(t) = f(t, xt) ≤ h(x(t), M(xt)) ≤

max{h(x, y) : α− ǫ1 ≤ x ≤ α + ǫ2, α ≤ y ≤ α + ǫ2}, that

is x′(t) is bounded on (t′n, t′′n). So there is ǫ > 0 such that

ǫ ≤ t′′n−t′n ≤ r. We can suppose that there is r∗ such that

t′′n − t′n → r∗ and ǫ ≤ r∗ ≤ r. Consider for all n ∈ N the

initial value problem: u′

n(s) = h(un(s), M(xtn+s)), s ≥

0, un(0) = α − ǫ1
2 . For all n ∈ N, there are An > 0

and un : [0, An) → R such that un is a solution of
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this initial value problem. We have x(t′n) < un(0) and

x′(t′n + s) ≤ h(x(t′n + s), M(xt′
n
+s)), s ≥ 0.

Using Theorem 1.2.1 and Remark 1.2.1 of [5] or Lemma

1.2 of [2], it follows x(t′n + s) < un(s), s ∈ [0, An).

Therefore, for all n ∈ N, there is bn such that ǫ <

bn ≤ r∗, un(bn) = α, and un(s) < α for all s ∈ [0, bn).

Since (un(s)) is equicontinuous and uniformly bounded

on [0, r∗], we can suppose that (un(s)) converges uni-

formly to u(s) as n → ∞, and bn → b ∈ [0, r∗]. Fol-

lowing the method of limit equation of nonautonomous

differential equation presented in Appendix A of [6], we

have un(s) = α − ǫ1
2 +

∫ s

0
h(un(z), M(xtn+z))dz, for ev-

ery 0 ≤ s ≤ r∗. Hence, letting n → ∞, we get, u(s) =

α− ǫ1
2 +

∫ s

0
h(u(z), α)dz, for every 0 ≤ s ≤ r∗. Obviously

that u(s) satisfies the properties u(t) < α, 0 ≤ t < b, and

u(b) = α. Then the function v(t) = u(b + t), t ≤ 0 con-

tradicts h ∈ H(α). The proof of Theorem 1 is complete.

The proofs of Theorems 2-5 can be made analogously.

4. Application

Consider the equation

x′(t) = −l(x(t)) + a(t)l(x(t − r1(t)) + b(t)l(x(t − r2(t))),

where l : R → R is a continuous and nondecreasing func-

tion, a, b, r1, r2 : [0,∞) → R are continuous such that

a(t), b(t) ≥ 0, a(t) + b(t) = 1, 0 ≤ r1(t), r2(t) ≤ r for

some r ∈ (0,∞) and for all t ∈ [0,∞). Suppose that
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for every α, γ ∈ R such that γ < α, the improper in-

tegral
∫ α

γ
dx

l(α)−l(x) does not exist. This condition im-

plies that left hand side uniqueness is true for the initial

value problem u′(t) = −l(u(t)) + l(α), u(0) = α, that

is h(x, y) := −l(x) + l(y) ∈ H(α), for every α ∈ R.

The proof can be done in the same way as that of

Osgood’s uniqueness theorem [8]. If φ ∈ T (α), then

φ(0) = α and φ(s) < α, for every s ∈ [−r, 0], therefore

f(t, φ) = −l(φ(0))+a(t)l(φ(−r1(t)))+b(t)l(φ(−r2(t))) ≤

−l(α) + a(t)l(α) + b(t)l(α) = 0. Similarly, if φ ∈ t(α),

then φ(0) = α and φ(s) > α, for every s ∈ [−r, 0], there-

fore f(t, φ) ≥ −l(α) + a(t)l(α) + b(t)l(α) = 0. Choosing

α, β ∈ R, α < β, ǫ1, ǫ2 > 0 and φ ∈ s(α, ǫ1, ǫ2), then

α = φ(0) ≥ m(φ), so f(t, φ) ≥ −l(φ(0)) + a(t)l(m(φ)) +

b(t)l(m(φ)) = −l(φ(0)) + l(m(φ)) = h(φ(0), m(φ)) ∈

H(α). Choosing α, β ∈ R, α < β, ǫ1, ǫ2 > 0 and

φ ∈ S(β, ǫ1, ǫ2), then M(φ) ≥ φ(0) = β, therefore

f(t, φ) ≤ −l(φ(0)) + l(M(φ)) = h(φ(0), M(φ)) ∈ H(β).

Then, by Theorem 5 it follows that limt→∞ x(t) exists in

R, where x(t) is an arbitrary solution of the equation.

Particularly, if l(x) has the form l(x) = −(x− k
e
) log(k

e
−

x) + k
e
, if k−1

e
< x < k

e
, k ∈ Z and l(k

e
) = k

e
, then l(x)

does not satisfy the local Lipschitz property at x = k
e
, but

∫ α

γ
dx

l(α)−l(x) does not exist, if α, γ ∈ R such that γ < α.

Since l′(x) is continuous on R\{k
e

: k ∈ Z}, it is sufficient

to calculate the integral I :=
∫ k

e

γ
ds

l( k

e
)−l(s)

, where k−1
e

<

γ < k
e
. As

∫ k

e

γ
ds

l( k

e
)−l(s)

= limγ1→
k

e
−

∫ γ1

γ
ds

(s− k

e
) log( k

e
−s)

=
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limγ1→
k

e
−

log(− log(k
e
− γ1)) − log(− log(k

e
− γ)) = ∞, I

does not exist.
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