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Abstract

In this paper we investigate the numerical solution of noedr equa-
tions in an abstract (Banach space) setting. The main riedhiat the con-
vergence can be guaranteed by two, directly checkable thonsli(namely,
by the consistency and the stability). We show that thesalitons to-
gether are a sufficient, but not necessary condition for timea@rgence. Our
theoretical results are demonstrated on the numericali@olof a Cauchy
problem for ordinary differential equations by means of éxglicit Euler
method.
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1 Introduction

Many phenomena in nature can be described by mathematickisnhich con-
sist of functions of a certain number of independent vaeslaind parameters. In
particular, these models often consist of equations, lysoahtaining a large va-
riety of derivatives with respect to the variables. Typigake are not able to give
the solution of the mathematical model in a closed (anai)tfiorm, we construct
some numerical and computer models that are useful foripgh@urposes. The
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ever-increasing advances in computer technology haseshaklto apply numer-
ical methods to simulate plenty of physical and mechanibahpmena in science
and engineering. As a result, numerical methods do not lysgigk the exact so-
lution to the given problem, they can only provide approxioms, getting closer
and closer to the solution with each computational step. &hoal methods are
generally useful only when they are implemented on compugirg a computer
programming language. Using a computer, it is possible to gaantitative (and
also qualitative) information with detailed and realisnathematical models and
numerical methods for a multitude of phenomena and prosdasghysics and
technology. The application of computers and numericahoat has become
ubiquitous. Computations are often cheaper than expetsnerperiments can
be expensive, dangerous or downright impossible. Reakkperiments can of-
ten be performed on a small scale only, and that makes tisiltsdess reliable.

The above modelling process of real-life phenomena carlustrited as fol-
lows:

real-life problem N mathematical

+ physical model |7 model =| numerical mode]

This means that the complete modelling process consistsed steps. In this
paper we will analyze the step when we transform the matheab@isually con-
tinuous) model into numerical (usually discrete) modelsr &m is to guarantee
that this step does not cause any significant loss of thenrdton.

The discrete model usually yields a sequence of (discragst During the
construction of the numerical models the basic requiremard the following.

» Each discrete problem in the numerical model is a well-ggseblem.
* In the numerical model we can efficiently compute the nuoatisolution.
» The sequence of the numerical solutions is convergent.

» The limit of this sequence is the solution of the originaligem.

The theory is more developed for linear problems, see [LIREB4a, PS84b,
PS85], while the nonlinear theory is less elaborated. Thm parpose of this
work is to investigate the nonlinear theory.

The paper is organized as follows.

In Section 2 we give the mathematical formulation of the a&bfmrmulated
general description of the mathematical and numerical isode Section 3 we
define the basic numerical notions (convergence, consigtstability), and we
formulate the relation between them. In Section 4 we genrzeréhese notions
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from a practical point of view. In Section 5, via some conerekamples, we
examine the relation between consistency, stability amyegence. Finally, we
give some remarks and conclusions.

2 Mathematical background

When we model some real-life phenomenon with a mathematiodkl, it results
in a — usually nonlinear — problem of the form

Fu)=0, 1)

whereX and) are normed space$) ¢ X andF : D — ) is a (nhonlinear)
operator. In the theory of numerical analysis it is usuaigumedhat there exists
a unique solution, which will be denoted by

On the other side, for any concrete applied problemsmust provethe ex-
istence ofu € D. In most cases the proof is not constructive, cf. [K75]. Even
if it is possible to solve directly, the realization of thehdng process is very
difficult or even impossible. However, we need only a goodrapimation for
the solution of problem (1), since our model is already a $ifiogtion of the
real-life phenomenon. Therefore we construct numericaletoby use of some
discretization, which results in a sequence of simpler jgrols, i.e., a numerical
method. The requirements from these simpler problems vwereulated in the
Introduction. With this approach we need to face the follayuifficulties:

* we need to compare the solution of the simpler problems thigrsolution
of the original problem (1), which might be found in diffetespaces;

* this comparison seems to be impossible, since the solofidime original
problem (1) is not known.

To get rid of the latter difficulty, the usual trick is to inttace the notions of
consistency and stability, which are independent of thatswl of the original
problem (1) and are controllable. The convergence can baaegwith these two
notions. Sometimes this popular “recipe” is summarizedhenformula

Consistency + Stability = Convergence . (2)

In the following we introduce and investigate these notiongn abstract
framework, and we try to shed some light on the formula (2)misly:

» how to define consistency and stability to ensure the foan(i);
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* is it consistency or/and stability that is necessary ferdgbnvergence (in the
linear case the Lax-equivalence theorem deals with thistopre too, see
e.g. [LR56, PS84a));

This paper is mainly devoted to these questions.
First, we start with some definitions and notations, by gjvam example.

Definition 1. Problem (1) can be given as a triple? = (X, ), F'). We will refer
to it asproblemZ.

Example 2. Consider the following initial value problem:
u'(t) = f(u(t)) 3)
u(0) = ug, (4)
wheret € [0,1], uo € Rand f € C(R,R) is a Lipschitz continuous function.

Then the operatof’ and the spacegd’, Y are defined as follows.

e X =C'0,1 = t
0.1], [lull = max fu(t)]

-y:cmuxR]K“)
U v

.mm:@ﬁ&gﬁo_

= t
mas (ju(t)) + o

Definition 3. We say that the sequenc¢ = (X, V., F\,)nen iS @ Nnumerical
method if it generates a sequence of problems

F.(uy,) =0, n=12 ..., (5)
where
* X,,), are normed spaces;
e D,CcX,andF,, : D, — V,.

If there exists a unique solution of the (approximating)igpeons (5), it will be
denoted byi,, .

Example 4. For n € N we define the following sequence of triplets:

© X, =R vy = (v0,01,...,0n) € Xyt [Vally, = ii%axn|vi|
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V=R g = (o) € Vot Iyally, = ol + max [y,

----- n

e [, : R"™ — R*"! and for anyv,, = (v, v1,...,v,) € R*™ it acts as
n(v; —vi—1) — g (vic1), i=1,...,n,
(Fn(va)); = (6)
UO - Ca Z = 0

(Hereg : R — R andc € R are arbitrary given data which define the numerical
process.)

Definition 5. We say that the sequenge= (¢, 1, P, )nen is adiscretizatiorif

* the p,-s (respectively),-s) are restriction operators fro&” into X, (re-
spectively fron)) into ),,), whereX', X,,, ), ),, are normed spaces;

* o, {F:D—-Y|DCX}—{F,:D,— Vu|D, CAX,}.

Example 6. Based on Examples 2 and 4, in Definition 5 we define: C'[0, 1],
Y=0C[0,1] xR, andX, =Y, =R""". G, :={t; =%, i =0,...,n}. Then,
we define the triplet of the operators as follows.

* Foranyu € X we put(¢,u); = u(t;), i=0,1,...,n,
* Foranyy € Y we put

y(tifl), 1,...,n,
(,lvz)ny)z =
y<t0)7 i =0.

e In order to give®,,, we define the mapping,, : C'[0,1] — R"*! in the
following way:

n(u(t;) —ulti-1)) — g(u(ti-1)), i=1,....n,
[(©n(F)) ul; = (7)
u(ty) — ¢, 1 =0.

We note that the introduced notions of problem and numenwthods are
independent of each other. However, for our purposes onsethumerical meth-
ods./” are interesting which are obtained when some discretizatiethod? is
applied to some certain probles.

Remark 7. Theoretically, the normed spacasand ) in the definitions of the

problem and of the discretization might be different. Hosvete application of

the discretization to the problem is possible only whenghesmed spaces are
the same. In the sequel this will be always assumed.
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Example 8. Let us define the numerical methot for the problem%? from Ex-
ample 2, and for the discretizatian from Example 6. Then we solve the sequence
of problems in the fornf5), where in the discretization fay and ¢ we putf and
uo from problem(3)-(4), respectively. This yields that the mappifg: R**! —

R is defined as follows: for the vector, = (vg, vy, ..., v,) € R"" we have
n(v; —vi_1) — f(vis1), 1=1,...,n,
(Fu(v)), = @)

Hence, using the notation= 1/n, the equatior{5) for (8) results in the task:

we seek the vector = (vg, vy, . . ., v,) € R"*! such that
% = f(UZ‘_l), = ]_,...,TL,
9)
Vo = Uo, 1= 0.

Hence, the obtained numerical method is the well-known@kguler method on
the meslt,, with step-sizé.

In sequel for the discretizatio® = (¢, ¥n, ®,)neny We assume the validity
of the following assumption.

Assumption 9. The discretizatior? possesses the propetty (0) = 0.

Obviously, wheny,, are linear operators, then this condition is automatically
satisfied. We also list two further natural assumptions albioel discretization,
which will be used later.

Assumption 10. The discretizatiorZ generates a numerical method” which
possesses the propertim X,, = dim ), < oco.

Assumption 11. Let us apply the discretizatio# to the problemZ?. We assume
that £, is continuous on the balBz (¢, (u)).

The general scheme of the above approach is illustratedyuréil.

3 Basic Theoretical Results

In this part we analyze the general framework of a numeriaghaed (according
to Figure 1). We apply a discretizatian for some problem?? , then it results
in a numerical method#” , which generates the sequence of problems (5). Our
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Figure 1: The general scheme of numerical methods.

aim is to guarantee the existence of the solutiop®nd the closeness of these
to u. To this aim we define the distance between these elemenish will be
called global discretization error. (Since these elemiegltsng to different spaces,
this is not straightforward.) Independently of the form bé tdefinition of the
global error, it is hardly applicable in practice, becaumseknowledge of the exact
solutionu is assumed. Therefore, we introduce some further notiars(stency,
stability), which help us in getting information about thehlavior of the global
discretization error.

3.1 Convergence

The usual approach for the characterization of the distahtiee elements and
U, 1S their comparison i, in the following way.

Definition 12. The element,, = ¢, (u) — u,, € X, is called global discretization
error.

Clearly, our aim is to guarantee that the global discratpagrror is arbitrary
small, by increasing. That is, we require the following property.

Definition 13. The discretizatior? applied to the problen¥” is called conver-
gentif
lim ||e,||x, =0 (10)
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Figure 2: The general scheme of numerical methods withpotation operator.

holds. When
lenllx, = O(n")

we say that therder of the convergenas p.

Remark 14. It is possible to define the distance between the elemeats u,,
in the spaceY, with the help of an operatop, : X, — X, by the quantity
|| — @ni, || For such an approach see Figure 2.

Here we assume théim(y, o ¢,)v = v for anyv € X. We note that this
relation does not mean that, is the inverse ofp,,, becausep,, is not invert-
ible, typically it represents some interpolation. In thigoaoach the convergence
means that the numerical sequenice— ¢, 1,||» tends to zero. Because this ap-
proach requires an additional interpolation, and the choif the interpolation
may influence the rate of the convergence, therefore thi$ &drconvergence is
less common.

3.2 Consistency

Consistency is the notion which makes some connection legtwee probleny”
and the numerical method” .

Definition 15. The discretizatior? applied to problen¥” is called consistent at
the element € D if

* ¢,(v) € D, holds from some index,
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* the relation
lim || £ (n(v)) = n(F())[ly, =0 (11)
holds.

The element,, (v) = F,(pn(v)) — ¥ (F(v)) € Y, in (11) plays an important
role in the numerical analysis. When we fix some elemeatD, we can trans-
form it into the space in two different wayg’ — )Y — ), andX — X,, — ),
(c.f. Figure 1). The magnitudg(v) characterizes the difference of this two direc-
tions for the element. Hence, the consistency at the elemewptelds that in limit
the diagram of Figure 1 is commutative. A special role is pthipy the behavior
of /,,(v) on the solution of the problem (1), that is the elemépts). Later on we
will use the following notions.

Definition 16. The element,(v) = F,(on(v)) — ¥, (F(v)) € Y, is called lo-
cal discretization error at the element The element,(a) = F,(p,(a)) —
Un(F(u)) = F,(¢n(u)) is calledlocal discretization errorVhen

1ln ()], = O(n7"),
we say that the order of the consistency & p.

Remark 17. For simplicity, we will use the notatidr for /,,(u). In the sequel, the
consistency om and its order will be called consistency and order of coresisy.

One might ask whether consistency implies convergence fdllesving sim-
ple example shows that this is not true in general.

Example 18. Let us considerthecas€ = X, =YV =)V, = R, ¢, = ¥, =
identity. Our aim is to solve the scalar equatidi(z) = 0, where we assume
that it has a unique solutior = 0. We define the numerical method™ as
F.(x) = (1 — z)/n. Clearly, due to the linearity op,, and,,, we havel,, =
F,(0) — 0 = F,(0). SinceF,,(0) — 0, therefore this discretization is consistent.
However, it is not convergent, since the solution of eactblero £, () = 0 is
z, = 1.

Thus, convergence cannot be replaced by consistency imajene

3.3 Stability

As we have already seen, consistency in itself is not enoagltdnvergence.
Assuming the existence of the inverse operatpr, we can easily get to the
relation
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which shows the connection between the global and locatetization errors.
This relation suggests that the consistency (i.e., theargence to of the local
discretization errot,, to zero) can provide the convergence (i.e., the approach of
e, to zero) when(F; !),.cn has good behavior. Such a property is the Lipschitz
continuity: it would be useful to assume that the functidfys uniformly satisfy

the Lipschitz condition at the poirit € ),,. However, generally at this point
we have no guarantee even to the existencé of, thus we provide this with
some property of the functions,, without assuming their invertibility. The first
step in this direction is done by introducing a simplifiednfioof the notion of
semistability in [LS88].

Definition 19. The discretizatior¥ is calledsemistabl@n the probleny” if there
existS € R, R € (0, oo] such that

* Br(pn(u)) C D, holds from some index;

* V(v )nen Which satisfy,, € Br(p,(u)) from that index, the relation
lpn(@) = vnllx, < SNEL(n(@) = Falon)lly, (12)
holds.

Semistability is a purely theoretical notion, which, sianiy as the consis-
tency, cannot be checked directly, due to the fact, thigtunknown. However,
the following statement clearly shows the relation of the¢himportant notions.

Lemma 20. We assume that the discretizatioh
* is consistent at; and semistable with stability threshoRion the problem
L
* generates a numerical metho#l that Equation (5) has a solution iz (i, (1))
from some index.

Then the sequence of these solutions of Equation (5) carwénghe solution of
problem&? , and the order of convergence is not less than the order cfistency.

Proof. Having the relation?), (u,) = ¢, (F(u)) = 0, we get
lon (@) = tnllx, < SNEu(pn(@) = Eu(@n)lly, = S1E(pn(@) = ou(F @)y, -

This yields that|e, || x, < S|.|/y,, which proves the statement. O

This lemma has some drawbacks. First, we cannot verify islitions be-
cause this requires the knowledge of the solution. Secpndyhave no guaran-
tee that equation (5) has a (possibly unique) solutio®jfi¢,(u)) from some
index. The following modified stability notion, see [K75ktg rid of the second
problem.
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Definition 21. The discretizatior is calledstableon problem at the element
v € X if there existS € R, R € (0, oo] such that
* Br(pn(v)) C D, holds from some index;
o V(v})nen, (v2)nen Which satisfyw! € Br(p,(v)), the estimate
[vn = vall, < S| Falvn) = Fa(wD) ]y, (13)

holds.

Remark 22. Obviously, the stability on the solution of probl€f) (i.e., at the
elementz € X’) implies the semistability.

The immediate profit of this definition is injectivity as itigrmulated in the
next statement.

Corollary 23. If discretizationZ is stable on problen®” at the element € X
with stability thresholdr, thenF,, is injective onBg (¢, (v)) from some index.

The following statements demonstrate the usefulness o$ttislity notion,
given in Definition 21. (For more details we refer to [S73].)

Lemma 24. We assume that
* V, W are normed spaces with the propedyn V = dim W < oo;

* GG : Bg(v) — Wis continuous, wher&r(v) C V is a ball for somey € V
andR € (0, o0];

« forall v!, v which satisfyw’ € Bg(v), the stability estimate
lo! =2?[l, < S{lGEY = G, (14)
holds.
Then
* G isinvertible, andG' : Bg/s(G(v)) — Br(v);
» (G~ !is Lipschitz continuous with the constait

Proof. It is enough to show thaBy,s(G(v)) C G(Br(v)), due to Corollary 23.
We assume indirectly that there exists= Br/s(G(v)) such thatw ¢ G(Bg(v)).
We define the linev(\) = (1—\)G(v) + Aw for A > 0, and introduce the number
) as follows:

5. { sup{\ > 0| w(\) € G(Bg(v))VA € [0, \)} , if it exists,
"] 0, else.
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Then clearly the inequalith < 1 holds. We will show thati =: w(}\) €
BR U)
‘For A = 0 this trivially holds. For\ > 0 we observe thaf? is invertible on
w(A—e), (i.e., the operator§ " (w(A—¢)) € Br(v) exist) foralle : A > ¢ > 0.
Thus, we can use the stability estimate (14)

~

o7 w6 =2y =], <5 otd o) - e, =
S(A =€) Jw = G)lly < MR -8 <R -3,
N—————

=R
-s

0l

for somed > 0, and using again the stability estimate we can concludetitieat
functionh(e) = G~ (w(\ —¢)) is uniformly continuous at € (0, A]. Thus, there
existslim.\ o h(e) =: z € Bg(v). Using the continuity of>, we getG(z) =

Now we can choose a closed badll.(z) C Bg(v), (r > 0) whose image
G(B,(z)) contains a neighborhood df, due to the Brouwer’s invariance domain
theorem. This results in a contradiction.

Finally, the Lipschitz continuity with the constaftis a simple consequence
of (14). O

Lemma 25. For the discretizatiorZ? we assume that

* itis consistent and stable atwith stability thresholdk? and constant on
problem< ;

» Assumptions 10 and 11 are satisfied.

Then the discretizatio®y generates a numerical method” such that equation
(5) has a unique solution iBx (., (u)), from some index.

Proof. Due to Lemma 24 F, is invertible, andF,; ! : Bgr/s(F,(¢n(n))) —
Br(pn(u)). Note thatF,,(¢,(u)) = I, — 0, due to the consistency. This means
that0 € Bg(Fn(%(a))), from some index. This proves the statement. [

Hence, we can formulate our main result.
Theorem 26. We assume that

* the discretizatior? is consistent and stable atwith stability thresholdR
and constants on problem# ;

e Assumptions 10 and 11 are true.

Then the discretizatio®” is convergent on problen¥” , and the order of the
convergence is not less than the order of consistency.

Proof. The statement is the consequence of Lemmas 25 and 20. O
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3.4 Some remarks on the stability notion

We finish this section with some remarks w.r.t. the stabitityion by the Defini-
tion 21.

There are other definitions of the stability in the literatuthese are mostly
generalizations of the stability notion of Keller. We ligtd of them.

The first one of them is the following one, which is given bytt&tein [S73].

Definition 27. The discretizatiorZ is called stable in the sense of Stetten
problem if there existS € R, R € (0, co] andr € (0, oo] such that

* Br(pn(u)) C D, holds from some index;

o forall (v}),en, (v2)nen SUChthat? € Br(p,(u)), and the inclusior, (vi) €
B, (F,(¢n(w))) is true, the estimate

[vn = V2|, < S{[Falvn) = Fu(wl) ]y,
holds.

Note that the stability notion by Stetter is less restretivan the one given in
Definition 21: if we putr = oo in Definition 27, then we re-obtain the stability
definition by Keller, given in Definition 21.

The second one was given in the paper [LS88] kg2 pez-Marcos and Sanz-
Serna.

Definition 28. The discretization? is called stable in the sense ofvidz"pez-
Marcos and Sanz-Serma problemZ if there existS € R and (R,,),en, R, €
(0, oo] such that

* Bgr,(¢n(u)) C D, holds from some index;

o V(v})nen, (v2)nen Which satisfw!, € Br, (p,(u)) from that index, the esti-
mate

vl = 02|l < S||Fu(w)) = Fu(wd)];,

al
nilx,

holds.

This stability notion allows us to vary the radius of the ball
The third one is given in the book [T80].

Definition 29. The discretizatior? is called stable in the sense of Trenogin
there exist a continuous, strictly monotonically incremsfunctionw(¢) defined
ont > 0 such thatv(0) = 0 andw(oo0) = oo, and

|Fueh) = Fal2)ly, = w (|[oh = o2]l,)

holds for allv!, v2 € D,,.

n’-n
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4 Basic Notions — Revisited from the Application Point
of View

Theorem 26 is not yet suitable for our purposes: the condigguires to check
the stability and the consistency on the unknown elemeatu. Therefore, this
statement is not applicable for real problems. Since we hle t@ verify the

above properties osome set of poin{sometimes on the entif®), we extend the
previously given pointwise (local) definitions to the sdofgal) ones.

Definition 30. The discretizatior? is called consistenbn problem<? if there
exists a seD, C D whose imagd’'(D,) is dense in some neighborhood of the
point0 € ), and it is consistent at each elemerk D,.

The order of the consistency 1, is defined asnf {p, : v € Dy}, wherep,
denotes the order of consistency at the point

Example 31. Let us consider the explicit Euler method, given in Example®
and 8. We apply it to the Cauchy problem of Example 2, i.ehd@toblem (3)-(4).
We verify the consistency and its order on theRBgtc D, whereD := C'[0, 1]
andD, := C?0,1]. Then for the local discretization error we obtain

{ =" (0;) i=1,...,n,

0, i=0,

[Fn (pn (v)) = ¢ (F (0))] (£:) = (15)

wheret; € (t;_y,t;) are given numbers. Theft,(v)|, = O(n~') from Defini-
tion 16.

Hence, for the class of problems (3)-(4) with Lipschitz sarmdus right-hand side
f, the explicit Euler method is consistent, and the order efdbnsistency equals
one.

In Section 3 (c.f. Example 18) we have shown that the poiwansistency
at the solution in itself is not enough for the convergencee @ay think that
the stronger notion of consistency, given by Definition 36eady ensures con-
vergence. The following example shows that this is not true.

Example 32. Let us choose the normed spacestas= X, = )V = ), = R,
©n, = ¥, = identity. Our aim is to solve the scalar equatidi(z) = 0, where
the functionf' € C'(R, R) is given as follows

|z| , ifx e (—1,1),
F(x):{ 1, if2 € (—oo,—1JU[1,00).
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Clearly this problem has a unique solution= 0. We define the numerical method
N as

wo e =0 5],
z, ifze (1),

F.(z)=<X 1,ifz € (—oc0,—1JU[l,n)U[n+2,00),
—x, ifze (—1,—%)

For the given problem this discretization is consistent lo@ ¢éntireR, however
it is not convergent, since the solutions of the discretdlgmmsF, (z) = 0 are
Z, = n + 1 and thereforez,, » z.

In the sequel, besides the Assumptions 10, 11, which we Heeadg made,
we assume the validity of the following new assumptions.

Assumption 33. For the problemZ” we assume thaf'~! is continuous at the
point0 € ).

Assumption 34. Let us apply the discretizatio to problem%’. We assume
that discretization? possesses the property: there exists> 0 such that for all
v € D the relation

[n (@) — @n(V)|lx, < Killa—vlly
holds for alln € N.

Assumption 35. We assume that discretization possesses the property: there
existsK, > 0 such that for ally € ) the relation

[ (y) — Vn(0)ly, < Kally — 0]
holds for alln € N.

For the simplicity of the formulation, the collection of thessumptions 9-11
and 33-35 will be called Assumptiofr.

Lemma 36. Besides Assumptiof* we assume that
* the discretizatiorZ on problem#” is consistent,

* the discretizatiorz on problem#” at the element is stable with stability
thresholdR and constankt.

ThenF, is invertible at the point),(0), i.e., there existd’ (¢, (0)) for suffi-
ciently large indices.
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Proof. We can choose a sequer(gé)cy such thay® — 0 € Y andF ! (y*) =:
u* — i, due to the continuity of"~!. Then the discretizatio®¥ on problem
2 at the element/” is stable with stability threshol&/2 and constans, for
some sufficiently large indicels Moreover,F), is continuous omBg 2 (¢, (u*)).
Thus, for these indices and also for sufficiently large: there existsF ! :
Brjas(Fn(en(u¥))) — Brya(en(u”)) moreover, it is Lipschitz continuous with
constantsS, according to Lemma 24. Let us write a trivial upper estimate

[Fulen(@D]ly, < [1Falen(u®) = vu(F ("))

Here the first term tends tbasn — oo, due to the consistency. For the second
term, based on (35) we have the estimate (v")||,, < K»|[y*|, . Since the
right-hand side tends to zero &s— oo, this means that the centre of the ball

Bra(F,(¢n(u*))) tends ta) € Y, which proves the statement. O

v T [ E@], -

Corollary 37. Under the conditions of Lemma 36, for sufficiently large tedk
andn, the following results are true.

* There existd, ! (¢, (y*)), sincey, (y*) € Brjas(F(pn(ur))).
E7 n (W), o (F~H(y")) € Brpa(pn(a)).

Analogously to the consistency, the stability can also fendéd on a set of
points. (This makes it possible to avoid the direct knowkedgthe usually un-
known.)

Definition 38. The discretizatior®Z is called stableon problemZ? if there exist
S eR,R € (0,00 and a setD; C D such thatu € D; and it is stable at each
pointv € D; with stability threshold? and constankt.

Now we are in the position to formulate our basic result, imchithe notion of
convergence is ensured by the notions of consistency abilitstan a set, which
can usually be verified directly, without knowing the examusion of problenp.

Theorem 39. Besides the Assumptiott we suppose that the discretizatighon
problemZ is

* consistent;
« stable with stability threshol@® and constankt.

Then the discretizatio® is convergent on problen¥” , and the order of the
convergence can be estimated from below by the order of stensly on the cor-
responding seD.
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Proof. By use of the triangle inequality, we have

[on (1) _ﬂnHX" = H%(F ( ) — (¢n HX <
fen(F10) = (P )], +

Xn

J
~~
1.

[on(FH(")) = F  (n(y" HX (16)

(.

'

II.

1E (@nly") = B (n(0)]]

-~

111.

where the elementg® € ) are defined in the proof of Lemma 36.
In the next step we estimate the different terms on the lafidrside of (16).

l. For the first term, based on Assumption 34, we have the agim
[0a(F7H0)) = @u(FHY) ||, < K [[F7H0) = FH0) |-

Sincey* — 0 ask — oo, and F~! is continuous at the poirt € Y,
therefore this term tends to zero, independently.of

IIl. This term can be written a§F, (F, (0. (F 1 (y*)))) — F,  (n(y HX
Due to Corollary 37, we can use the stability estlmate floeeefor this

term we have the estimate

[on(FH (YY) = F @n(y™) ||, <
S HFH(SOVL(F (yk))) — ¥n y Hyn =S HFn(SOn(uk)) - %(F(uk))Hyn .

In this estimate the term on the right-hand side tends tolzecause of the
consistency at*.

lll. For the estimation of the third term we can use the Lipscbontinuity of
—1, due to Lemma 36 and Corollary 37. Hence, by using the Assompt

35, we have
[ (@ (6") = B (@ (0) ||, < S [0 (0") = ¥a(0)]], < SK |[y"]),, -
The right-hand side of the above estimate tends to zeroperiently of
the indexn.

These estimations complete the proof. O
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Example 40. Let us analyze the stability property of the explicit Eulezthod,
given in Example 8.

Letv(D, v(® € X, = R**! be two arbitrary vectors, and we use the notation
e = v —v® € R™™. We define the vector= F,, (v(V) — F, (v®@) € R"™,
where F}, is defined in (6). (In the notation, for simplicity, we omiethse of
the subscript: for the vectors. We recall that the coordinates of the vectre
numbered from = 0 until i = n.)

For the coordinates of the vectorwe have the following relations.

* For the first coordinatei(= 0) we obtain:
o= (Fa (v0))y = (B (v?)), = (0" = o) = (o —w0) = e
» For the other coordinates= 1, ..., n we have
0; = vi(l) — UZ(Q) =

n(v —v) = Fh) = n(? —u2) + f2) =

n(v —u?) = n(oly —v2) = (F0) = f(02) =
ne; —neiy — (f(o]2)) = f(02)).

We can express from this relation as follows:

1 1
6 =i+~ (F() = ) + o

Under our assumptiorf € C'(R,R) is a Lipschitz continuous function, there-
fore we have the estimatiar(v\”)) — f(v)| < L|v, — v?,|. Hence, we
get

1 1 L 1
\Mékm%wiwﬂ—¢%+—mhﬂaJO+—)+%M-
n n n n

If we apply this estimate consecutivelyj¢p |, |¢;_»|, etc., we obtain:

L\? 1 L\ 1
le;] < lei_a] <1 - —) + =& + <1 + —) —|8i4] <.
n n n n

L\" 1 Lyn—i
1+ =) =Sl (1) 17
l (17) + R+ a7)
Sincedy = ¢ and ||[vi) —v@ || = ‘max |e|, hence we can write our

estimation in the form
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L\" 1 n I\ n—i
VO v, < 16| (1 + g) + 5;\5i|<1 + 5) (18)

< el (@o + max [5,]) = et [|o]], =" [[Fu (v) = B (v*)],, . (29)

----- n

This shows us that the discretization (8), i.e., the exdaler method is stable
on the whole set’ = C'[0, 1] with S = e’ and R = .

Hence, based on Theorem 39, the results of this example ardie 31, we
can conclude that the explicit Euler method is convergent the order of its
convergence is one.

Remark 41. The stability property of the explicit Euler method in théext sta-
bility senses can be proven in the same way. (E.g. the Treisogiability of the
explicit Euler method is shown on [T80], and the proof is v&@ngilar to the proof
in Example 40.)

5 Relation between consistency, stability and con-
vergence

Theorem 39 shows that, under the Assumptignthe consistency and stability
of discretization on problem#” result in the convergence, i.e., consistency and
stability together are a sufficient condition for convergen(Roughly speaking,
this implication is shown in (2).) However, from this obsatien we cannot get
an answer to the question of the necessity of these conslition

In the sequel, we raise a more general question: What is therglerelation
between the above listed three basic notions? Since eablerofd¢an be true (T)
or false (F), we have to consider eight different casedigt Table 1.

Before giving the answer, we consider some examples. In@anplest =
X, =Y=YV.=R,D=D, =[0,0), p, = ¥, = identity. Our aim is to solve
the scalar equation

Flz)=2*=0, (20)

which has the unique solutian= 0.

Example 42. For solving equatior{20) we choose the numerical method defined
by then-th Lagrangian interpolation, i.e.F,(z) is the Lagrangian interpolation
polynomial of ordern. Since the Lagrange interpolation is exact for> 2,
thereforeF, () = z? holds for alln > 2. Hence, clearly the numerical method
is consistent and convergent. The operakgr' can be defined easily, and it is
F'(z) = /z. Hence its derivative is not bounded around the paint 0,

n

therefore the numerical method is not stable.
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| | consistency stability | convergence

o Nl 0| W[ N
L B e e e e | B
B R B e |
B R B e e T R

Table 1: The list of the different cases (T: true, F: false).

Example 43. For solving equation20) we choose now the numerical method
F,(x) = 1 — nz. The roots of the discrete equatiohs(z) = 0 are z,, = 1/n,
thereforez,, — z = 0 asn — oo. This means that the numerical method is
convergent. We observe that(F,(0)) = ¢,(1) = 1, and, (F(0)) = ¢,(0) =

0. Hence, for the local discretization error we hajlg| = 1, for any indexn.
This means that the numerical method is not consistent. @neeasily check
that £, is invertible, andF, !(z) = —z/n + 1/n. Hence the derivative of the
inverse operators are uniformly bounded [0noo) by 1 for anyn. Therefore the
numerical method is stable.

Example 44.For solving equatiorf20) we choose the following numerical method:
F,(r) = 1 — nz®. Thenz, = 1/y/n, and hencer, — 7 = 0 asn — oo. This
means that the numerical method is convergent. Due to thgoaky,, (F,,(0)) =
vn(1) = 1 andy,(F(0)) = ¢,(0) = 0, this method is not consistent. Since for
this numerical method’, ! (z) = /(1 — z)/n, therefore the derivatives are not
bounded. Therefore the numerical method is not stable.

Now, we are in the position to answer the question, posed gihbieg of
this section. Using the numeration of the different caseRainle 1, the answers
are included in Table 2. (We note that two cases (case 6 andr&8ule 1) are
uninteresting from a practical point of view, therefore wavé neglected their
investigation.) The results particularly show that naitt@nsistency, nor stability
is a necessary condition for the convergence.

6 Summary

We have considered the numerical solution of non-lineaagqgaos in an abstract
(Banach space) setting. The main aim was to guarantee thvergemce of the
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number of the case answer reason
1 always true| Theorem 39

2 always false Theorem 39

3 possible | Example 42

4 possible | Examples 18 and 32
5 possible | Example 43

6 n.a. n.a.

7 possible | Example 44

8 n.a. n.a.

Table 2: The possibility of the different cases.

numerical process. It was shown that, similarly to the lirezese, this notion can
be guaranteed by two notions: the consistency and theiggdbdether ensure the
convergence. In the linear case this result is well knowmad aix (or sometimes
Lax-Richtmyer-Kantorovich) theory. From the formulatiohthe main theorem
it turns out that these two, directly checkable conditiares,(the consistency and
stability) serve together as a sufficient condition of thevesgence. However,
even in the linear theory, the necessity of these condii®less investigated. By
giving suitable examples we have shown that neither casgf nor stability is
necessary for the convergence, in general. As an examplleddheory, we have
investigated the numerical solution of a Cauchy problenofdinary differential
equations by means of the explicit Euler method. We have sltbe first order
consistency and the stability of this method, which, basethe basic theorem,
yield first order convergence. (We note that, as opposedetashal direct proof
of the convergence of the explicit Euler method, the coremcg in this example
yields the convergence on the whole space-time domain, ahdmy at some
fixed time levelt = t*.)

In the further works we plan to apply this developed theorynear problems,
and compare the results to the Lax theory. Moreover, our abméxtend the non-
linear theory by generalization of the stability notion. Wso intend to apply the
results of the non-linear theory to other, more complex |@wis, like boundary
value problems of ordinary and partial differential eqoas, as well.
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