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Abstract

In this paper we investigate the numerical solution of non-linear equa-
tions in an abstract (Banach space) setting. The main resultis that the con-
vergence can be guaranteed by two, directly checkable conditions (namely,
by the consistency and the stability). We show that these conditions to-
gether are a sufficient, but not necessary condition for the convergence. Our
theoretical results are demonstrated on the numerical solution of a Cauchy
problem for ordinary differential equations by means of theexplicit Euler
method.
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1 Introduction

Many phenomena in nature can be described by mathematical models which con-
sist of functions of a certain number of independent variables and parameters. In
particular, these models often consist of equations, usually containing a large va-
riety of derivatives with respect to the variables. Typically, we are not able to give
the solution of the mathematical model in a closed (analytical) form, we construct
some numerical and computer models that are useful for practical purposes. The
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ever-increasing advances in computer technology has enabled us to apply numer-
ical methods to simulate plenty of physical and mechanical phenomena in science
and engineering. As a result, numerical methods do not usually give the exact so-
lution to the given problem, they can only provide approximations, getting closer
and closer to the solution with each computational step. Numerical methods are
generally useful only when they are implemented on computerusing a computer
programming language. Using a computer, it is possible to gain quantitative (and
also qualitative) information with detailed and realisticmathematical models and
numerical methods for a multitude of phenomena and processes in physics and
technology. The application of computers and numerical methods has become
ubiquitous. Computations are often cheaper than experiments; experiments can
be expensive, dangerous or downright impossible. Real-life experiments can of-
ten be performed on a small scale only, and that makes their results less reliable.

The above modelling process of real-life phenomena can be illustrated as fol-
lows:

real-life problem
+ physical model

⇒ mathematical
model

⇒ numerical model

This means that the complete modelling process consists of three steps. In this
paper we will analyze the step when we transform the mathematical (usually con-
tinuous) model into numerical (usually discrete) models. Our aim is to guarantee
that this step does not cause any significant loss of the information.

The discrete model usually yields a sequence of (discrete) tasks. During the
construction of the numerical models the basic requirements are the following.

• Each discrete problem in the numerical model is a well-posed problem.

• In the numerical model we can efficiently compute the numerical solution.

• The sequence of the numerical solutions is convergent.

• The limit of this sequence is the solution of the original problem.

The theory is more developed for linear problems, see [LR56,PS84a, PS84b,
PS85], while the nonlinear theory is less elaborated. The main purpose of this
work is to investigate the nonlinear theory.

The paper is organized as follows.
In Section 2 we give the mathematical formulation of the above formulated

general description of the mathematical and numerical models. In Section 3 we
define the basic numerical notions (convergence, consistency, stability), and we
formulate the relation between them. In Section 4 we generalize these notions
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from a practical point of view. In Section 5, via some concrete examples, we
examine the relation between consistency, stability and convergence. Finally, we
give some remarks and conclusions.

2 Mathematical background

When we model some real-life phenomenon with a mathematicalmodel, it results
in a – usually nonlinear – problem of the form

F (u) = 0 , (1)

whereX andY are normed spaces,D ⊂ X andF : D → Y is a (nonlinear)
operator. In the theory of numerical analysis it is usuallyassumedthat there exists
a unique solution, which will be denoted byū.

On the other side, for any concrete applied problemswe must provethe ex-
istence ofū ∈ D. In most cases the proof is not constructive, cf. [K75]. Even
if it is possible to solve directly, the realization of the solving process is very
difficult or even impossible. However, we need only a good approximation for
the solution of problem (1), since our model is already a simplification of the
real-life phenomenon. Therefore we construct numerical models by use of some
discretization, which results in a sequence of simpler problems, i.e., a numerical
method. The requirements from these simpler problems were formulated in the
Introduction. With this approach we need to face the following difficulties:

• we need to compare the solution of the simpler problems withthe solution
of the original problem (1), which might be found in different spaces;

• this comparison seems to be impossible, since the solutionof the original
problem (1) is not known.

To get rid of the latter difficulty, the usual trick is to introduce the notions of
consistency and stability, which are independent of the solution of the original
problem (1) and are controllable. The convergence can be replaced with these two
notions. Sometimes this popular “recipe” is summarized in the formula

Consistency + Stability = Convergence . (2)

In the following we introduce and investigate these notionsin an abstract
framework, and we try to shed some light on the formula (2). Namely:

• how to define consistency and stability to ensure the formula (2);
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• is it consistency or/and stability that is necessary for the convergence (in the
linear case the Lax-equivalence theorem deals with this question, too, see
e.g. [LR56, PS84a]);

This paper is mainly devoted to these questions.
First, we start with some definitions and notations, by giving an example.

Definition 1. Problem (1) can be given as a tripletP = (X ,Y , F ). We will refer
to it asproblemP.

Example 2. Consider the following initial value problem:

u′(t) = f(u(t)) (3)

u(0) = u0 , (4)

wheret ∈ [0, 1], u0 ∈ R andf ∈ C(R,R) is a Lipschitz continuous function.

Then the operatorF and the spacesX ,Y are defined as follows.

• X = C1[0, 1], ‖u‖X = max
t∈[0,1]

|u(t)|

• Y = C[0, 1] × R,

∥
∥
∥
∥

(
u
u0

)∥
∥
∥
∥
Y

= max
t∈[0,1]

(|u(t)|) + |u0|

• F (u) =

(
u′(t) − f(u(t))
u(0) − u0

)

.

Definition 3. We say that the sequenceN = (Xn,Yn, Fn)n∈N is a numerical
method if it generates a sequence of problems

Fn(un) = 0 , n = 1, 2, . . . , (5)

where

• Xn,Yn are normed spaces;

• Dn ⊂ Xn andFn : Dn → Yn .

If there exists a unique solution of the (approximating) problems (5), it will be
denoted bȳun .

Example 4. For n ∈ N we define the following sequence of triplets:

• Xn = R
n+1, vn = (v0, v1, . . . , vn) ∈ Xn : ‖vn‖Xn

= max
i=0,...,n

|vi|
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• Yn = Rn+1, yn = (y0, y1, . . . , yn) ∈ Yn : ‖yn‖Yn
= |y0| + max

i=1,...,n
|yi|.

• Fn : R
n+1 → R

n+1, and for anyvn = (v0, v1, . . . , vn) ∈ R
n+1 it acts as

(Fn(vn))i =







n (vi − vi−1) − g (vi−1) , i = 1, . . . , n,

v0 − c, i = 0.
(6)

(Hereg : R → R andc ∈ R are arbitrary given data which define the numerical
process.)

Definition 5. We say that the sequenceD = (ϕn, ψn,Φn)n∈N is adiscretizationif

• theϕn-s (respectivelyψn-s) are restriction operators fromX into Xn (re-
spectively fromY intoYn), whereX ,Xn,Y ,Yn are normed spaces;

• Φn : {F : D → Y |D ⊂ X} → {Fn : Dn → Yn | Dn ⊂ Xn}.

Example 6. Based on Examples 2 and 4, in Definition 5 we defineX = C1[0, 1],
Y = C[0, 1] × R, andXn = Yn = R

n+1. Gn := {ti = i
n
, i = 0, . . . , n}. Then,

we define the triplet of the operators as follows.

• For anyu ∈ X we put(ϕnu)i = u(ti), i = 0, 1, . . . , n,

• For anyy ∈ Y we put

(ψny)i =







y (ti−1) , 1, . . . , n,

y(t0), i = 0.

• In order to giveΦn, we define the mappingΦn : C1[0, 1] → Rn+1 in the
following way:

[(Φn(F ))u]i =







n (u(ti) − u(ti−1)) − g(u(ti−1)), i = 1, . . . , n,

u(t0) − c, i = 0.
(7)

We note that the introduced notions of problem and numericalmethods are
independent of each other. However, for our purposes only those numerical meth-
odsN are interesting which are obtained when some discretization methodD is
applied to some certain problemP.

Remark 7. Theoretically, the normed spacesX andY in the definitions of the
problem and of the discretization might be different. However the application of
the discretization to the problem is possible only when these normed spaces are
the same. In the sequel this will be always assumed.
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Example 8. Let us define the numerical methodN for the problemP from Ex-
ample 2, and for the discretizationD from Example 6. Then we solve the sequence
of problems in the form(5), where in the discretization forg andc we putf and
u0 from problem(3)-(4), respectively. This yields that the mappingFn : Rn+1 →
Rn+1 is defined as follows: for the vectorvn = (v0, v1, . . . , vn) ∈ Rn+1 we have

(Fn(v))i =







n (vi − vi−1) − f(vi−1), i = 1, . . . , n,

v0 − u0, i = 0.
(8)

Hence, using the notationh = 1/n, the equation(5) for (8) results in the task:
we seek the vectorv = (v0, v1, . . . , vn) ∈ Rn+1 such that







vi − vi−1

h
= f(vi−1), i = 1, . . . , n,

v0 = u0, i = 0.

(9)

Hence, the obtained numerical method is the well-known explicit Euler method on
the meshGn with step-sizeh.

In sequel for the discretizationD = (ϕn, ψn,Φn)n∈N we assume the validity
of the following assumption.

Assumption 9. The discretizationD possesses the propertyψn(0) = 0.

Obviously, whenψn are linear operators, then this condition is automatically
satisfied. We also list two further natural assumptions about the discretization,
which will be used later.

Assumption 10. The discretizationD generates a numerical methodN which
possesses the propertydimXn = dimYn <∞.

Assumption 11. Let us apply the discretizationD to the problemP. We assume
thatFn is continuous on the ballBR(ϕn(ū)).

The general scheme of the above approach is illustrated in Figure 1.

3 Basic Theoretical Results

In this part we analyze the general framework of a numerical method (according
to Figure 1). We apply a discretizationD for some problemP , then it results
in a numerical methodN , which generates the sequence of problems (5). Our
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Figure 1: The general scheme of numerical methods.

aim is to guarantee the existence of the solutionsūn and the closeness of these
to ū. To this aim we define the distance between these elements, which will be
called global discretization error. (Since these elementsbelong to different spaces,
this is not straightforward.) Independently of the form of the definition of the
global error, it is hardly applicable in practice, because the knowledge of the exact
solutionū is assumed. Therefore, we introduce some further notions (consistency,
stability), which help us in getting information about the behavior of the global
discretization error.

3.1 Convergence

The usual approach for the characterization of the distanceof the elements̄u and
ūn is their comparison inXn in the following way.

Definition 12. The elementen = ϕn(ū)− ūn ∈ Xn is called global discretization
error.

Clearly, our aim is to guarantee that the global discretization error is arbitrary
small, by increasingn. That is, we require the following property.

Definition 13. The discretizationD applied to the problemP is calledconver-
gentif

lim ‖en‖Xn
= 0 (10)
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Figure 2: The general scheme of numerical methods with interpolation operator.

holds. When
‖en‖Xn

= O(n−p)

we say that theorder of the convergenceis p.

Remark 14. It is possible to define the distance between the elementsū and ūn

in the spaceX , with the help of an operator̄ϕn : Xn → X , by the quantity
‖ū− ϕ̄nūn‖X . For such an approach see Figure 2.

Here we assume thatlim(ϕn ◦ ϕ̄n)v = v for any v ∈ X . We note that this
relation does not mean that̄ϕn is the inverse ofϕn, becauseϕn is not invert-
ible, typically it represents some interpolation. In this approach the convergence
means that the numerical sequence‖ū − ϕ̄nūn‖X tends to zero. Because this ap-
proach requires an additional interpolation, and the choice of the interpolation
may influence the rate of the convergence, therefore this kind of convergence is
less common.

3.2 Consistency

Consistency is the notion which makes some connection between the problemP
and the numerical methodN .

Definition 15. The discretizationD applied to problemP is called consistent at
the elementv ∈ D if

• ϕn(v) ∈ Dn holds from some index,
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• the relation
lim ‖Fn(ϕn(v)) − ψn(F (v))‖Yn

= 0 (11)

holds.

The elementln(v) = Fn(ϕn(v)) − ψn(F (v)) ∈ Yn in (11) plays an important
role in the numerical analysis. When we fix some elementv ∈ D, we can trans-
form it into the space in two different ways:X → Y → Yn andX → Xn → Yn

(c.f. Figure 1). The magnitudeln(v) characterizes the difference of this two direc-
tions for the elementv. Hence, the consistency at the elementv yields that in limit
the diagram of Figure 1 is commutative. A special role is played by the behavior
of ln(v) on the solution of the problem (1), that is the elementsln(ū). Later on we
will use the following notions.

Definition 16. The elementln(v) = Fn(ϕn(v)) − ψn(F (v)) ∈ Yn is called lo-
cal discretization error at the elementv. The elementln(ū) = Fn(ϕn(ū)) −
ψn(F (ū)) = Fn(ϕn(ū)) is calledlocal discretization error. When

‖ln(v)‖Xn
= O(n−p),

we say that the order of the consistency atv is p.

Remark 17. For simplicity, we will use the notationln for ln(ū). In the sequel, the
consistency on̄u and its order will be called consistency and order of consistency.

One might ask whether consistency implies convergence. Thefollowing sim-
ple example shows that this is not true in general.

Example 18. Let us consider the caseX = Xn = Y = Yn = R, ϕn = ψn =
identity. Our aim is to solve the scalar equationF (x) = 0, where we assume
that it has a unique solution̄x = 0. We define the numerical methodN as
Fn(x) = (1 − x)/n. Clearly, due to the linearity ofϕn andψn, we haveln =
Fn(0) − 0 = Fn(0). SinceFn(0) → 0, therefore this discretization is consistent.
However, it is not convergent, since the solution of each problemFn(x) = 0 is
x̄n = 1.

Thus, convergence cannot be replaced by consistency in general.

3.3 Stability

As we have already seen, consistency in itself is not enough for convergence.
Assuming the existence of the inverse operatorF−1

n , we can easily get to the
relation

en = ϕn(ū) − ūn = F−1
n (Fn(ϕn(ū))) − F−1

n (0) = F−1
n (ln) − F−1

n (0),

EJQTDE, Proc. 9th Coll. QTDE, 2012 No. 6, p. 9



which shows the connection between the global and local discretization errors.
This relation suggests that the consistency (i.e., the convergence to of the local
discretization errorln to zero) can provide the convergence (i.e., the approach of
en to zero) when(F−1

n )n∈N has good behavior. Such a property is the Lipschitz
continuity: it would be useful to assume that the functionsF−1

n uniformly satisfy
the Lipschitz condition at the point0 ∈ Yn. However, generally at this point
we have no guarantee even to the existence ofF−1

n , thus we provide this with
some property of the functionsFn, without assuming their invertibility. The first
step in this direction is done by introducing a simplified form of the notion of
semistability in [LS88].

Definition 19. The discretizationD is calledsemistableon the problemP if there
existS ∈ R, R ∈ (0,∞] such that

• BR(ϕn(ū)) ⊂ Dn holds from some index;

• ∀(vn)n∈N which satisfyvn ∈ BR(ϕn(ū)) from that index, the relation

‖ϕn(ū) − vn‖Xn
≤ S ‖Fn(ϕn(ū)) − Fn(vn)‖Yn

(12)

holds.

Semistability is a purely theoretical notion, which, similarly as the consis-
tency, cannot be checked directly, due to the fact, thatū is unknown. However,
the following statement clearly shows the relation of the three important notions.

Lemma 20. We assume that the discretizationD

• is consistent at̄u and semistable with stability thresholdR on the problem
P ;

• generates a numerical methodN that Equation (5) has a solution inBR(ϕn(ū))
from some index.

Then the sequence of these solutions of Equation (5) converges to the solution of
problemP , and the order of convergence is not less than the order of consistency.

Proof. Having the relationFn(ūn) = ψn(F (ū)) = 0, we get

‖ϕn(ū) − ūn‖Xn
≤ S ‖Fn(ϕn(ū)) − Fn(ūn)‖Yn

= S ‖Fn(ϕn(ū)) − ψn(F (ū))‖Yn
.

This yields that‖en‖Xn
≤ S‖ln‖Yn

, which proves the statement.

This lemma has some drawbacks. First, we cannot verify its conditions be-
cause this requires the knowledge of the solution. Secondly, we have no guaran-
tee that equation (5) has a (possibly unique) solution inBR(ϕn(ū)) from some
index. The following modified stability notion, see [K75], gets rid of the second
problem.
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Definition 21. The discretizationD is calledstableon problemP at the element
v ∈ X if there existS ∈ R, R ∈ (0,∞] such that

• BR(ϕn(v)) ⊂ Dn holds from some index;

• ∀(v1
n)n∈N, (v

2
n)n∈N which satisfyvi

n ∈ BR(ϕn(v)), the estimate
∥
∥v1

n − v2
n

∥
∥
Xn

≤ S
∥
∥Fn(v1

n) − Fn(v2
n)

∥
∥
Yn

(13)

holds.

Remark 22. Obviously, the stability on the solution of problem(1) (i.e., at the
element̄u ∈ X ) implies the semistability.

The immediate profit of this definition is injectivity as it isformulated in the
next statement.

Corollary 23. If discretizationD is stable on problemP at the elementv ∈ X
with stability thresholdR, thenFn is injective onBR(ϕn(v)) from some index.

The following statements demonstrate the usefulness of thestability notion,
given in Definition 21. (For more details we refer to [S73].)

Lemma 24. We assume that

• V, W are normed spaces with the propertydimV = dimW <∞;

• G : BR(v) → W is continuous, whereBR(v) ⊂ V is a ball for somev ∈ V
andR ∈ (0,∞];

• for all v1, v2 which satisfyvi ∈ BR(v), the stability estimate
∥
∥v1 − v2

∥
∥
V
≤ S

∥
∥G(v1) −G(v2)

∥
∥
W

(14)

holds.

Then

• G is invertible, andG−1 : BR/S(G(v)) → BR(v);

• G−1 is Lipschitz continuous with the constantS.

Proof. It is enough to show thatBR/S(G(v)) ⊂ G(BR(v)), due to Corollary 23.
We assume indirectly that there existsw ∈ BR/S(G(v)) such thatw /∈ G(BR(v)).
We define the linew(λ) = (1−λ)G(v)+λw for λ ≥ 0, and introduce the number
λ̂ as follows:

λ̂ :=

{
sup {λ′ > 0 |w(λ) ∈ G(BR(v)) ∀λ ∈ [0, λ′)} , if it exists,
0 , else.
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Then clearly the inequalitŷλ ≤ 1 holds. We will show thatŵ =: w(λ̂) ∈
G(BR(v)).

For λ̂ = 0 this trivially holds. Forλ̂ > 0 we observe thatG is invertible on
w(λ̂−ε), (i.e., the operatorsG−1(w(λ̂−ε)) ∈ BR(v) exist) for allε : λ̂ ≥ ε > 0.
Thus, we can use the stability estimate (14)

∥
∥
∥G−1(w(λ̂− ε)) − v

∥
∥
∥
V
≤ S

∥
∥
∥w(λ̂− ε) −G(v)

∥
∥
∥
W

=

S(λ̂− ε) ‖w −G(v)‖W
︸ ︷︷ ︸

= R

S
− δ

S

< λ̂(R− δ) ≤ R − δ ,

for someδ > 0, and using again the stability estimate we can conclude thatthe
functionh(ε) = G−1(w(λ̂−ε)) is uniformly continuous atε ∈ (0, λ̂]. Thus, there
existslimεց0 h(ε) =: z ∈ BR(v). Using the continuity ofG, we getG(z) = ŵ.

Now we can choose a closed ballB̄r(z) ⊂ BR(v), (r > 0) whose image
G(B̄r(z)) contains a neighborhood of̂w, due to the Brouwer’s invariance domain
theorem. This results in a contradiction.

Finally, the Lipschitz continuity with the constantS is a simple consequence
of (14).

Lemma 25. For the discretizationD we assume that

• it is consistent and stable at̄u with stability thresholdR and constantS on
problemP ;

• Assumptions 10 and 11 are satisfied.

Then the discretizationD generates a numerical methodN such that equation
(5) has a unique solution inBR(ϕn(ū)), from some index.

Proof. Due to Lemma 24,Fn is invertible, andF−1
n : BR/S(Fn(ϕn(ū))) →

BR(ϕn(ū)). Note thatFn(ϕn(ū)) = ln → 0, due to the consistency. This means
that0 ∈ BR

S

(Fn(ϕn(ū))), from some index. This proves the statement.

Hence, we can formulate our main result.

Theorem 26. We assume that

• the discretizationD is consistent and stable atū with stability thresholdR
and constantS on problemP ;

• Assumptions 10 and 11 are true.

Then the discretizationD is convergent on problemP , and the order of the
convergence is not less than the order of consistency.

Proof. The statement is the consequence of Lemmas 25 and 20.
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3.4 Some remarks on the stability notion

We finish this section with some remarks w.r.t. the stabilitynotion by the Defini-
tion 21.

There are other definitions of the stability in the literature, these are mostly
generalizations of the stability notion of Keller. We list two of them.

The first one of them is the following one, which is given by Stetter in [S73].

Definition 27. The discretizationD is called stable in the sense of Stetteron
problemP if there existS ∈ R, R ∈ (0,∞] andr ∈ (0,∞] such that

• BR(ϕn(ū)) ⊂ Dn holds from some index;

• for all (v1
n)n∈N, (v

2
n)n∈N such thatvi

n ∈ BR(ϕn(ū)), and the inclusionFn(vi
n) ∈

Br(Fn(ϕn(ū))) is true, the estimate
∥
∥v1

n − v2
n

∥
∥
Xn

≤ S
∥
∥Fn(v1

n) − Fn(v2
n)

∥
∥
Yn

holds.

Note that the stability notion by Stetter is less restrictive than the one given in
Definition 21: if we putr = ∞ in Definition 27, then we re-obtain the stability
definition by Keller, given in Definition 21.

The second one was given in the paper [LS88] by Lvdż˝pez-Marcos and Sanz-
Serna.

Definition 28. The discretizationD is called stable in the sense of Lvdż˝pez-
Marcos and Sanz-Sernaon problemP if there existS ∈ R and (Rn)n∈N, Rn ∈
(0,∞] such that

• BRn
(ϕn(ū)) ⊂ Dn holds from some index;

• ∀(v1
n)n∈N, (v

2
n)n∈N which satisfyvi

n ∈ BRn
(ϕn(ū)) from that index, the esti-

mate
∥
∥v1

n − v2
n

∥
∥
Xn

≤ S
∥
∥Fn(v1

n) − Fn(v2
n)

∥
∥
Yn

holds.

This stability notion allows us to vary the radius of the balls.

The third one is given in the book [T80].

Definition 29. The discretizationD is called stable in the sense of Trenoginif
there exist a continuous, strictly monotonically increasing functionω(t) defined
on t ≥ 0 such thatω(0) = 0 andω(∞) = ∞, and

∥
∥Fn(v1

n) − Fn(v2
n)

∥
∥
Yn

≥ ω
(∥
∥v1

n − v2
n

∥
∥
Xn

)

holds for allv1
n, v

2
n ∈ Dn.
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4 Basic Notions – Revisited from the Application Point
of View

Theorem 26 is not yet suitable for our purposes: the condition requires to check
the stability and the consistency on the unknown elementv = ū. Therefore, this
statement is not applicable for real problems. Since we are able to verify the
above properties onsome set of points(sometimes on the entireD), we extend the
previously given pointwise (local) definitions to the set (global) ones.

Definition 30. The discretizationD is called consistenton problemP if there
exists a setD0 ⊂ D whose imageF (D0) is dense in some neighborhood of the
point0 ∈ Y , and it is consistent at each elementv ∈ D0.

The order of the consistency inD0 is defined asinf {pv : v ∈ D0}, wherepv

denotes the order of consistency at the pointv.

Example 31. Let us consider the explicit Euler method, given in Examples4, 6
and 8. We apply it to the Cauchy problem of Example 2, i.e., to the problem (3)-(4).
We verify the consistency and its order on the setD0 ⊂ D, whereD := C1[0, 1]
andD0 := C2[0, 1]. Then for the local discretization error we obtain

[Fn (ϕn (v)) − ψn (F (v))] (ti) =







1
2n
v′′ (θi) i = 1, . . . , n,

0, i = 0,
(15)

whereθi ∈ (ti−1, ti) are given numbers. Then‖ln(v)‖Xn
= O(n−1) from Defini-

tion 16.

Hence, for the class of problems (3)-(4) with Lipschitz continuous right-hand side
f , the explicit Euler method is consistent, and the order of the consistency equals
one.

In Section 3 (c.f. Example 18) we have shown that the pointwise consistency
at the solution in itself is not enough for the convergence. One may think that
the stronger notion of consistency, given by Definition 30, already ensures con-
vergence. The following example shows that this is not true.

Example 32. Let us choose the normed spaces asX = Xn = Y = Yn = R,
ϕn,= ψn = identity. Our aim is to solve the scalar equationF (x) = 0, where
the functionF ∈ C(R,R) is given as follows

F (x) =

{
|x| , if x ∈ (−1, 1) ,
1 , if x ∈ (−∞,−1] ∪ [1,∞) .
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Clearly this problem has a unique solutionx̄ = 0. We define the numerical method
N as

Fn(x) =







1
n
, if x ∈

[
− 1

n
, 1

n

]
,

x , if x ∈
(

1
n
, 1

)
,

1 , if x ∈ (−∞,−1] ∪ [1, n) ∪ [n + 2,∞) ,
−x , if x ∈

(
−1,− 1

n

)
,

|x− (n+ 1)| , if x ∈ [n, n+ 2) .

For the given problem this discretization is consistent on the entireR, however
it is not convergent, since the solutions of the discrete problemsFn(x) = 0 are
x̄n = n+ 1 and thereforēxn 9 x̄.

In the sequel, besides the Assumptions 10, 11, which we have already made,
we assume the validity of the following new assumptions.

Assumption 33. For the problemP we assume thatF−1 is continuous at the
point0 ∈ Y .

Assumption 34. Let us apply the discretizationD to problemP. We assume
that discretizationD possesses the property: there existsK1 > 0 such that for all
v ∈ D the relation

‖ϕn(ū) − ϕn(v)‖Xn
≤ K1 ‖ū− v‖X

holds for alln ∈ N.

Assumption 35. We assume that discretizationD possesses the property: there
existsK2 > 0 such that for ally ∈ Y the relation

‖ψn(y) − ψn(0)‖Yn
≤ K2 ‖y − 0‖Y

holds for alln ∈ N.

For the simplicity of the formulation, the collection of theAssumptions 9–11
and 33–35 will be called AssumptionA⋆.

Lemma 36. Besides AssumptionA⋆ we assume that

• the discretizationD on problemP is consistent,

• the discretizationD on problemP at the element̄u is stable with stability
thresholdR and constantS.

ThenFn is invertible at the pointψn(0), i.e., there existsF−1
n (ψn(0)) for suffi-

ciently large indicesn.
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Proof. We can choose a sequence(yk)k∈N such thatyk → 0 ∈ Y andF−1
(
yk

)
=:

uk → ū, due to the continuity ofF−1. Then the discretizationD on problem
P at the elementuk is stable with stability thresholdR/2 and constantS, for
some sufficiently large indicesk. Moreover,Fn is continuous onBR/2(ϕn(u

k)).
Thus, for these indicesk and also for sufficiently largen there existsF−1

n :
BR/2S(Fn(ϕn(uk))) → BR/2(ϕn(uk)) moreover, it is Lipschitz continuous with
constantS, according to Lemma 24. Let us write a trivial upper estimate:

∥
∥Fn(ϕn(uk))

∥
∥
Yn

≤
∥
∥Fn(ϕn(uk)) − ψn(F (uk))

∥
∥
Yn

+
∥
∥ψn(F (uk))

∥
∥
Yn

.

Here the first term tends to0 asn → ∞, due to the consistency. For the second
term, based on (35) we have the estimate

∥
∥ψn(yk)

∥
∥
Yn

≤ K2

∥
∥yk

∥
∥
Xn

. Since the
right-hand side tends to zero ask → ∞, this means that the centre of the ball
BR/2(Fn(ϕn(uk))) tends to0 ∈ Yn, which proves the statement.

Corollary 37. Under the conditions of Lemma 36, for sufficiently large indicesk
andn, the following results are true.

• There existsF−1
n (ψn(yk)), sinceψn(yk) ∈ BR/2S(Fn(ϕn(uk))).

• F−1
n (ψn(yk)), ϕn(F−1(yk)) ∈ BR/2(ϕn(ū)).

Analogously to the consistency, the stability can also be defined on a set of
points. (This makes it possible to avoid the direct knowledge of the usually un-
knownū.)

Definition 38. The discretizationD is calledstableon problemP if there exist
S ∈ R, R ∈ (0,∞] and a setD1 ⊂ D such that̄u ∈ D1 and it is stable at each
pointv ∈ D1 with stability thresholdR and constantS.

Now we are in the position to formulate our basic result, in which the notion of
convergence is ensured by the notions of consistency and stability on a set, which
can usually be verified directly, without knowing the exact solution of problemP.

Theorem 39.Besides the AssumptionA⋆ we suppose that the discretizationD on
problemP is

• consistent;

• stable with stability thresholdR and constantS.

Then the discretizationD is convergent on problemP , and the order of the
convergence can be estimated from below by the order of consistency on the cor-
responding setD0.
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Proof. By use of the triangle inequality, we have

‖ϕn(ū) − ūn‖Xn
=

∥
∥ϕn(F−1(0)) − F−1

n (ψn(0))
∥
∥
Xn

≤
∥
∥ϕn(F−1(0)) − ϕn(F

−1(yk))
∥
∥
Xn

︸ ︷︷ ︸

I.

+

∥
∥ϕn(F−1(yk)) − F−1

n (ψn(yk))
∥
∥
Xn

︸ ︷︷ ︸

II.

+

∥
∥F−1

n (ψn(yk)) − F−1
n (ψn(0))

∥
∥
Xn

︸ ︷︷ ︸

III.

,

(16)

where the elementsyk ∈ Y are defined in the proof of Lemma 36.
In the next step we estimate the different terms on the left-hand side of (16).

I. For the first term, based on Assumption 34, we have the estimate
∥
∥ϕn(F−1(0)) − ϕn(F−1(yk))

∥
∥
Xn

≤ K1

∥
∥F−1(0) − F−1(yk)

∥
∥
X
.

Sinceyk → 0 as k → ∞, andF−1 is continuous at the point0 ∈ Y ,
therefore this term tends to zero, independently ofn.

II. This term can be written as
∥
∥F−1

n (Fn(ϕn(F−1(yk)))) − F−1
n (ψn(yk))

∥
∥
Xn

.
Due to Corollary 37, we can use the stability estimate, therefore for this
term we have the estimate

∥
∥ϕn(F−1(yk)) − F−1

n (ψn(yk))
∥
∥
Xn

≤
S

∥
∥Fn(ϕn(F

−1(yk))) − ψn(yk)
∥
∥
Yn

= S
∥
∥Fn(ϕn(u

k)) − ψn(F (uk))
∥
∥
Yn

.

In this estimate the term on the right-hand side tends to zerobecause of the
consistency atuk.

III. For the estimation of the third term we can use the Lipschitz continuity of
F−1

n , due to Lemma 36 and Corollary 37. Hence, by using the Assumption
35, we have

∥
∥F−1

n (ψn(yk)) − F−1
n (ψn(0))

∥
∥
Xn

≤ S
∥
∥ψn(yk) − ψn(0)

∥
∥
Yn

≤ SK2

∥
∥yk

∥
∥
Y
.

The right-hand side of the above estimate tends to zero, independently of
the indexn.

These estimations complete the proof.
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Example 40. Let us analyze the stability property of the explicit Euler method,
given in Example 8.

Letv(1),v(2) ∈ Xn = R
n+1 be two arbitrary vectors, and we use the notation

ǫ = v
(1) − v

(2) ∈ Rn+1. We define the vectorδ = Fn

(
v

(1)
)
− Fn

(
v

(2)
)
∈ Rn+1,

whereFn is defined in (6). (In the notation, for simplicity, we omit the use of
the subscriptn for the vectors. We recall that the coordinates of the vectors are
numbered fromi = 0 until i = n.)

For the coordinates of the vectorδ we have the following relations.

• For the first coordinate (i = 0) we obtain:

δ0 =
(
Fn

(
v

(1)
))

0
−

(
Fn

(
v

(2)
))

0
=

(

v
(1)
0 − u0

)

−
(

v
(2)
0 − u0

)

= ǫ0.

• For the other coordinatesi = 1, . . . , n we have

δi = v
(1)
i − v

(2)
i =

n(v
(1)
i − v

(1)
i−1) − f(v

(1)
i−1) − n(v

(2)
i − v

(2)
i−1) + f(v

(2)
i−1) =

n(v
(1)
i − v

(2)
i ) − n(v

(1)
i−1 − v

(2)
i−1) − (f(v

(1)
i−1) − f(v

(2)
i−1)) =

nǫi − nǫi−1 − (f(v
(1)
i−1) − f(v

(2)
i−1)).

We can expressǫi from this relation as follows:

ǫi = ǫi−1 +
1

n
(f(v

(1)
i−1) − f(v

(2)
i−1)) +

1

n
δi.

Under our assumptionf ∈ C(R,R) is a Lipschitz continuous function, there-
fore we have the estimation|f(v

(1)
i−1) − f(v

(2)
i−1)| ≤ L|v(1)

i−1 − v
(2)
i−1|. Hence, we

get

|ǫi| ≤ |ǫi−1| +
1

n
L|v(1)

i−1 − v
(2)
i−1| +

1

n
|δi| = |ǫi−1|

(

1 +
L

n

)

+
1

n
|δi|.

If we apply this estimate consecutively to|ǫi−1|, |ǫi−2|, etc., we obtain:

|ǫi| ≤ |ǫi−2|
(

1 +
L

n

)2

+
1

n
|δi| +

(

1 +
L

n

)
1

n
|δi−1| ≤ . . .

|ǫ0|
(

1 +
L

n

)n

+
1

n

n∑

i=1

|δi|
(

1 +
L

n

)n−i

. (17)

Sinceδ0 = ǫ0 and
∥
∥v

(1) − v
(2)

∥
∥
Xn

= max
i=0,...,n

|ǫi|, hence we can write our

estimation in the form
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∥
∥v

(1) − v
(2)

∥
∥
Xn

≤ |δ0|
(

1 +
L

n

)n

+
1

n

n∑

i=1

|δi|
(

1 +
L

n

)n−i

(18)

< eL(δ0 + max
i=1,...,n

|δi|) = eL ‖δ‖Yn
= eL

∥
∥Fn

(
v

(1)
)
− Fn

(
v

(2)
)∥
∥
Yn

. (19)

This shows us that the discretization (8), i.e., the explicit Euler method is stable
on the whole setX = C1[0, 1] with S = eL andR = ∞.

Hence, based on Theorem 39, the results of this example and Example 31, we
can conclude that the explicit Euler method is convergent, and the order of its
convergence is one.

Remark 41. The stability property of the explicit Euler method in the other sta-
bility senses can be proven in the same way. (E.g. the Trenogin’s stability of the
explicit Euler method is shown on [T80], and the proof is verysimilar to the proof
in Example 40.)

5 Relation between consistency, stability and con-
vergence

Theorem 39 shows that, under the AssumptionA⋆, the consistency and stability
of discretizationD on problemP result in the convergence, i.e., consistency and
stability together are a sufficient condition for convergence. (Roughly speaking,
this implication is shown in (2).) However, from this observation we cannot get
an answer to the question of the necessity of these conditions.

In the sequel, we raise a more general question: What is the general relation
between the above listed three basic notions? Since each of them can be true (T)
or false (F), we have to consider eight different cases, listed in Table 1.

Before giving the answer, we consider some examples. In eachexamplesX =
Xn = Y = Yn = R, D = Dn = [0,∞), ϕn = ψn = identity. Our aim is to solve
the scalar equation

F (x) ≡ x2 = 0 , (20)

which has the unique solution̄x = 0.

Example 42. For solving equation(20) we choose the numerical method defined
by then-th Lagrangian interpolation, i.e.,Fn(x) is the Lagrangian interpolation
polynomial of ordern. Since the Lagrange interpolation is exact forn ≥ 2,

thereforeFn(x) = x2 holds for alln ≥ 2. Hence, clearly the numerical method
is consistent and convergent. The operatorF−1

n can be defined easily, and it is
F−1

n (x) =
√
x. Hence its derivative is not bounded around the pointx̄ = 0,

therefore the numerical method is not stable.
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consistency stability convergence

1 T T T
2 T T F
3 T F T
4 T F F
5 F T T
6 F T F
7 F F T
8 F F F

Table 1: The list of the different cases (T: true, F: false).

Example 43. For solving equation(20) we choose now the numerical method
Fn(x) = 1 − nx. The roots of the discrete equationsFn(x) = 0 are x̄n = 1/n,
thereforex̄n → x̄ = 0 as n → ∞. This means that the numerical method is
convergent. We observe thatϕn(Fn(0)) = ϕn(1) = 1, andψn(F (0)) = ψn(0) =
0. Hence, for the local discretization error we have|ln| = 1, for any indexn.
This means that the numerical method is not consistent. One can easily check
that Fn is invertible, andF−1

n (x) = −x/n + 1/n. Hence the derivative of the
inverse operators are uniformly bounded on[0,∞) by 1 for anyn. Therefore the
numerical method is stable.

Example 44.For solving equation(20)we choose the following numerical method:
Fn(x) = 1 − nx2. Thenx̄n = 1/

√
n, and hencēxn → x̄ = 0 asn → ∞. This

means that the numerical method is convergent. Due to the relationsϕn(Fn(0)) =
ϕn(1) = 1 andψn(F (0)) = ψn(0) = 0, this method is not consistent. Since for
this numerical methodF−1

n (x) =
√

(1 − x)/n, therefore the derivatives are not
bounded. Therefore the numerical method is not stable.

Now, we are in the position to answer the question, posed at beginning of
this section. Using the numeration of the different cases inTable 1, the answers
are included in Table 2. (We note that two cases (case 6 and 8 inTable 1) are
uninteresting from a practical point of view, therefore we have neglected their
investigation.) The results particularly show that neither consistency, nor stability
is a necessary condition for the convergence.

6 Summary

We have considered the numerical solution of non-linear equations in an abstract
(Banach space) setting. The main aim was to guarantee the convergence of the
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number of the case answer reason
1 always true Theorem 39
2 always false Theorem 39
3 possible Example 42
4 possible Examples 18 and 32
5 possible Example 43
6 n.a. n.a.
7 possible Example 44
8 n.a. n.a.

Table 2: The possibility of the different cases.

numerical process. It was shown that, similarly to the linear case, this notion can
be guaranteed by two notions: the consistency and the stability together ensure the
convergence. In the linear case this result is well known as the Lax (or sometimes
Lax-Richtmyer-Kantorovich) theory. From the formulationof the main theorem
it turns out that these two, directly checkable conditions (i.e., the consistency and
stability) serve together as a sufficient condition of the convergence. However,
even in the linear theory, the necessity of these conditionsis less investigated. By
giving suitable examples we have shown that neither consistency, nor stability is
necessary for the convergence, in general. As an example forthe theory, we have
investigated the numerical solution of a Cauchy problem forordinary differential
equations by means of the explicit Euler method. We have shown the first order
consistency and the stability of this method, which, based on the basic theorem,
yield first order convergence. (We note that, as opposed to the usual direct proof
of the convergence of the explicit Euler method, the convergence in this example
yields the convergence on the whole space-time domain, and not only at some
fixed time levelt = t∗.)

In the further works we plan to apply this developed theory tolinear problems,
and compare the results to the Lax theory. Moreover, our aim is to extend the non-
linear theory by generalization of the stability notion. Wealso intend to apply the
results of the non-linear theory to other, more complex problems, like boundary
value problems of ordinary and partial differential equations, as well.
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