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COMPACTNESS METHODS FOR HOLDER ESTIMATES OF
CERTAIN DEGENERATE ELLIPTIC EQUATIONS

FENGPING YAO MIJIA LAT" HUILIAN JIA

ABSTRACT. In this paper we obtain the interior C1:® regularity of the quasi-
linear elliptic equations of divergence form. Our basic tools are the elementary
local L°° estimates and weak Harnack inequality for second-order linear elliptic
equations, and the compactness method.

1. INTRODUCTION
In this paper we consider the following nonlinear elliptic problem
div (g (|Vu|2) vu) =0 inQ. (1.1)
Here g € C*! ([0, o0)) satisfies the following ellipticity condition

Q+9) <@ +20 (QQ<K(Q+9)7, (1.2)

for s >0 and 1 < p < co. In fact, condition (L) implies the following condition
for a possibly larger constant K

TQ+9) T <g(Q) +29 <>Q<K@+@%l (1.3)
TQ+s): " <g(@Q <K @Q+s):! (1.4)
9 (QQI<K(@Q+s)7". (1.5)

Especially when g(z) = S ([T is reduced to
div (|vu|p*2 vu) =0 inQ, (1.6)
which can be derived from the variational problem
®(u) = min ®(v) =: min [VolP da.
v|aa=g vlsa=9 Jo
As usual, the solutions of [[TIl) are taken in a weak sense. We now state the
definition of weak solutions.

Definition 1.1. A function u € Wﬁ)cp(Q) is a local weak solution of (L) if for
any o € Wy P(Q) we have

/ g (|Vu|2) Vu -V dz =0.
Q
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Evans [6] have shown that Vu is local Hélder continuous for weak solutions of
[CH) for p > 2 and then Lewis [9] extended the corresponding result to the case
that 1 < p < co. Moreover, Uhlenbeck [T0]] obtained the interior C1% regularity
estimates for weak solutions of ([Tl) with condition (L) and

19(Q1)Q1 — 0/ (Q2)Q2| < K (Q1 + Qo+ 8)”* 77 (Q1 — Q2)°

for s > 0, 8 > 0 and p > 2, and DiBenedetto [3] considered the more general
equations. Moreover, Wang [I2] used compactness methods to give a quick proof
of the interior C*® regularity for weak solutions of ([[CH) for 1 < p < co. Recently,
Duzaar and Mingione ] proved local Lipschitz regularity of the gradient for weak
solutions of ([LT) for 1 < p < oo and the more general equations. In this paper we
will prove the interior C1'* regularity for weak solutions of ([II]) with condition (T2
by a compactness method, which is introduced by the authors (see [1}[IT,T2,[T3]).
Our basic tools are the elementary local L™ estimates and weak Harnack inequality
for second-order linear elliptic equations, and the compactness method.

The essence of C1'® regularity of the solution is that the solution is almost a
linear function. Actually, we can show that the difference between the solution and
a linear function is like |z|**®. Moreover, we can use the same method to prove
C* estimates for the solution if we replace the linear function by the k-th order
polynomial function.

Definition 1.2. (1) We call w € Cf at the point x = 0 for 1 < p < oo and
O<a<lif
1 _ p B
[ulce) = sup — lu—tupg,|” de| < oo,
0<r<1 T .

where Up, = \B_lTI [, u da.

(2) We call uw € Cp™ at the point x = 0 for 1 < p < oo if there is a linear
function L(z) = Az + B such that

1
1 P
oy = S —_ —LIP d < 00.

[U]C; © 0<1:21 rlta (][BT fu | I> >
Now let us state the main result of this work.

Theorem 1.3. Ifu € Wﬁ)’f(Bl) is a weak solution of (L) with condition (L),
then u € CJT*(0) for some o € (0,1).

Remark 1.4. If u € C;7*(0), then by Theorem 1.3, page 72 in [T, u is locally
CY® in the classical sense.

2. COMPACTNESS METHOD

In this section we will finish the proof of Theorem by the compactness
method. We first consider the following approximation problem

div (g (e + [Vue?) Va) =0, weQ ce (0,1 (2.1)
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We shall show uniform C® estimates in Theorem [ for u€ for small € > 0. We will
omit the index € since the C1® estimates are uniform, and then u¢ — u uniformly.
Actually, from Tl we have

QijUij =: {g (e + |Vu|2) dij +4 (e + |Vu|2) 2uiuj} ui; = 0. (2.2)
Now we denote a;; by

g (e + |Vu|2> dij +9 (e + |Vu|2) 2uiu

Qi = %_1 (23)
(s + e+ |Vu|2)
Then from ([3)-(CH) we have
K¢ < ai;66 < 3K [¢f° for any € € R™,
and
(i}}ui]‘ =0.
Lemma 2.1. If u is a local weak solution of (Z1l) in By, then
IVull Lo, ) < C ([IVullLosyy + 1),
where C' is independent of €.
9\ P/2
Proof. Let v = (s + e+ |Vu| ) . Then we find that
(aijvj); = (Paijursur); - (2.4)
Moreover, differentiating 1I) with respect to xj, we have
(aijukj)i = 0
Furthermore, [Z3) and Z4)) imply that
(aijvj); = paijurjuk; = 0. (2.5)

Therefore, from the maximum principle (see Lemma 1.2, Chapter 4 in [2])) we
obtain

IVl ) < Dolloecm ey < € (191 +1).
which finishes our proof. O
From the lemma above, we may as well assume that
[Vu| < 1.

Lemma 2.2. Let u be a local weak solution of (Z1) in By and |Vu| < 1. For any
o > 0, there exists an n(c) > 0 such that if

{z € Bi:|[Vul <1—n}| <nlBi,

then there is a harmonic function v such that

/ lu—v|” dz <o.
B2
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Proof. We prove it by contradiction. If the result is false, then there would exist
o0 >0, {ex}p2, and {uy}p2, satisfying

/ g(ek+|Vuk|2) Vup - V¢ de =0 for any ¢ € C5°(B1),
B,
|Vuk| <1,
1 1
|Dy| < o* |B:1|, where Dy = {x € By : |Vug| <1-— 2—k},

so that for any harmonic function v in B/, we have

/ lu —vl? dx > oo. (2.6)
B2
Hence, we may assume that

€ — €0,

Uy — v in LP(By),

Vup — Vv weakly in LP(By),
|[Vug| — 1 in By \ Dy.

{/ "‘/ }9(€k+|vuk|2)vuk~v¢da:—0,
B\Dy JDy

we deduce that

Since

/ gleo+1) Vo -Vode =0
B

as k — oo. That is to say, v is a harmonic function, which is contradictory to ().
Thus, we complete the proof. (I

Lemma 2.3. Let u be a local weak solution of (Z1) in By with |Vu| < 1. If
{z € Bi:[Vul <1—n}[=n[Bi],

then
|Vu| <1—-9%/C in By s,

where C is independent of e.

/2
Proof. Let w = (s + €+ 1)p/2 - (s +e+ |Vu|2)p > 0. Then w is a local weak

solution of
(agwj); = —paijurjur; <0 in By,

in view of ([ZH). Therefore, from Theorem 8.18 in [§] we have

) 1
inf w> — w dz,
B2 B

which implies that

p/2
inf ((s+e+1)p/2 — (s+e+ |Vu|2) )
B2
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WV,
s Ql~

p/2
/ (s—l—e—|—1)p/2—(s+e—|—|Vu|2) dx
B

- ((s+6+1)p/2—(s+6+(1—n)2)p/2).

Thus we can easily obtain the desired result by using the elementary inequality
(1-2)" <1-Chz for 0 <z <1/2and 6 > 0. O

>

Corollary 2.4. Let 5o = n?/C as in the lemma above. Assume that u is a local
weak solution of (Z1) in By with |Vu| < 1. If

{2 € Buppe: [Vul < (1=n) (1= 00)'}| = 0| Byo

fori=0,1,... k,
then _

[Vul < (1—=30)" in Byjgi fori=1,2,..,k+1,
where C is independent of e.

Proof. We can prove by induction on i. From the lemma above, it is easy to check
that our conclusion is valid for ¢ = 0. Assume that the conclusion is valid for some
i. We denote wy (z) by

21 T
wy(x) = mu (§> .

Then we can obtain the result from the lemma above. O

Lemma 2.5. Letu be a local weak solution of (Z11) in By with |Vu| <1, JCBI |u|P do <
1 and

o € By : [Vul < 1—n}| <n|Bil.

(1) Forany0 < a <1 and 0 >0, there exist n > 0 and 1o € (0,1/4) depending
on 0,a,p, and a linear function Li(x) = Ajxz + By such that

][ lu— Lq1|P dx < 9rg(1+a).

By

(2) For any 0 < a < 1, there exist n > 0 and ro € (0,1/4) depending on «,p,
and linear functions Li(x) = Az + By for k=0,1,2,3, ..., with uniformly
bounded coefficients such that

][ lu— Li(x)|” da < rBH0T) (2.7)
B’l"k;
0
and
|Apy1 — Ag| < CrBF™, (2.8)
|Bry1 — Bi| < CrFOte), (2.9)

(3) For any 0 < a < 1, there exist n > 0 depending on «,p, and a linear
function L(z) = Az + B such that

][ lu— LY dz < CrP+®)  for any 0 < r < 1.
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Proof. (1) For any o > 0, from Lemma B2 there exists n = n(o) > 0 such that
/ lu —o? dr < o, (2.10)
Bys

where v is a harmonic function in B;. Since u € Wz ’(By) is a weak solution of

&), then
/ [v|P dx < C,
B2

sup ‘D2v| <C.
By

Now, let Li(x) = Ajx + B; be the Taylor polynomial of v at 0. Then we have
sup |v— Li| < Clz|*.

IGBl/4

which implies that

Therefore, for any 0 < r < 1/4 we have

][ |u— Ly|" dx op—1 <][ lu —ol? da:—l—][ |v — Lq|? d:c)

+ 2P 1p2p,
which implies that

IN

< 1
- | Br|

][ |u — Ly1|P dx < 2Pr?P,

Burg

by taking ¢ small enough such that ¢ < r?!|B,|. Finally, choosing » = 7o such
that 21’7"8(1_0‘) = f), we can finish the proof.

(2) We prove it by induction. From (1) we know the result is true for £ = 0, 1,
if we take Ly = 0. Let us assume it is true for k. We denote w(z) by

u— L) (rkz
w(ﬂf) = ( erlg(kolr(l)o )
Then w satisfies
a;j(w)w;; =0, x € By.
where

g (e + ‘QTISQVU) + Ak‘z) 0ij

aij(w) =

(s +e+ ’97"50‘Vw + Ak’2> 5

g (e [0raTw + Li|*) 2 (Orkws + (An):) (0rkw; + (Ar),)

+ )
(s—|—e—|—}97’ O‘Vw—l—Ak} )2
Let v be the solution of

aiz(v)vi; =0,
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with v|p, ,, = w, where
g(e+1a) 0y o (e 1) 204 (Ar),

2\ 271 2\ 21
(s+6+|Ak|> (s+e+|Ak|)

aij(v) =

Since g € C, ||ai;(w) — ai;(v)|| o (B,) is small enough if we choose  small enough.
For any 7 > 0, from Lemma 13 in [I] we can obtain

[w—2v|LeB,,, <7

by choosing # small enough. Now, let L*(x) = A*z 4+ B* be the Taylor polynomial
of v at 0. Then we have

sup [v — L*| < Cr* for any r € (0,1/4).
reB,

Furthermore, choosing 7 < rg(l+a), we find that
]Z lw— L*P da < 74 CreP < Crb(He),
B

70

Finally, from the definition of w we can obtain

][ o — Liga|? dz < CriHD(+e)
BT(1§+1

by taking Ly = Lj — Grg(aH)L* (T%) . Thus, Z7)-E3) are true.
0
(3) From (2) it is easy to see that Ay, By converge to A, Boo as k — o0
respectively. Now let L(z) = Aso® + Bso. Then we have

][ lu— L) do <rB*T) for k=0,1,2, ...
k

"0

Therefore, we have

][ lu— L(z)[” de <P+ forany 0 <r <1,

which completes our proof. O
Now we are ready to prove the main result, Theorem

Proof. We may as well assume that u(0) = 0 and JCBI |u|P dz < 1. We denote k by

Hx € Byt |Vu| < (1—n) (1 —50)1}‘ >0 |Byja|, i=0,1,2,..k—1,(2.11)

but,
Hx € By ot |[Vu| < (1—1) (1 - 50)’“}’ <n|By . (2.12)

We divide into two cases:
Case 1: k = oo. That is to say, (1) is true for any 7. Then, from Corollary 24
we find that _
[Vul < (1—=380)" in Byja,
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which implies that

lz|* T for |z <1,

u(@)] = [u(z) ~ u(0)| < Jal(1 - 80)' < =5

where ag = —log, (1 — dp). Now fix an « and then determine §p and «p. Let
a; = min {ag, a}. Therefore, we have

lu(z)| < Clz|* e < Clz|* T for |z < 1.

Case 2: k < oo. Similarly, Corollary 222 implies that
[Vu| < (1—8)" in By for 0<i<k, (2.13)
which implies that
lu(z)| < Clz|"**  in By for 0<i<k.

Now we denote w by

(@) = —u ()

)= ———u(=).

v (1= o)k " \2F

Therefore, by Lemma EH (3) and the definition of oy, there is a linear function
L(z) = Az + B such that

][ lw— LI de < CrP(+e) < oppites)
B,

for any 0 < 7 < 1. Recalling the definition of w, we have

][ 1—60)*B"
B,

u(z) — (1 —6)* Az — ( oF dz < Crpten) (2.14)
for any 0 < r < 1/2%. Moreover, for any 1/2% < r <1 we have

1-80)*B|"
][ u (@) = (1= 00)" Az — % de
B,
— k p
< ¢ (sup lul? + (1 — o)* Ar]? 4 L= B
B, ok
< Copp(iten)
since (1 — o)k = 27Fa0 < pao < pou, .
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