Normalized solutions for Kirchhoff-type equations with combined nonlinearities: the L^2 -critical case

[●] Changlin Liu, [●] Ying Lv and [●] Zengqi Ou [⊠]

School of Mathematics and Statistics, Southwest University, 400715, Chongqing, People's Republic of China

Received 4 June 2024, appeared 23 December 2024 Communicated by Dimitri Mugnai

Abstract. In this paper, we consider the existence of normalized solutions for the following Kirchhoff-type problem:

$$-\left(a+b\int_{\mathbb{R}^N}|\nabla u|^2dx\right)\Delta u=\lambda u+|u|^{p-2}u+\mu|u|^{q-2}u\quad\text{in }\mathbb{R}^N,$$

with prescribed L^2 -norm:

$$\int_{\mathbb{R}^N} |u|^2 dx = c^2,$$

where $N = 2, 3, a \ge 0, b > 0$ and c > 0 are constants, $\lambda \in \mathbb{R}$, $2 < q < p = 2 + \frac{8}{N}$ and $\mu > 0$. The number $2 + \frac{8}{N}$ behaves as the L^2 -critical exponent for the above problem. We prove the multiplicity of normalized solutions for the above Kirchhoff-type problem with L^2 -critical nonlinearity (that is, $p = 2 + \frac{8}{N}$) in the two cases: $2 < q < 2 + \frac{4}{N}$ and $2 + \frac{4}{N} < q < 2 + \frac{8}{N}$.

Keywords: Kirchhoff equation, constrained minimization, variational method, Pohozaev manifold.

2020 Mathematics Subject Classification: 35J20, 35J60, 35B33.

1 Introduction and main results

In this paper, we investigate the multiplicity of normalized solutions for the following Kirchhoff-type problem

$$-\left(a+b\int_{\mathbb{R}^N}|\nabla u|^2dx\right)\Delta u=\lambda u+|u|^{p-2}u+\mu|u|^{q-2}u\quad\text{in }\mathbb{R}^N,\tag{1.1}$$

with prescribed mass

$$\int_{\mathbb{R}^N} |u|^2 dx = c^2,$$

[™]Corresponding author. Email: ouzengq707@sina.com

where $N = 2, 3, a \ge 0, b, c > 0, \lambda \in \mathbb{R}$ appears as a Lagrange multiplier, $2 < q < p = 2 + \frac{8}{N}$ and $\mu > 0$. Let $L^s(\mathbb{R}^N)(1 \le s < +\infty)$ be the Lebesgue space with norm $|u|_s = (\int_{\mathbb{R}^N} |u|^s dx)^{1/s}$, $H^1(\mathbb{R}^N)$ be the Hilbert space with the norm $||u|| = \left(\int_{\mathbb{R}^N} (|\nabla u|^2 + |u|^2) dx\right)^{\frac{1}{2}}$.

Problem (1.1) is a special form of the following Kirchhoff problem

$$-\left(a+b\int_{\mathbb{R}^N}|\nabla u|^2dx\right)\Delta u=f(x,u)$$
 in \mathbb{R}^N

which is also a variant of Dirichlet problem

$$\begin{cases} -\left(a+b\int_{\Omega}|\nabla u|^{2}dx\right)\Delta u = f(x,u) & \text{in }\Omega,\\ u=0 & \text{on }\partial\Omega, \end{cases}$$
(1.2)

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary. It is well-known that problem (1.2) appears naturally in the context of physics. Problem (1.2) is the stationary case of a nonlinear wave equation

$$u_{tt} - \left(a + b \int_{\Omega} |\nabla u|^2 dx\right) \Delta u = f(x, u), \tag{1.3}$$

first proposed by Kirchhoff [9] in 1883. Problem (1.3) is a generalization of the classical D'Alembert's wave equation which describes free vibrations of elastic strings. The parameters in problem (1.3) have specific physical meaning: f is the external force, a is related to the intrinsic properties of the string, and *u* means the displacement while *b* denotes the initial tension. Since then, problem (1.3) has received much attention, see [1, 11, 12, 14, 15] and the references therein. Since Lions in [11] proposed an abstract functional analysis framework, Kirchhoff type problem has been intensively studied during the last decades. From a mathematical perspective, problem (1.2) is not a pointwise identity as the appearance of the nonlocal term $\int_{\Omega} |\nabla u|^2 dx$. The nonlocal term causes some mathematical difficulties and the investigation of problem (1.2) is more interesting and challenging. Such a nonlocal model also appears in other fields as biological systems describing a process depending on the average of itself, for example one species' population density.

A way to study problem (1.1) is to search for solutions with L^2 -norm constraint, and such solutions are known as normalized solutions and $\lambda \in \mathbb{R}$ appears as a Lagrange multiplier. In addition, the study of L^2 -norm constraint problem can give a better insight of the dynamical properties, like orbital stability or instability, and can describe attractive Bose-Einstein condensate. Normalized solutions of problem (1.1) can be obtained by looking for critical points of the energy functional $E_{a,\mu}(u)$ constrained on S_c , where

$$E_{a,\mu}(u) := \frac{a}{2} \int_{\mathbb{R}^N} |\nabla u|^2 dx + \frac{b}{4} \left(\int_{\mathbb{R}^N} |\nabla u|^2 dx \right)^2 - \frac{1}{p} \int_{\mathbb{R}^N} |u|^p dx - \frac{\mu}{q} \int_{\mathbb{R}^N} |u|^q dx,$$

and

$$S_c := \left\{ u \in H^1(\mathbb{R}^N) : \int_{\mathbb{R}^N} |u|^2 dx = c^2
ight\}.$$

Many interesting results on the normalized solutions of Kirchhoff problem are also obtained not long ago, see [2,3,5,6,8,13,17,23]. Especially, many experts considered the existence of normalized solutions for problem (1.1) with combined nonlinearities. For the case $\mu > 0$, under different ranges of *p* and *q*, Li and Lou in [10] proved a multiplicity result for problem (1.1). In detail, if $2 < q < \frac{10}{3}$, $\frac{14}{3} and <math>\mu < \min\{\mu', \mu''\}$, two solutions for problem (1.1) were obtained. If $\frac{14}{3} < q < p < 6$, problem (1.1) has a mountain pass type solution. Hu and Mao in [6] considered the following minimization problem

$$m_{a,c} = \inf_{u \in S_c} E_{a,\mu}(u),$$
 (1.4)

and they proved that if $2 < q < \frac{10}{3}$ and $2 < q < p \leq \frac{14}{3}$, problem (1.4) has a minimizer for every $c \in (0, c_p^*)$. At the same time, when c satisfies the suitable conditions, the nonexistence of minimizers for problem (1.4) was considered in the following four cases: (i) $q = \frac{10}{3}$ and $p = \frac{14}{3}$; (ii) $\frac{10}{3} = q ; (iii) <math>2 < q < p = \frac{14}{3}$; (iv) $2 < q < p, \frac{14}{3} < p < 6$. Moreover, if $\frac{14}{3} < q < p < 6$, they also obtained the existence of normalized solutions for problem (1.1) by using constraint minimization on a suitable submanifold of S_c . For the Sobolev critical case (that is, p = 6), Feng, Liu and Zhang in [3] proved the existence and multiplicity of normalized solutions for problem (1.1) under suitable assumptions on μ and c for the following four cases: $2 < q < \frac{10}{3}, q = \frac{10}{3}, \frac{10}{3} < q < \frac{14}{3}, \frac{14}{3} \leq q < p = 6$. Some similar results were also obtained in [10,23]. For the case $\mu = 0$, the existence, multiplicity and uniqueness of normalized solutions for problem (1.1) have been considered in [13,19–22]. For the case $\mu < 0$, we refer to [2,6], and for the nonlinear Kirchhoff-type equations in high dimensions see [8].

As far as we known, there are few papers to consider the existence and multiplicity of normalized solutions for problem (1.1) with L^2 -critical nonlinearity (that is $p = 2 + \frac{8}{N}$) in the two cases: $2 < q < 2 + \frac{4}{N}$ and $2 + \frac{4}{N} < q < 2 + \frac{8}{N}$. The object of this paper is to prove the existence and multiplicity of normalized solutions for problem (1.1) in those cases under suitable assumptions on μ and a.

Before stating the main results of this paper, let us recall the Gagliardo–Nirenberg inequality (see [18]): for any $s \in [2, \frac{2N}{N-2})$ if $N \ge 3$ and $s \ge 2$ if N = 1, 2, we have

$$\frac{1}{s}|u|_{s}^{s} \leq \frac{1}{2|Q_{s}|_{2}^{s-2}}|\nabla u|_{2}^{s\gamma_{s}}|u|_{2}^{s-s\gamma_{s}},\tag{1.5}$$

where $\gamma_s := \frac{N(s-2)}{2s}$ and with equality only for $u = Q_s$, and up to translations, Q_s is the unique positive solution of

$$-\frac{N(s-2)}{4}\Delta u + \left(1 + \frac{s-2}{4}(2-N)\right)u = |u|^{s-2}u \text{ in } \mathbb{R}^N,$$

and satisfies

$$|\nabla Q_s|_2^2 = |Q_s|_2^2 = \frac{2}{s}|Q_s|_s^s.$$

Especially, let $p = 2 + \frac{8}{N}$, define

$$c^* := \left(rac{b|Q_p|_2^{rac{8}{N}}}{2}
ight)^{rac{8}{8-2N}}.$$

For $s = p = 2 + \frac{8}{N}$ and for any $u \in S_c$, we have

$$\frac{1}{p}|u|_{p}^{p} \leq \frac{1}{4}\frac{2}{c^{2}}\left(\frac{c}{|Q_{p}|_{2}}\right)^{\frac{8}{N}}|\nabla u|_{2}^{4} = \frac{b}{4}\left(\frac{c}{c^{*}}\right)^{\frac{8-2N}{N}}|\nabla u|_{2}^{4}.$$
(1.6)

Set

$$\mu_* := \frac{2a|Q_q|_2^{q-2}}{(4-q\gamma_q)c^{q-q\gamma_q}} \left(\frac{2a(2-q\gamma_q)}{b(4-q\gamma_q))\left(\left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}}-1\right)}\right)^{\frac{q-q\gamma_q}{2}}.$$
(1.7)

 $2-a\gamma$

Now, our main results are following.

Theorem 1.1. Let $2 < q < 2 + \frac{4}{N}$, $p = 2 + \frac{8}{N}$, $c > c^*$ and $0 < \mu < \mu_*$. Then problem (1.1) has two radial solutions, denoted by $\tilde{u}_{c,\mu}$ and $\hat{u}_{c,\mu}$. Moreover, $\tilde{u}_{c,\mu}$ is a local minimizer of the functional $E_{a,\mu}$ on the set

$$\mathcal{A}_{R_0} := \{ u \in S_{c,r} : |\nabla u|_2^2 < R_0 \}$$

for a suitable $R_0 = R_0(c, \mu) > 0$ with $E_{a,\mu}(\tilde{u}_{c,\mu}) < 0$ and $\tilde{u}_{c,\mu}$ solves problem (1.1) for some $\tilde{\lambda}_{c,\mu} < 0$, and $\hat{u}_{c,\mu}$ is a critical point of mountain pass type for $E_{a,\mu}$ with $E_{a,\mu}(\hat{u}_{c,\mu}) > 0$ and $\hat{u}_{c,\mu}$ solves problem (1.1) for some $\hat{\lambda}_{c,\mu} < 0$.

Theorem 1.2. If $2 + \frac{4}{N} < q < p = 2 + \frac{8}{N}$, $\mu > 0$ and $c < c^*$, we have the following results:

- (i) if a = 0, $m_{0,c} := \inf_{u \in S_c} E_{0,\mu}(u)$ has a radial minimizer \tilde{u} , and \tilde{u} solves problem (1.1) for some $\tilde{\lambda} < 0$.
- (ii) let $\bar{a} = \frac{b}{2} \left(1 \left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}}\right) \left(\frac{2}{N(q-2)} \frac{1}{4}\right) |\nabla \tilde{u}|_2^2 > 0$, for any $a \in (0, \bar{a})$, problem (1.1) has two radial solutions, the one is a global minimizer $\tilde{u}_{c,a}$ with $\tilde{\lambda}_{c,a} < 0$, and the other is the mountain pass type solution $u_{c,a}$ with $\lambda_{c,a} < 0$.

Remark 1.3. Theorem 1.1 complements [6, Theorem 1.2], where Hu and Mao considered the case $c \in (0, c^*)$ and obtained a minimizer of the functional $E_{a,\mu}$ on S_c . However, we deal with the case $c > c^*$ and obtain two solutions for problem (1.1) under suitable assumptions on the constant $\mu > 0$. In the proof of Theorem 1.1, since the functional $E_{a,\mu}$ is not bounded from below on S_c for $c > c^*$, we will restrict the functional $E_{a,\mu}$ on the Pohozaev set $\mathcal{P}_{c,\mu}$. We can get a local minimizer for $E_{a,\mu}|_{\mathcal{P}_{c,\mu}}$ and use mountain pass theorem to get the second critical point. We emphasis that (1.7) has been used to ensure that $\mathcal{P}_{c,\mu}$ is a smooth manifold and the existence of mountain pass type solution.

To the best of our knowledge, Hu and Mao in [6] proved that if N = 3, $\frac{10}{3} < q < \frac{14}{3}$, $p = \frac{14}{3}$, $c < c^*$ and $\mu > 0$ satisfy appropriate condition, problem (1.1) with has no minimizer. However, we try to prove the existence of normalized solution for problem (1.1) with $2 + \frac{4}{N} < q < p = 2 + \frac{8}{N}$ for the suitable constant a > 0. Furthermore, there are few results about the existence of normalized solutions to degenerate Kirchhoff equations, that is, a = 0, so we first establish the existence of minimizer $m_{0,c} = \inf_{u \in S_c} E_{0,\mu}(u) < 0$, which is a normalized solution of the degenerate Kirchhoff equation. And then, we establish $m_{a,c} := \inf_{u \in S_{c,r}} E_{a,\mu}(u) < 0$ with the help of the minimizer of $m_{0,c}$. At last, we will prove the existence of the second solution with the mountain pass type for problem (1.1).

To overcome the lack of compactness, we work in $H_r^1(\mathbb{R}^N)$. Although the energy functional $E_{a,\mu}$ has a bounded Palais–Smale sequence on the mass constraint set $S_{c,r}$, unfortunately, we can not deduce whether $E_{a,\mu}$ satisfies the Palais–Smale condition. To overcome this difficulty, in the proof of Theorem 1.1, we will constrain the energy functional $E_{a,\mu}$ on a submanifold of $S_{c,r}$ corresponding to the Pohozaev identity. In the proof of (2) of Theorem 1.2, we use Jeanjean's method in [7] and construct an auxiliary map $I_{a,\mu}(u,\tau) := E_{a,\mu}(\tau \star u)$, which has the same type of geometric structure on $S_{c,r} \times \mathbb{R}$ as $E_{a,\mu}$ on $S_{c,r}$.

2 Preliminaries

In this section, we will introduce some notations, then we recall a version of linking theorem. Finally, we give the compactness analysis of Palais–Smale sequences for $E_{a,\mu}|_{S_{cr}}$. Let

$$H_r^1(\mathbb{R}^N) = \{ u \in H^1(\mathbb{R}^N) : u(|x|) = u(x) \},\$$

$$S_{c,r} := S_c \cap H_r^1(\mathbb{R}^N) = \{ u \in S_c : u(x) = u(|x|) \}$$

For $u \in S_c$, and $\tau \in \mathbb{R}$, define the fiber map preserving the L^2 -norm

$$(\tau \star u)(x) := e^{\frac{N}{2}\tau}u(e^{\tau}x) \text{ for any } x \in \mathbb{R}^{N}.$$

We introduce the auxiliary functional $I_{a,\mu}: H^1(\mathbb{R}^N) \times \mathbb{R}^+ \to \mathbb{R}$ by

$$I_{a,\mu}(u,\tau) := E_{a,\mu}(\tau \star u) = \frac{e^{2\tau}a}{2} |\nabla u|_2^2 + \frac{e^{4\tau}b}{4} |\nabla u|_2^4 - \frac{e^{4\tau}}{p} |u|_p^p - \mu \frac{e^{\gamma_q q\tau}}{q} |u|_q^q,$$
(2.1)

then we easily see that the functional $I_{a,\mu}$ is of class C^1 . In addition, we define the Pohozaev set by

$$\mathcal{P}_{c,\mu} = \{ u \in S_{c,r} : P_{\mu}(u) = 0 \}$$

with

$$P_{\mu}(u) = a|\nabla u|_{2}^{2} + b|\nabla u|_{2}^{4} - \frac{4}{p}|u|_{p}^{p} - \mu\gamma_{q}|u|_{q}^{q}.$$

Lemma 2.1 ([4, Theorem 2.7]). Let φ be a C¹-functional on a complete connected C¹-Finsler manifold *X* and consider a homotopy-stable family \mathcal{F} with extended boundary *B*. Set

$$c = c(\varphi, \mathcal{F}) = \inf_{A \in \mathcal{F}} \max_{x \in A} \varphi(x)$$

and let F be a closed subset of X satisfying

$$A \cap F \setminus B \neq \emptyset$$
 for every $A \in \mathcal{F}$ (2.2)

and

$$\sup_{x \in B} \varphi(x) \le c \le \inf_{x \in F} \varphi(x).$$
(2.3)

Then, for any sequence of sets $(A_n)_n \in \mathcal{F}$ such that $\lim_{n\to\infty} \sup_{A_n} \varphi = c$, there exists a sequence $(x_n)_n$ in $X \setminus B$ such that

$$\lim_{n\to\infty}\varphi(x_n)=c,\quad \lim_{n\to\infty}\|d\varphi(x_n)\|=0,\quad \lim_{n\to\infty}\operatorname{dist}(x_n,F)=0,\quad \lim_{n\to\infty}\operatorname{dist}(x_n,A_n)=0.$$

Lemma 2.2. Let a > 0, b > 0, c > 0, $\mu > 0$, $2 < q < p = 2 + \frac{8}{N}$. Let $\{u_n\} \subset S_{c,r}$ be a bounded Palais–Smale sequence for $E_{a,\mu}|_{S_{c,r}}$ at energy level $m \neq 0$ with $P_{\mu}(u_n) \rightarrow 0$ as $n \rightarrow \infty$. Then up to a subsequence $u_n \rightarrow u$ strongly in $H^1(\mathbb{R}^N)$. Moreover, $u \in S_{c,r}$ and u is a radial solution for problem (1.1) for some $\lambda < 0$.

Proof. The proof is divided into three steps.

Step 1: Lagrange multipliers $\lambda_n \to \lambda$ in \mathbb{R} . Since $H_r^1(\mathbb{R}^N) \hookrightarrow L^s(\mathbb{R}^N)$ is compact for $s \in (2, \frac{2N}{N-2})$, from the boundedness of Palais–Smale sequence $\{u_n\}$, there exists a subsequence of $\{u_n\}$, still denoted by $\{u_n\}$, and $u \in H_r^1(\mathbb{R}^N)$ such that

$$u_n \rightarrow u$$
 in $H^1_r(\mathbb{R}^N)$, $u_n \rightarrow u$ in $L^s(\mathbb{R}^N)$, $u_n \rightarrow u$ a.e. on \mathbb{R}^N

Because $\{u_n\}$ is a Palais–Smale sequence of $E_{a,\mu}|_{S_{c,r}}$, by the Lagrange multipliers rule, there exists $\lambda_n \in \mathbb{R}$ such that

$$(a+b|\nabla u_n|_2^2)\int_{\mathbb{R}^N} \nabla u_n \nabla \varphi dx - \mu \int_{\mathbb{R}^N} |u_n|^{q-2} u_n \varphi dx - \int_{\mathbb{R}^N} |u_n|^{p-2} u_n \varphi dx - \lambda_n \int_{\mathbb{R}^N} u_n \varphi dx = o_n(1) \quad (2.4)$$

for every $\varphi \in H^1(\mathbb{R}^N)$, where $o_n(1) \to 0$ as $n \to \infty$. In particular, taking $\varphi = u_n$ in (2.4), we have

$$\lambda_n c^2 = a |\nabla u_n|_2^2 + b |\nabla u_n|_2^4 - \mu |u_n|_q^q - |u_n|_p^p + o_n(1).$$

The boundedness of $\{u_n\}$ in $H^1_r(\mathbb{R}^N) \cap L^q(\mathbb{R}^N) \cap L^p(\mathbb{R}^N)$ implies that $\{\lambda_n\}$ is bounded as well. Hence, up to a subsequence, we have $\lambda_n \to \lambda \in \mathbb{R}$.

Step 2: $\lambda < 0$ and $u \neq 0$. Recalling that $P_{\mu}(u_n) \rightarrow 0$, we have

$$\lambda_n c^2 = \mu(\gamma_q - 1) |u_n|_q^q + (\gamma_p - 1) |u_n|_p^p + o_n(1),$$

hence, let $n \to \infty$, we have

$$\lambda c^{2} = \mu(\gamma_{q} - 1)|u|_{q}^{q} + (\gamma_{p} - 1)|u|_{p}^{p}.$$

Since $\mu > 0$ and $0 < \gamma_q, \gamma_p < 1$, we deduce that $\lambda \le 0$, with "=" if and only if $u \equiv 0$. If $\lambda_n \to 0$, we have $\lim_{n\to\infty} |u_n|_p^p = 0 = \lim_{n\to\infty} |u_n|_q^q$. Using again $P_{\mu}(u_n) \to 0$, we have $E_{a,\mu}(u_n) \to 0$, which is a contradiction with $E_{a,\mu}(u_n) \to m \neq 0$ and thus $\lambda_n \to \lambda < 0$ and $u \neq 0$.

Step 3: $u_n \to u$ in $H^1(\mathbb{R}^N)$. Since $u_n \rightharpoonup u \neq 0$ in $H^1(\mathbb{R}^N)$, we get $B := \lim_{n\to\infty} |\nabla u_n|_2^2 \ge |\nabla u|_2^2 > 0$. Then, (2.4) implies that

$$(a+bB)\int_{\mathbb{R}^N}\nabla u\nabla\varphi dx - \mu\int_{\mathbb{R}^N}|u|^{q-2}u\varphi dx - \int_{\mathbb{R}^N}|u|^{p-2}u\varphi dx - \lambda\int_{\mathbb{R}^N}u\varphi dx = 0$$
(2.5)

for any $\varphi \in H^1(\mathbb{R}^N)$. Combining (2.4) with (2.5) and taking $\varphi = u_n - u$, we obtain

$$(a+bB)|\nabla(u_n-u)|_2^2 - \lambda|u_n-u|_2^2 \to 0$$
 as $n \to \infty$.

Since $\lambda < 0$, we conclude that $\{u_n\}$ converges strongly in $H^1(\mathbb{R}^N)$.

3 Proof of Theorem 1.1

In this section, we deal with the case $2 < q < 2 + \frac{4}{N}$, $p = 2 + \frac{8}{N}$, $c > c^*$, $\mu > 0$ and prove Theorem 1.1. First of all, it is well known that any critical point of the functional $E_{a,\mu}$ belongs to $\mathcal{P}_{c,\mu}$. Conversely, if $u \in \mathcal{P}_{c,\mu}$, we get $\partial_{\tau} I_{a,\mu}(u,0) = 0$. Now, we consider the decomposition of $\mathcal{P}_{c,\mu}$ into the disjoint union $\mathcal{P}_{c,\mu} = \mathcal{P}^+_{c,\mu} \cup \mathcal{P}^0_{c,\mu} \cup \mathcal{P}^-_{c,\mu}$, where

$$\begin{aligned} \mathcal{P}_{c,\mu}^{+} &:= \{ u \in \mathcal{P}_{c,\mu} : 2a |\nabla u|_{2}^{2} + 4b |\nabla u|_{2}^{4} > \mu q \gamma_{q}^{2} |u|_{q}^{q} + p \gamma_{p}^{2} |u|_{p}^{p} \} = \{ u \in \mathcal{P}_{c,\mu} : \partial_{\tau\tau} I_{a,\mu}(u,0) > 0 \}, \\ \mathcal{P}_{c,\mu}^{0} &:= \{ u \in \mathcal{P}_{c,\mu} : 2a |\nabla u|_{2}^{2} + 4b |\nabla u|_{2}^{4} = \mu q \gamma_{q}^{2} |u|_{q}^{q} + p \gamma_{p}^{2} |u|_{p}^{p} \} = \{ u \in \mathcal{P}_{c,\mu} : \partial_{\tau\tau} I_{a,\mu}(u,0) = 0 \}, \\ \mathcal{P}_{c,\mu}^{-} &:= \{ u \in \mathcal{P}_{c,\mu} : 2a |\nabla u|_{2}^{2} + 4b |\nabla u|_{2}^{4} < \mu q \gamma_{q}^{2} |u|_{q}^{q} + p \gamma_{p}^{2} |u|_{p}^{p} \} = \{ u \in \mathcal{P}_{c,\mu} : \partial_{\tau\tau} I_{a,\mu}(u,0) < 0 \}. \end{aligned}$$

By (1.5) and (1.6), we have

$$E_{a,\mu}(u) \ge \frac{a}{2} |\nabla u|_2^2 + \frac{b}{4} \left(1 - \left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}} \right) |\nabla u|_2^4 - \mu \frac{c^{q-\gamma_q q}}{2|Q_q|_2^{q-2}} |\nabla u|_2^{\gamma_q q}$$
(3.1)

for every $u \in S_{c,r}$. Therefore, to understand the geometry of the functional $E_{a,\mu}|_{S_{c,r}}$, it is useful to consider the function $h : \mathbb{R}^+ \to \mathbb{R}$:

$$h(t) := \frac{a}{2}t + \frac{b}{4}\left(1 - \left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}}\right)t^2 - \mu \frac{c^{q-\gamma_q}}{2|Q_q|_2^{q-2}}t^{\frac{\gamma_q q}{2}}.$$

Now, we study the properties of h(t).

Lemma 3.1. Let $c > c^*$, $2 < q < 2 + \frac{4}{N}$, $p = 2 + \frac{8}{N}$, $0 < \mu < \mu_*$, where μ_* is defined in (1.7), the function h has a local strict minimum at negative level and a global strict maximum at positive level. Moreover, there exist $0 < R_0 < R_1$, both depending on c and μ , such that $h(R_0) = 0 = h(R_1)$ and h(t) > 0 for any $t \in (R_0, R_1)$.

Proof. Since

$$h(t) = t^{\frac{\gamma_{qq}}{2}} \left(\frac{a}{2} t^{1 - \frac{\gamma_{qq}}{2}} + \frac{b}{4} \left(1 - \left(\frac{c}{c^*} \right)^{\frac{8-2N}{N}} \right) t^{2 - \frac{\gamma_{qq}}{2}} - \mu \frac{c^{q - q\gamma_q}}{2|Q_q|_2^{q-2}} \right)$$

for t > 0, we have h(t) > 0 if and only if

$$\varphi(t) > \mu \frac{c^{q-q\gamma_q}}{2|Q_q|_2^{q-2}}, \quad \text{with } \varphi(t) := \frac{a}{2}t^{1-\frac{\gamma_q q}{2}} + \frac{b}{4}\left(1 - \left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}}\right)t^{2-\frac{\gamma_q q}{2}}$$

It is not difficult to check that φ has a unique critical point \overline{t} on $(0, \infty)$, which is a global maximum point at positive level:

$$\bar{t} := \frac{2a(2-q\gamma_q)}{b(4-q\gamma_q)\left(\left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}}-1\right)},$$

and the maximum level is

$$\varphi(\bar{t}) = \frac{a}{(4-q\gamma_q)} \left(\frac{2a(2-q\gamma_q)}{b(4-q\gamma_q)\left(\left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}}-1\right)} \right)^{1-\frac{q}{2}} > 0.$$

From $0 < \frac{\gamma_q q}{2} < 1$, $\mu > 0$ and $c > c^*$, it is obvious that $\lim_{t\to 0^+} h(t) = 0^-$ and $\lim_{t\to +\infty} h(t) = -\infty$. Therefore, *h* is positive on an open interval (R_0, R_1) if $\varphi(\bar{t}) > \mu \frac{c^{q-q\gamma_q}}{2|Q_q|_2^{q-2}}$, which is ensured by

$$0 < \mu < \mu_* := \frac{2a|Q_q|_2^{q-2}}{(4 - q\gamma_q)c^{q-q\gamma_q}} \left(\frac{2a(2 - q\gamma_q)}{b(4 - q\gamma_q)\left(\left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}} - 1\right)}\right)^{1 - \frac{q\gamma_q}{2}}$$

It follows immediately that *h* has a global maximum at positive level in (R_0, R_1) . Moreover, since $\lim_{t\to 0^+} h(t) = 0^-$, there exists a local minimum point at negative level in $(0, R_0)$. The fact that *h* has no other critical points can be verified observing that h'(t) = 0 if and only if

$$\psi(t) = \mu \frac{\gamma_q q c^{q-q\gamma_q}}{2|Q_q|_2^{q-2}} \quad \text{with } \psi(t) := a t^{\frac{2-q\gamma_q}{2}} + b \left(1 - \left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}}\right) t^{\frac{4-q\gamma_q}{2}}.$$

Clearly ψ has only one critical point, which is a strict maximum, and hence the above equation has at most two solutions, which necessarily are the local minimum and the global maximum of *h* previously found.

We now study the structure of the Pohozaev manifold $\mathcal{P}_{c,\mu}$. Recalling the decomposition of $\mathcal{P}_{c,\mu} = \mathcal{P}_{c,\mu}^+ \cup \mathcal{P}_{c,\mu}^0 \cup \mathcal{P}_{c,\mu}^-$.

Lemma 3.2. If $2 < q < 2 + \frac{4}{N}$, $p = 2 + \frac{8}{N}$ and $0 < \mu < \mu_*$, then $\mathcal{P}^0_{c,\mu} = \emptyset$ and $\mathcal{P}_{c,\mu}$ is a smooth manifold of codimension 2 in $H^1(\mathbb{R}^N)$.

Proof. Otherwise, let $u \in \mathcal{P}^0_{c,\mu}$, from $P_{c,\mu}(u) = 0$ and $\partial_{\tau\tau} I_{a,\mu}(u,0) = 0$, we have

$$a|\nabla u|_{2}^{2} + b|\nabla u|_{2}^{4} - \mu\gamma_{q}|u|_{q}^{q} - \frac{4}{p}|u|_{p}^{p} = 0,$$

$$2a|\nabla u|_{2}^{2} + 4b|\nabla u|_{2}^{4} - \mu q\gamma_{q}^{2}|u|_{q}^{q} - p\gamma_{p}^{2}|u|_{p}^{p} = 0$$

By (1.5), we obtain

$$(2 - q\gamma_q)a|\nabla u|_2^2 + (4 - q\gamma_q)b|\nabla u|_2^4 = \gamma_p(p\gamma_p - q\gamma_q)|u|_p^p \le (4 - q\gamma_q)b\left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}}|\nabla u|_2^4,$$
$$2a|\nabla u|_2^2 = \mu\gamma_q(4 - q\gamma_q)|u|_q^q \le \mu q\gamma_q(4 - q\gamma_q)\frac{c^{q-q\gamma_q}}{2|Q_q|_2^{q-2}}|\nabla u|_2^{q\gamma_q}.$$

Then, the lower and upper bounds of $|\nabla u|_2$ are given by

$$\left(\frac{a(2-q\gamma_q)}{b(4-q\gamma_q)\left(\left(\frac{c}{c_*}\right)^{\frac{8-2N}{N}}-1\right)}\right)^{\frac{1}{2}} \le |\nabla u|_2 \le \left(\frac{\mu q\gamma_q(4-q\gamma_q)c^{q-q\gamma_q}}{4a|Q_q|_2^{q-2}}\right)^{\frac{1}{2-q\gamma_q}}$$

which leads to

$$\mu > \frac{4a|Q_q|_2^{q-2}}{q\gamma_q(4-q\gamma_q)c^{q-q\gamma_q}} \left(\frac{a(2-q\gamma_q)}{b(4-q\gamma_q)\left(\left(\frac{c}{c_*}\right)^{\frac{8-2N}{N}}-1\right)}\right)^{\frac{2-q\gamma_q}{2}} > \mu_*,$$

which contradicts to $0 < \mu < \mu_*$, hence, $\mathcal{P}_{c,\mu}^0 = \emptyset$. $\mathcal{P}_{c,\mu}$ is a smooth manifold of codimension 2 in $H^1(\mathbb{R}^N)$, see proof of [16, Lemma 5.2].

Lemma 3.3. Let $a > 0, b > 0, 2 < q < 2 + \frac{4}{N}, p = 2 + \frac{8}{N}, 0 < \mu < \mu^*$, if $u \in P_{c,\mu}$ is a critical point for $E_{a,\mu}|_{B_{c,\mu}}$, then u is a critical point for $E_{a,\mu}|_{S_{c,r}}$, where μ^* is defined in (1.7).

Proof. From Lemma 3.2, we deduce that $\mathcal{P}_{c,\mu}$ is a smooth manifold of codimension 2 in $H^1(\mathbb{R}^N)$ and $\mathcal{P}_{c,\mu}^0 = \emptyset$. If $u \in \mathcal{P}_{c,\mu}$ is a critical point for $E_{a,\mu}|_{\mathcal{P}_{c,\mu}}$, then by the Lagrange multipliers rule, there exists $\lambda, \xi \in \mathbb{R}$ such that

$$\left\langle E_{a,\mu}'(u),\varphi\right\rangle -\lambda\int_{\mathbb{R}^N}u\varphi dx-\xi\left\langle P_{\mu}'(u),\varphi\right\rangle =0,\quad\forall\varphi\in H^1\left(\mathbb{R}^N\right).$$

So *u* solves

$$-((1-2\xi)a+(1-4\xi)b|\nabla u|_{2}^{2})\Delta u-\lambda u+\mu(\xi q\delta_{q}-1)|u|^{q-2}u+(p\xi\gamma_{p}-1)|u|^{p-2}u=0.$$

Combining with the Pohozaev identity, we have

$$(1-2\xi)a|\nabla u|_{2}^{2}+(1-4\xi)b|\nabla u|_{2}^{4}+\mu\gamma_{q}(\xi q\gamma_{q}-1)|u|_{q}^{q}+\gamma_{p}(p\xi\gamma_{p}-1)|u|_{p}^{p}=0.$$

Since $u \in \mathcal{P}_{c,\mu}$ and $u \notin \mathcal{P}_{c,\mu}^0$, we deduce from $\xi(2a|\nabla u|_2^2 + 4b|\nabla u|_2^4 - \mu q \gamma_q^2 |u|_q^q - \gamma_p^2 p |u|_p^p) = 0$ that $\xi = 0$.

The manifold $\mathcal{P}_{c,\mu}$ is then divided into two components $\mathcal{P}_{c,\mu}^+$ and $\mathcal{P}_{c,\mu}^-$, having disjoint closure.

Lemma 3.4. For every $u \in S_{c,r}$, we have

- (i) if $\frac{b}{4} |\nabla u|_2^4 \ge \frac{1}{p} |u|_p^p$, the function $I_{a,\mu}(u, \cdot)$ has a critical point $s_u \in \mathbb{R}$ and a zero $c_u \in \mathbb{R}$, with $s_u < c_u$;
- (ii) if $\frac{b}{4} |\nabla u|_2^4 < \frac{1}{p} |u|_p^p$, the function $I_{a,\mu}(u, \cdot)$ has exactly two critical points $s_u < t_u \in \mathbb{R}$ and two zeros $c_u < d_u \in \mathbb{R}$, with $s_u < c_u < t_u < d_u$;
- (iii) $\int_{\mathbb{R}^N} |\nabla(\tau \star u)|^2 \leq R_0$ for every $\tau \leq c_u$, and

$$E_{a,\mu}(s_u \star u) = \min\left\{E_{a,\mu}(\tau \star u) : \tau \in \mathbb{R} \text{ and } \int_{\mathbb{R}^N} |\nabla(\tau \star u)|^2 dx < R_0\right\} < 0;$$
(3.2)

(iv) For any $u \in S_{c,r}$ with $\frac{b}{4} |\nabla u|_2^4 < \frac{1}{p} |u|_p^p$, we have

$$E_{a,\mu}(t_u \star u) = \max\{E_{a,\mu}(\tau \star u) : \tau \in \mathbb{R}\} > 0, \tag{3.3}$$

and $I_{a,\mu}$ is strictly decreasing and concave on $\tau \in (t_u, +\infty)$;

(v) The maps $u \in S_{c,r} \mapsto s_u \in \mathbb{R}$ and $u \in S_{c,r} \mapsto t_u \in \mathbb{R}$ are of class C^1 .

Proof. We recall that by (3.1)

$$I_{a,\mu}(u,\tau) = E_{a,\mu}(\tau \star u) \ge h\left(\int_{\mathbb{R}^N} |\nabla(\tau \star u)|^2 dx\right) = h\left(e^{2\tau} \int_{\mathbb{R}^N} |\nabla u|^2 dx\right).$$

Thus, the function $I_{a,\mu}(u, \cdot)$ is positive on $(C(R_0), C(R_1))$ with

$$(C(R_0), C(R_1)) := \left(\frac{1}{2} \ln\left(R_0 / \int_{\mathbb{R}^N} |\nabla u|^2 dx\right), \frac{1}{2} \ln\left(R_1 / \int_{\mathbb{R}^N} |\nabla u|^2 dx\right)\right).$$

If $\frac{b}{4} |\nabla u|_2^4 \ge \frac{1}{p} |u|_p^p$, from (2.1), $I_{a,\mu}(u, \tau) \to +\infty$ as $\tau \to +\infty$, and $I_{a,\mu}(u, \tau) \to 0^-$ as $\tau \to -\infty$. Hence, it follows that $I_{a,\mu}$ has at least a critical point s_u , with s_u local minimum point on $(-\infty, C(R_0))$ at negative level, and $I_{a,\mu}$ has at least a zero point c_u with $s_u < c_u < C(R_0)$. Note that $\partial_{\tau}I_{a,\mu}(u, \tau) = 0$ reads

$$\phi(\tau) = \mu \gamma_q |u|_q^q \quad \text{with } \phi(\tau) := a e^{\frac{4-N(q-2)}{2}\tau} |\nabla u|_2^2 + b e^{\frac{8-N(q-2)}{2}\tau} |\nabla u|_2^4 - \frac{4}{p} e^{\frac{8-N(q-2)}{2}\tau} |u|_p^p.$$
(3.4)

But $\phi(\tau)$ is increasing on $(-\infty, +\infty)$, hence, $I_{a,\mu}$ has exactly a critical point s_u and a zero point c_u .

If $\frac{b}{4}|\nabla u|_2^4 < \frac{1}{p}|u|_p^p$, $I_{a,\mu}(u,\tau) \to -\infty$ as $\tau \to +\infty$ and ϕ has a unique maximum point, and $I_{a,\mu}(u,\tau) \to 0^-$ as $\tau \to -\infty$. Therefore, we conclude that $I_{a,\mu}$ has exactly two critical points:

 s_u , local minimum on $(-\infty, C(R_0))$ at negative level, and t_u , global maximum at positive level, which also gives (3.3).

From $s_u < C(R_0)$, then it holds that

$$\int_{\mathbb{R}^N} |\nabla(s_u \star u)|^2 dx = e^{2s_u} \int_{\mathbb{R}^N} |\nabla u|^2 dx < R_0.$$

In addition, we have $s_u \star u \in \mathcal{P}_{c,\mu}$, $t_u \star u \in \mathcal{P}_{c,\mu}$, and $\tau \star u \in \mathcal{P}_{c,\mu}$ implies $\tau \in \{s_u, t_u\}$. By minimality and $\mathcal{P}_{c,\mu}^0 = \emptyset$, we have $\partial_{\tau\tau} I_{a,\mu}(u, s_u) > 0$, that is, $s_u \star u \in \mathcal{P}_{c,\mu}^+$. In the same way, $t_u \star u \in \mathcal{P}_{c,\mu}^-$. In particular, $I_{a,\mu}(u, \cdot)$ is concave on $[t_u, +\infty)$.

Finally, we show that $u \mapsto s_u$ and $u \mapsto t_u$ are of class C^1 . To this end, we apply the implicit function theorem on the C^1 function $\Phi(u, \tau) := \partial_{\tau} I_{a,\mu}(u, \tau)$. We see $\Phi(u, s_u) = 0$ and $\partial_{\tau} \Phi(u, s_u) = \partial_{\tau\tau} I_{a,\mu}(u, s_u) > 0$, and the fact that it is not possible to pass with continuity from $\mathcal{P}_{c,\mu}^+$ to $\mathcal{P}_{c,\mu}^-$ (since $\mathcal{P}_{c,\mu}^0 = \emptyset$). By the same argument, we have that $u \mapsto t_u$ is of C^1 .

From the proof of Lemma 3.4, we see that $s_u < C(R_0) < t_u$ and

$$\int_{\mathbb{R}^N} |\nabla(s_u \star u)|^2 dx < R_0 < \int_{\mathbb{R}^N} |\nabla(t_u \star u)|^2 dx$$

which implies

$$\mathcal{P}_{c,\mu}^+ \subseteq \{ u \in S_{c,r} : |\nabla u|_2^2 < R_0 \}$$

and

$$\mathcal{P}_{c,\mu}^{-} \subseteq \{u \in S_{c,r} : |\nabla u|_2^2 > R_0\}$$

For k > 0, let us set

$$\mathcal{A}_k := \{ u \in S_{a,r} : |\nabla u|_2^2 < k \},$$

and

$$M_{c,\mu}:=\inf_{u\in\mathcal{A}_{R_0}}E_{a,\mu}(u).$$

As an immediate lemma, we have:

Lemma 3.5. $\sup_{\mathcal{P}_{c,\mu}^+} E_{a,\mu} \leq 0 \leq \inf_{\mathcal{P}_{c,\mu}^-} E_{a,\mu}.$

Lemma 3.6. It results that $M_{c,\mu} \in (-\infty, 0)$, that

$$M_{c,\mu} = \inf_{\mathcal{P}_{c,\mu}} E_{a,\mu} = \inf_{\mathcal{P}_{c,\mu}^+} E_{a,\mu}, \quad and \ that \quad M_{c,\mu} < \inf_{\mathcal{A}_{R_0} \setminus \mathcal{A}_{R_0-\rho}} E_{a,\mu}$$

for $\rho > 0$ small enough.

Proof. For any $u \in A_{R_0}$, we have

$$E_{a,\mu}(u) \ge h(|\nabla u|_2^2) \ge \min_{t \in [0,R_0]} h(t) > -\infty,$$

and hence $M_{c,\mu} > -\infty$. Moreover, for any $u \in S_{c,r}$, we have $|\nabla(\tau \star u)|_2^2 < R_0$ and $E_{a,\mu}(\tau \star u) < 0$ for $\tau \ll -1$, and hence $M_{c,\mu} < 0$.

Now, $M_{c,\mu} \leq \inf_{\mathcal{P}_{c,\mu}^+} E_{a,\mu}$ from $\mathcal{P}_{c,\mu}^+ \subset \mathcal{A}_{R_0}$. On the other hand, if $u \in \mathcal{A}_{R_0}$, then $s_u \star u \in \mathcal{P}_{c,\mu}^+ \subset \mathcal{A}_{R_0}$, and

$$E_{a,\mu}(s_u \star u) = \min\left\{E_{a,\mu}(\tau \star u) : \tau \in \mathbb{R} \text{ and } \int_{\mathbb{R}^N} |\nabla(\tau \star u)|^2 dx < R_0\right\} \le E_{a,\mu}(u),$$

which implies that $\inf_{\mathcal{P}_{c,\mu}^+} E_{a,\mu} \leq M_{c,\mu}$. To prove that $\inf_{\mathcal{P}_{c,\mu}^+} E_{a,\mu} = \inf_{\mathcal{P}_{c,\mu}} E_{a,\mu}$, it is sufficient to recall that $E_{a,\mu}(u) > 0$ on $\mathcal{P}_{c,\mu}^-$.

Finally, by the continuity of *h*, there exists $\rho > 0$ such that $h(t) \ge \frac{M_{c,\mu}}{2}$ for any $t \in [R_0 - \rho, R_0]$. Therefore, we have

$$E_{a,\mu}(u) \ge h(|\nabla u|_2^2) \ge \frac{M_{c,\mu}}{2} > M_{c,\mu}$$

for every $u \in S_{c,r}$ with $R_0 - \rho \le |\nabla u|_2^2 \le R_0$.

Lemma 3.7. $M_{c,\mu}$ can be achieved by some $\tilde{u}_{c,\mu} \in S_{c,r}$. Moreover, $\tilde{u}_{c,\mu}$ is an interior local minimizer for $E_{a,\mu}|_{\mathcal{A}_{R_0}}$, and $\tilde{u}_{c,\mu}$ solves problem (1.1) for some $\tilde{\lambda}_{c,\mu} < 0$. Moreover, $\tilde{u}_{c,\mu}$ is a ground state of $E_{a,\mu}|_{S_{c,r}}$, any ground state of $E_{a,\mu}|_{S_{c,r}}$ is a local minimizer of $E_{a,\mu}$ on A_{R_0} .

Proof. Let us consider a minimizing sequence $\{v_n\}$ for $E_{a,\mu}|_{\mathcal{A}_{R_0}}$. By Lemma 3.4, there exists a sequence $\{s_{v_n}\}$ such that $s_{v_n} \star v_n \in \mathcal{P}^+_{c,\mu}$ and

$$E_{a,\mu}(s_{v_n} \star v_n) = \min\left\{E_{a,\mu}(\tau \star s_{v_n}) : \tau \in \mathbb{R} \text{ and } \int_{\mathbb{R}^N} |\nabla(\tau \star s_{v_n})|^2 dx < R_0\right\} < E_{a,\mu}(v_n),$$

where the last inequality follows from $v_n \in A_{R_0}$. Besides, we also see that

$$\int_{\mathbb{R}^N} |\nabla (s_{v_n} \star v_n)|^2 dx < R_0,$$

furthermore, by Lemma 3.6, we have

$$\int_{\mathbb{R}^N} |\nabla (s_{v_n} \star v_n)|^2 dx < R_0 - \rho$$

Once again by Lemma 3.6, it holds that

$$M_{c,\mu} = \inf_{\mathcal{P}_{c,\mu}} E_{a,\mu} = \inf_{\mathcal{P}_{a,\mu}^+} E_{a,\mu}.$$

Setting $u_n = s_{v_n} \star v_n$ and using the Ekeland's variational principle, we may assume that $\{u_n\}$ is a Palais–Smale sequence for $E_{a,\mu}$ on $S_{c,r}$ and $P_{\mu}(u_n) = 0$. Hence, we have

$$E_{a,\mu}(u_n) = \frac{a}{4} |\nabla u_n|_2^2 - \frac{\mu}{q} \left(1 - \frac{N(q-2)}{8}\right) |u_n|_q^q = M_{c,\mu} + o_n(1).$$

It results to

$$\frac{a}{4}|\nabla u_n|_2^2 \le (M_{c,\mu}+1) + \frac{\mu}{q} \left(1 - \frac{N(q-2)}{8}\right) \frac{c^{q-\frac{N(q-2)}{2}}}{2|Q_q|_2^{q-2}} |\nabla u_n|_2^{\frac{N(q-2)}{2}},\tag{3.5}$$

which gives $\{|\nabla u_n|_2\}$ is bounded, hence, $\{u_n\}$ is bounded in $H^1(\mathbb{R}^N)$. From Lemma 2.2, up to a subsequence, $u_n \to \tilde{u}_{c,\mu}$ strongly in $H^1(\mathbb{R}^N)$, and $\tilde{u}_{c,\mu}$ solves problem (1.1) for some $\tilde{\lambda}_{c,\mu} < 0$. Moreover, we have $\int_{\mathbb{R}^N} |\nabla \tilde{u}_{c,\mu}|^2 dx < R_0 - \rho$ and $\tilde{u}_{c,\mu}$ is an interior local minimizer for $M_{c,\mu}$.

Since any critical point of $E_{a,\mu}|_{S_{c,r}}$ lies in $\mathcal{P}_{c,\mu}$ and $M_{c,\mu} = \inf_{\mathcal{P}_{c,\mu}} E_{a,\mu}$, we see that $\tilde{u}_{c,\mu}$ is a ground state for $E_{a,\mu}|_{S_{c,r}}$. It only remains to prove that any ground state of $E_{a,\mu}|_{S_{c,r}}$ is a local minimizer of $E_{a,\mu}|_{S_{c,r}}$. It only remains to prove that any ground state of $E_{a,\mu}|_{S_{c,r}}$ is a local minimizer of $E_{a,\mu}(u) < 0 < \inf_{\mathcal{P}_{c,\mu}} E_{a,\mu}$, necessarily $u \in \mathcal{P}_{c,\mu}^+$. Then Lemma 3.6 implies that $\mathcal{P}_{c,\mu}^+ \subset A_{R_0}$. This leads to $|\nabla u|_2 < R_0$, and as a consequence u is a local minimizer for $E_{a,\mu}|_{A_{R_0}}$. Lemma 3.4 implies that $E_{a,\mu}(u) \leq 0$ for any $u \in \mathcal{P}_{c,\mu}^+$, and $|\nabla u|_2^2 < R_0$. Hence, u is a local minimizer for $E_{a,\mu}|_{A_{R_0}}$.

In the following, we focus on the existence of a second critical point for $E_{a,\mu}|_{S_{c,r}}$. Let

$$\widetilde{Q}_p(x) := c \frac{Q_p(x)}{|Q_p|_2}, \qquad Q_p^{\tau}(x) := c \frac{e^{\frac{N}{2}\tau}Q_p(e^{\tau}x)}{|Q_p|_2} \quad \text{for any } \tau > 0,$$

we have $\widetilde{Q}_p(x), Q_p^{\tau}(x) \in S_{c,r}$.

Lemma 3.8. If $2 < q < 2 + \frac{4}{N}$, $p = 2 + \frac{8}{N}$, and $c > c^*$, we have $\int_{\mathbb{R}^N} |\nabla Q_p^{\tau}|^2 dx \to +\infty$ and $I_{a,\mu}(\widetilde{Q}_p, \tau) \to -\infty$ as $\tau \to +\infty$.

Proof. A straightforward calculation shows that

$$\int_{\mathbb{R}^N} |\nabla Q_p^{\tau}|^2 dx = e^{2\tau} \int_{\mathbb{R}^N} |\nabla \widetilde{Q}_p|^2 dx.$$

From (1.5) with s = p and (2.1), we have

$$\begin{split} I_{a,\mu}(Q_{p},\tau) &= \frac{ae^{2\tau}}{2} \int_{\mathbb{R}^{N}} |\nabla \widetilde{Q}_{p}|^{2} dx + \frac{be^{4\tau}}{4} \left(\int_{\mathbb{R}^{N}} |\nabla \widetilde{Q}_{p}|^{2} dx \right)^{2} - \frac{e^{4\tau}}{p} \int_{\mathbb{R}^{N}} |\widetilde{Q}_{p}|^{p} dx - \mu \frac{e^{\gamma_{q}q\tau}}{q} \int_{\mathbb{R}^{N}} |\widetilde{Q}_{p}|^{q} dx \\ &= \frac{ae^{2\tau}}{2} \frac{c^{2} |\nabla Q_{p}|_{2}^{2}}{|Q_{p}|_{2}^{2}} - \mu \frac{e^{\gamma_{q}q\tau}}{q} \frac{c^{q}}{|Q_{p}|_{2}^{q}} |Q_{p}|_{q}^{q} + c^{4}e^{4\tau} \left(\frac{b}{4} \frac{|\nabla Q_{p}|_{2}^{4}}{|Q_{p}|_{2}^{4}} - \frac{1}{4} \frac{2}{c^{2}} \left(\frac{c}{|Q_{p}|_{2}} \right)^{\frac{8}{N}} \frac{2|Q_{p}|_{p}^{p}}{q|Q_{p}|_{2}^{2}} \right) \\ &= \frac{ac^{2}e^{2\tau}}{2} - \mu \frac{e^{\gamma_{q}q\tau}}{q} \frac{c^{q}}{|Q_{p}|_{2}^{q}} |Q_{p}|_{q}^{q} + \frac{bc^{4}e^{4\tau}}{4} \left(1 - \left(\frac{c}{c^{*}} \right)^{\frac{8-2N}{N}} \right), \end{split}$$

from $c > c^*$, we have $I_{a,\mu}(\widetilde{Q}_p, \tau) \to -\infty$ as $\tau \to +\infty$.

Lemma 3.9. Suppose that $E_{a,\mu}(u) < M_{c,\mu}$. Then the value t_u defined by Lemma 3.4 is negative. **Lemma 3.10.** It results that

$$\tilde{\sigma}_{c,\mu} = \inf_{u \in \mathcal{P}_{c,\mu}^-} E_{a,\mu}(u) > 0.$$

We introduce the minimax class

$$\Gamma := \left\{ \gamma \in C([0,1], S_{c,r}) : \gamma(0) \in \mathcal{P}_{c,\mu}^+ \text{ with } \frac{b}{4} |\nabla \gamma(0)|_2^4 < \frac{1}{p} |\gamma(0)|_p^p, \ E_{a,\mu}(\gamma(1)) \le 2M_{c,\mu} \right\},$$

then $\Gamma \neq \emptyset$. In fact, we have $s_{\widetilde{Q}_p} \star \widetilde{Q}_p \in \mathcal{P}_{c,\mu}^+$ by Lemma 3.4 and $E_{a,\mu}(\tau \star \widetilde{Q}_p) \to -\infty$ as $\tau \to +\infty$ by Lemma 3.8, and $\tau \mapsto \tau \star \widetilde{Q}_p$ is continuous. Thus, we can define the minimax value

$$\sigma_{c,\mu} := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} E_{a,\mu}(\gamma(t)).$$

Lemma 3.11. $\sigma_{c,\mu} > 0$ can be achieved by some $\hat{u}_{c,\mu} \in S_{c,r}$, and $\hat{u}_{c,\mu}$ solves problem (1.1) for some $\hat{\lambda}_{c,\mu} < 0$.

Proof. Since we want to use Lemma 2.1, next we verify the conditions of Lemma 2.1 one by one. Let us set

$$\mathcal{F} := \Gamma, \quad A := \gamma([0,1]), \quad F := \mathcal{P}_{c,\mu}^- \quad \text{and} \quad B := \mathcal{P}_{c,\mu}^+ \cup E_{a,\mu}^{2M_{c,\mu}},$$

where $E_{a,\mu}^c := \{ u \in S_{c,r} : E_{a,\mu}(u) \le c \}.$

We first show that \mathcal{F} is homotopy-stable family with extended boundary B: for any $\gamma \in \Gamma$ and any $\eta \in C([0,1] \times S_{c,r}; S_{c,r})$ satisfying $\eta(t, u) = u, (t, u) \in (0 \times S_{c,r}) \cup ([0,1] \times B)$, we want to get $\eta(1, \gamma(t)) \in \Gamma$. In fact, let $\tilde{\gamma}(t) = \eta(1, \gamma(t))$, then $\tilde{\gamma}(0) = \eta(1, \gamma(0)) = \gamma(0) \in \mathcal{P}_{c,\mu}^+$. Besides, $\tilde{\gamma}(1) = \eta(1, \gamma(1)) = \gamma(1) \in E_{a,\mu}^{2M_{c,\mu}}$. Therefore, we have $\eta(1, \gamma(t)) \in \Gamma$.

Next we verify the condition (2.2): by Lemma 3.5 and Lemma 3.9, we know $F \cap B = \emptyset$ and hence $F \setminus B = F$. We claim that

$$A \cap (F \setminus B) = A \cap F = \gamma([0,1]) \cap \mathcal{P}_{c,\mu}^- \neq \emptyset, \quad \forall \gamma \in \Gamma.$$
(3.6)

Indeed, since $\gamma(0) \in \mathcal{P}_{c,\mu}^+$ with $\frac{b}{4} |\nabla \gamma(0)|_2^4 < \frac{1}{p} |\gamma(0)|_p^p$, we know $s_{\gamma(0)} = 0$ (see the definition of s_u in Lemma 3.4) and hence $t_{\gamma(0)} > s_{\gamma(0)} = 0$. On the other hand, since $E_{a,\mu}(\gamma(1)) \leq 2M_{c,\mu} < M_{c,\mu}$ (see Lemma 3.6), we by Lemma 3.8 have $t_{\gamma(1)} < 0$. By Lemma 3.4, we know $t_{\gamma(\tau)}$ is continuous in τ . It follows that for every $\gamma \in \Gamma$ there exists $\tau_{\gamma} \in (0,1)$ such that $t_{\gamma(\tau_{\gamma})} = 0$, that is, $\gamma(\tau_{\gamma}) \in \mathcal{P}_{c,\mu}^-$, and hence $A \cap (F \setminus B) \neq \emptyset$.

Finally, we verify the condition (2.3), that is, we need to show

$$\inf_{\mathcal{P}_{c,\mu}^-} E_{a,\mu} \geq \sigma_{c,\mu} \geq \sup_{\mathcal{P}_{c,\mu}^+ \cup E_{a,\mu}^{2M_{c,\mu}}} E_{a,\mu}.$$

By (3.6), for every $\gamma \in \Gamma$, we have

$$\max_{t\in[0,1]}E_{a,\mu}(\gamma(t))\geq\inf_{\mathcal{P}_{c,\mu}^-}E_{a,\mu},$$

so that $\sigma_{c,\mu} \geq \tilde{\sigma}_{c,\mu}$. On the other hand, if $u \in \mathcal{P}_{c,\mu}^-$ with $\frac{b}{4} |\nabla u|_2^4 < \frac{1}{p} |u|_p^p$, then for $s_1 \gg 1$ large enough

$$\gamma_u: \tau \in [0,1] \mapsto ((1-\tau)s_u + \tau s_1) \star u \in S_{c,r}$$

is a path in Γ . Since $u \in \mathcal{P}_{c,\mu}^-$, we know $t_u = 0$ is a global maximum point for $I_{a,\mu}$, and deduce that

$$E_{a,\mu}(u) \geq \max_{t\in[0,1]} E_{a,\mu}\left(\gamma_u(t)\right) \geq \sigma_{c,\mu},$$

which implies that $\tilde{\sigma}_{c,\mu} \geq \sigma_{c,\mu}$. Thus, we get $\sigma_{c,\mu} = \tilde{\sigma}_{c,\mu} > 0$. By Lemma 3.5, we know $E_{a,\mu}(u) \leq 0$ for any $u \in \mathcal{P}_{c,\mu}^+ \cup E_{a,\mu}^{2M_{c,\mu}}$, hence we get (2.3). From Lemma 2.1, we obtain a Palais–Smale sequence $\{u_n\}$ for the functional $E_{a,\mu}$ on $S_{c,r}$ and $P_{\mu}(u_n) \to 0$. Similar to (3.5), $\{u_n\}$ is bounded. Hence, from Lemma 2.2, up to a subsequence, $u_n \to \hat{u}_{c,\mu}$ strongly in $H^1(\mathbb{R}^N)$, and $\hat{u}_{c,\mu}$ solves problem (1.1) for some $\hat{\lambda}_{c,\mu} < 0$.

Proof of Theorem 1.1. Theorem 1.1 comes from Lemma 3.7 and Lemma 3.11.

4 **Proof of Theorem 1.2**

In this section, we deal with the case $2 + \frac{4}{N} < q < p = 2 + \frac{8}{N}$, $\mu > 0$, $a \ge 0$ and prove Theorem 1.2. We first consider the existence of normalized ground state solution for the degenerate Kirchhoff-type equations, that is, a = 0, by the following minimization problem:

$$m_{0,c} = \inf_{u \in S_c} E_{a,\mu}(u).$$

And then, we discuss the the existence of normalized solutions for the nondegenerate Kirchhoff-type equations, that is, a > 0.

Lemma 4.1. If $a \ge 0$, $2 + \frac{4}{N} < q < p = 2 + \frac{8}{N}$ and $c < c^*$, the functional $E_{a,\mu}$ is coercive on S_c . Moreover, $m_{0,c} < 0$.

Proof. Utilizing (1.5) and (1.6), we see that for any $u \in S_c$,

$$E_{a,\mu}(u) \geq \frac{b}{4} \left(1 - \left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}} \right) |\nabla u|_2^4 - \mu \frac{c^{q-q\gamma_q}}{2|Q_q|_2^{q-2}} |\nabla u|_2^{q\gamma_q},$$

hence, from $2 < \gamma_q q < 4$ and $c < c^*$, we obtain that the functional $E_{a,\mu}$ is coercive on S_c .

For any $u \in S_c$, set $u^t(x) = t^{\frac{N}{2}}u(tx)$ for any t > 0, then $u^t \in S_c$ and

$$m_{0,c} \leq E_{0,\mu}(u^t) = \frac{b}{4} |\nabla u|_2^4 t^4 - \frac{1}{p} |u|_p^p t^4 - \frac{\mu}{q} |u|_q^q t^{\gamma_q q} \to 0^- \quad \text{as } t \to 0^+,$$

hence, from $\mu > 0$ and $2 < \gamma_q q < 4$, we obtain $m_{0,c} < 0$.

In order to prove that the minimizer of $m_{a,c}$ can be obtained, we now give two lemmas.

Lemma 4.2. If $m_{a,c} < 0$, we have $m_{a,c} < m_{a,\gamma} + m_{a,c-\gamma}$ for any $0 < \gamma < c$.

Proof. The proof is similar to [19, Lemma 2.5], so we omit it.

Corollary 4.3. $m_{a,c}$ is strictly decreasing in $c \in (0, +\infty)$.

Lemma 4.4. Let $c < c^*$, $m_{0,c} := \inf u \in S_c E_{0,\mu}(u)$ has a radial minimizer \tilde{u} , and \tilde{u} solves problem (1.1) for some $\tilde{\lambda} < 0$.

Proof. Let $\{u_n\} \subset S_c$ be a minimizing sequence of $m_{0,c} < 0$, it can easily see that $\{u_n\}$ is bounded in $H^1(\mathbb{R}^N)$ by Lemma 4.1. Since $E_{0,\mu}$ is even, we can suppose that $u_n \ge 0$. Moreover, let u_n^* be the symmetric radial decreasing rearrangement of u_n , up to subsequence, we may assume that there exists $\tilde{u} \in H^1_r(\mathbb{R}^N)$ such that

$$u_n^* \rightharpoonup \tilde{u} \text{ in } H^1(\mathbb{R}^N), \quad u_n^* \to \tilde{u} \text{ in } L^s(\mathbb{R}^N), \quad s \in (2, 2^*), \quad u_n^*(x) \to \tilde{u}(x) \text{ a.e. in } \mathbb{R}^N.$$
 (4.1)

Hence, we have

$$E_{0,\mu}(\tilde{u}) \leq \liminf_{n \to \infty} E_{0,\mu}(u_n^*) \leq \liminf_{n \to \infty} E_{0,\mu}(u_n) = m_{0,c}, \qquad |\tilde{u}|_2^2 \leq c^2.$$

From $E_{0,\mu}(\tilde{u}) \leq m_{0,c} < 0$, it follows that $\tilde{u} \neq 0$. By Corollary 4.3, it must hold that

$$E_{0,\mu}(\tilde{u}) = m_{0,c}, \qquad |\tilde{u}|_2^2 = c^2.$$

By the Lagrange multiplier rule, there is $\tilde{\lambda} \in \mathbb{R}$ such that

$$-b|\nabla \tilde{u}|_2^2 \Delta \tilde{u} = \tilde{\lambda} \tilde{u} + |\tilde{u}|^{p-2} \tilde{u} + \mu |\tilde{u}|^{q-2} \tilde{u},$$

and then, combining with the Pohozaev identity, we have

$$\tilde{\lambda}|\tilde{u}|_{2}^{2} = \frac{4-p}{p}|\tilde{u}|_{p}^{p} + \frac{\mu}{2q}(N(q-2)-2q)|\tilde{u}|_{q}^{q},$$

which implies $\tilde{\lambda} < 0$ from $2 + \frac{4}{N} < q < p = 2 + \frac{8}{N}$.

Lemma 4.5. Let $2 + \frac{4}{N} < q < p = 2 + \frac{8}{N}$, there is a constant $\bar{a} = \bar{a}(b,c,q) > 0$ such that for any

 $a \in (0, \bar{a})$, we have

$$m_{a,c}:=\inf_{u\in S_c}E_{a,\mu}(u)<0.$$

Proof. From [21, Lemma 2.1], *ũ* satisfies the following Pohozeav identity:

$$b|\nabla \tilde{u}|_{2}^{4} - \frac{4}{p}|\tilde{u}|_{p}^{p} - \mu \frac{N(q-2)}{2q}|\tilde{u}|_{q}^{q} = 0,$$

and it follows that

$$\begin{split} m_{0,c} &= E_{0,\mu}(\tilde{u}) \\ &= \frac{b}{4} |\nabla \tilde{u}|_2^4 - \frac{1}{p} |\tilde{u}|_p^p - \mu \frac{1}{q} |\tilde{u}|_q^q \\ &= \left(\frac{1}{4} - \frac{2}{N(q-2)}\right) b |\nabla \tilde{u}|_2^4 + \left(\frac{8}{N(q-2)} - 1\right) \frac{1}{p} |\tilde{u}|_p^p \\ &< 0. \end{split}$$

Hence, we obtain

$$\begin{split} E_{a,\mu}(\tilde{u}) &= \frac{a}{2} |\nabla \tilde{u}|_{2}^{2} + E_{0,\mu}(\tilde{u}) \\ &= \frac{a}{2} |\nabla \tilde{u}|_{2}^{2} + \left(\frac{1}{4} - \frac{2}{N(q-2)}\right) b |\nabla \tilde{u}|_{2}^{4} + \left(\frac{8}{N(q-2)} - 1\right) \frac{1}{p} |\tilde{u}|_{p}^{p} \\ &\leq \frac{a}{2} |\nabla \tilde{u}|_{2}^{2} + \frac{b}{4} \left(1 - \left(\frac{c}{c^{*}}\right)^{\frac{8-2N}{N}}\right) \left(\frac{1}{4} - \frac{2}{N(q-2)}\right) |\nabla \tilde{u}|_{2}^{4}. \end{split}$$

Let

$$\bar{a} = \frac{b}{2} \left(1 - \left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}} \right) \left(\frac{2}{N(q-2)} - \frac{1}{4}\right) |\nabla \tilde{u}|_2^2,$$
where $F_{-}(\tilde{u}) < 0$ and hence $w_{-} < F_{-}(\tilde{u}) < 0$

for any $a \in (0, \bar{a})$, we have $E_{a,\mu}(\tilde{u}) < 0$, and hence $m_{a,c} \leq E_{a,\mu}(\tilde{u}) < 0$.

Lemma 4.6. Let $0 < a < \overline{a}$ and $c < c^*$, $m_{a,c} := \inf_{u \in S_c} E_{a,\mu}(u)$ has a radial minimizer $\tilde{u}_{c,a}$, and $\tilde{u}_{c,a}$ solves problem (1.1) for some $\tilde{\lambda}_{c,a} < 0$.

Proof. The proof is similar with that of Lemma 4.4, and we omit it.

Lemma 4.7. Let $0 < a < \bar{a}$, $2 + \frac{4}{N} < q < p = 2 + \frac{8}{N}$ and $c < c^*$, there exists $0 < K_{c,a} < \frac{|\nabla \tilde{u}_{c,a}|_2^2}{2}$ small enough such that

$$0 < \sup_{u \in \mathcal{A}} E_{a,\mu}(u) < \inf_{u \in \mathcal{B}} E_{a,\mu}(u),$$

where $\mathcal{A} = \{ u \in S_{c,r} : |\nabla u|_2^2 < K_{c,a} \}, \ \mathcal{B} = \{ u \in S_{c,r} : |\nabla u|_2^2 = 2K_{c,a} \}.$

Proof. Let K > 0 be arbitrary but fixed and suppose that $u, v \in S_{c,r}$ satisfies

$$|\nabla u|_2^2 < K$$
 and $|\nabla v|_2^2 = 2K$.

From (1.5), we have

$$\begin{split} E_{a,\mu}(v) - E_{a,\mu}(u) &\geq E_{a,\mu}(v) - \frac{a}{2} |\nabla u|_2^2 - \frac{b}{4} |\nabla u|_2^4 \\ &\geq \frac{aK}{2} + \frac{3bK^2}{4} - b\left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}} K^2 - \mu \frac{c^{q-q\gamma_q}}{|Q_q|_2^{q-2}} (2K)^{\frac{N(q-2)-4}{4}} \\ &= K\left(\frac{a}{2} + \left(\frac{3}{4} - \left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}}\right) bK - \mu \frac{c^{q-q\gamma_q}}{|Q_q|_2^{q-2}} (2K)^{\frac{N(q-2)-4}{4}}\right), \end{split}$$

and

$$E_{a,\mu}(u) \ge \frac{a}{2} |\nabla u|_2^2 + \frac{b}{4} \left(1 - \left(\frac{c}{c^*}\right)^{\frac{8-2N}{N}} \right) |\nabla u|_2^4 - \mu \frac{c^{q-q\gamma_q}}{2|Q_q|_2^{q-2}} |\nabla u|_2^{q\gamma_q}$$

In summary, we can choose sufficiently small constant $0 < K_{c,a} < \frac{|\nabla \tilde{u}_{c,a}|_2^2}{2}$ such that

$$0 < \sup_{u \in \mathcal{A}} E_{a,\mu}(u) < \inf_{u \in \mathcal{B}} E_{a,\mu}(u)$$

where $\mathcal{A} = \{ u \in S_{c,r} : |\nabla u|_2^2 < K_{c,a} \}, \ \mathcal{B} = \{ u \in S_{c,r} : |\nabla u|_2^2 = 2K_{c,a} \}.$

Let $u \in S_{c,r}$ be arbitrary and fixed, it is easy to see that $|\nabla(\tau \star u)|_2^2 \to 0$ and $I_{a,\mu}(u,\tau) \to 0^+$ as $\tau \to 0^+$. Hence, there exists $\hat{u}_{c,a} \in S_{c,r}$ such that $|\nabla \hat{u}_{c,a}|_2^2 < K_{c,a}$ and $E_{a,\mu}(\hat{u}_{c,a}) > 0$. Combining with Lemma 4.7, we can construct the minimax value for the functionals $E_{a,\mu}$ and $I_{a,\mu}$:

$$\widetilde{\gamma}_{c} = \inf_{\widetilde{h} \in \widetilde{\Gamma}_{c}} \max_{t \in [0,1]} I_{a,\mu}(\widetilde{h}(t))$$

with $\widetilde{\Gamma}_c = \{\widetilde{h} \in C([0,1], S_{c,r} \times \mathbb{R}) : \widetilde{h}(0) = (\widehat{u}_{c,a}, 0), \ \widetilde{h}(1) = (\widetilde{u}_{c,a}, 0)\}$, and

$$\gamma_c = \inf_{h \in \Gamma_c} \max_{t \in [0,1]} E_{a,\mu}(h(t))$$

with $\Gamma_c = \{h \in C([0,1], S_{c,r}) : h(0) = \hat{u}_{c,a}, h(1) = \tilde{u}_{c,a}\}$, where $\tilde{u}_{c,a}$ is obtained in Lemma 4.6. We have the following lemma.

Lemma 4.8. If $0 < a < \bar{a}$, $2 + \frac{4}{N} < q < p = 2 + \frac{8}{N}$ and $c < c^*$, we have

$$\widetilde{\gamma}_c = \gamma_c \ge \max\{E_{a,\mu}(\widehat{u}_{c,a}), E_{a,\mu}(\widetilde{u}_{c,a})\} := \delta_c > 0.$$

Proof. For any $\tilde{h} \in \tilde{\Gamma}_c$, we can write it into

$$\widetilde{h}(t) = (\widetilde{h}_1(t), \widetilde{h}_2(t)) \in S_{c,r} \times \mathbb{R}$$

Setting $h(t) = \tilde{h}_2(t) \star \tilde{h}_1(t)$, we have $h(t) \in \Gamma_c$ and

$$\max_{t\in[0,1]} I_{a,\mu}(\widetilde{h}(t)) = \max_{t\in[0,1]} E_{a,\mu}(\widetilde{h}_2(t)\star\widetilde{h}_1(t)) = \max_{t\in[0,1]} E_{a,\mu}(h(t)),$$

which implies $\tilde{\gamma}_c \geq \gamma_c$. On the other hand, for any $h \in \Gamma_c$, set $\tilde{h}(t) = (h(t), 0)$, we get $\tilde{h} \in \tilde{\Gamma}_c$ and

$$\max_{t \in [0,1]} I_{a,\mu}(\tilde{h}(t)) = \max_{t \in [0,1]} E_{a,\mu}(h(t)),$$

which provides that $\gamma_c \geq \tilde{\gamma}_c$. Thus, we have $\tilde{\gamma}_c = \gamma_c$. Finally, $\gamma_c \geq \max\{E_{a,\mu}(\hat{u}_{c,a}), E_{a,\mu}(\tilde{u}_{c,a})\} > 0$ follows from the definition of γ_c .

In what follows, we give the relationship between the Palais–Smale sequence for the functional $I_{a,\mu}$ and that of the functional $E_{a,\mu}$.

Lemma 4.9. There exists a sequence $\{(v_n, \tau_n)\} \subset S_{c,r} \times \mathbb{R}^+$ such that for $n \to \infty$, we have

(1) $I_{a,\mu}(v_n, \tau_n) \rightarrow \widetilde{\gamma}_c$,

(2) $I'_{a,\mu}|_{S_{c,r}\times\mathbb{R}}(v_n,\tau_n)\to 0$, *i.e.*, *it* holds that

$$\partial_{\tau}I_{a,\mu}(v_n,\tau_n) \to 0 \quad and \quad \langle \partial_{u}I_{a,\mu}(v_n,\tau_n), \widetilde{\varphi} \rangle \to 0$$

for any

$$\widetilde{\varphi} \in T_{v_n} = \left\{ \widetilde{\varphi} \in H^1(\mathbb{R}^N) : \int_{\mathbb{R}^N} v_n \widetilde{\varphi} dx = 0 \right\}.$$

In addition, setting $u_n(x) = \tau_n \star v_n(x)$, then for $n \to \infty$ we get

- (i) $E_{a,\mu}(u_n) \rightarrow \gamma_c$,
- (ii) $P_{\mu}(u_n) \rightarrow 0$,
- (iii) $E'_{a,\mu}|s_{c,r}(u_n) \to 0$, i.e., it holds that $\langle E'_{a,\mu}(u_n), \varphi \rangle \to 0$ for any

$$\varphi \in T_{u_n} = \left\{ \varphi \in H^1(\mathbb{R}^N) : \int_{\mathbb{R}^N} u_n \varphi dx = 0
ight\}.$$

Proof. According to the construction of $\tilde{\gamma}_c$, we know that the conclusions (1) and (2) follow directly from Ekeland's Variational Principle. Next we mainly prove (i)–(iii).

For (i), it is obvious from

$$E_{a,\mu}(u_n) = E_{a,\mu}(\tau_n \star v_n) = I_{a,\mu}(v_n, \tau_n)$$

and $\widetilde{\gamma}_c = \gamma_c$.

For (ii), we first have

$$\begin{aligned} \partial_{\tau} I_{a,\mu}(v_n,\tau_n) &= e^{2\tau_n} a |\nabla v_n|_2^2 + e^{4\tau_n} b |\nabla v_n|_2^4 - \mu e^{\gamma_q q \tau_n} \gamma_q |v_n|_q^q - e^{4\tau_n} \frac{4}{p} |v_n|_p^p \\ &= a |\nabla (\tau_n \star v_n)|_2^2 + b |\nabla (\tau_n \star v_n)|_2^4 - \mu \gamma_q |\tau_n \star v_n|_q^q - \frac{4}{p} |\tau_n \star v_n|_p^p \\ &= a |\nabla u_n|_2^2 + b |\nabla u_n|_2^4 - \mu \gamma_q |u_n|_q^q - \frac{4}{p} |u_n|_p^p \\ &= P_{\mu}(u_n). \end{aligned}$$

Thus, (*ii*) is a consequence of $\partial_{\tau} I_{a,\mu}(v_n, \tau_n) \to 0$ as $n \to \infty$.

For (*iii*), by the definition of the functional $I_{a,\mu}$, we have

$$\begin{split} \langle \partial_{u} I_{a,\mu}(v_{n},\tau_{n}), \widetilde{\varphi} \rangle &= e^{2\tau_{n}} a \int_{\mathbb{R}^{N}} \nabla v_{n} \nabla \widetilde{\varphi} dx + e^{4\tau_{n}} b |\nabla v_{n}|_{2}^{2} \int_{\mathbb{R}^{N}} \nabla v_{n} \nabla \widetilde{\varphi} dx \\ &- \mu e^{\gamma_{q}q\tau_{n}} \int_{\mathbb{R}^{N}} |v_{n}|^{q-2} v_{n} \widetilde{\varphi} dx - e^{4\tau_{n}} \int_{\mathbb{R}^{N}} |v_{n}|^{p-2} v_{n} \widetilde{\varphi} dx, \end{split}$$

where

$$\widetilde{\varphi}\in T_{v_n}=\left\{\widetilde{\varphi}\in H^1(\mathbb{R}^N):\int_{\mathbb{R}^N}v_n\widetilde{\varphi}dx=0
ight\}.$$

On the other hand, for any

$$\varphi \in T_{u_n} = \left\{ \varphi \in H^1(\mathbb{R}^N) : \int_{\mathbb{R}^N} u_n \varphi dx = 0 \right\},$$

from $u_n(x) = \tau_n \star v_n(x)$, we have

$$\begin{split} \langle E_{a,\mu}'(u_n),\varphi \rangle \\ &= a \int_{\mathbb{R}^N} \nabla u_n \nabla \varphi dx + b |\nabla u_n|_2^2 \int_{\mathbb{R}^N} \nabla u_n \nabla \widetilde{\varphi} dx - \mu \int_{\mathbb{R}^N} |u_n|^{q-2} u_n \varphi dx - \int_{\mathbb{R}^N} |u_n|^{p-2} u_n \varphi dx \\ &= e^{2\tau_n} a \int_{\mathbb{R}^N} \nabla v_n e^{-\frac{N\tau_n}{2}} \nabla \varphi(e^{-\tau_n} x) dx + e^{4\tau_n} b |\nabla v_n|_2^2 \int_{\mathbb{R}^N} \nabla v_n e^{-\frac{N\tau_n}{2}} \nabla \varphi(e^{-\tau_n} x) dx \\ &- \mu e^{\gamma_q q\tau_n} \int_{\mathbb{R}^N} |v_n(x)|^{q-2} v_n(x) e^{-\frac{N\tau_n}{2}} \varphi(e^{-\tau_n} x) dx \\ &- e^{4\tau_n} \int_{\mathbb{R}^N} |v_n(x)|^{p-2} v_n(x) e^{-\frac{N\tau_n}{2}} \varphi(e^{-\tau_n} x) dx. \end{split}$$

Setting

$$\widetilde{\varphi}(x) = e^{-rac{N au_n}{2}} \varphi(e^{- au_n}x),$$

we get *(iii)* if we could show $\tilde{\varphi} \in T_{v_n}$. In fact, $\tilde{\varphi} \in T_{v_n}$ comes from the following equalities:

$$0 = \int_{\mathbb{R}^N} u_n \varphi dx = \int_{\mathbb{R}^N} e^{\frac{N\tau_n}{2}} v_n(e^{\tau_n} x) \varphi(x) dx = \int_{\mathbb{R}^N} v_n(x) e^{-\frac{N\tau_n}{2}} \varphi(e^{-\tau_n} x) dx = \int_{\mathbb{R}^N} v_n \widetilde{\varphi} dx. \quad \Box$$

Lemma 4.10. $\gamma_c > 0$ can be achieved by some $u_{c,a} \in S_{c,r}$, and $u_{c,a}$ is a radial solution of problem (1.1) for some $\lambda_c < 0$.

Proof. By Lemma 4.1 and Lemma 4.9, we obtain a bounded Palais–Smale sequence $\{u_n\} \subset S_{c,r}$ for $E_{a,\mu}|_{S_{c,r}}$ at level $\gamma_c > 0$ such that $P_{\mu}(u_n) \to 0$ as $n \to \infty$. By Lemma 2.2, we have $u_n \to u_{c,a}$ in $H^1_r(\mathbb{R}^N)$, and $u_{c,a} \in S_{c,r}$ is a radial solution of problem (1.1) for some $\lambda_c < 0$.

Proof of Theorem 1.2. Theorem 1.2 comes from Lemma 4.4, Lemma 4.6 and Lemma 4.10.

Acknowledgements

This paper was supported by National Natural Science Foundation of China (Grant Nos. 12271443 and 12371120), Innovation Research 2035 Pilot Plan of Southwest University (Grant No. SWU-XDPY22015) and Natural Science Foundation of Chongqing, China (CSTB2022NSCQ-MSX0472).

References

- [1] C. O. ALVES, F. J. S. A. CORRÊA, T. F. MA, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, *Comput. Math. Appl.* 49(2005), No. 1, 85–93. https://doi. org/10.1016/j.camwa.2005.01.008; MR2123187; Zbl 1130.35045
- [2] P. C. CARRIÃO, O. H. MIYAGAKI, A. VICENTE, Normalized solutions of Kirchhoff equations with critical and subcritical nonlinearities: the defocusing case, *Partial Differ. Equ. Appl.* 3(2022), No. 5, Paper No. 64, 16. https://doi.org/10.1007/s42985-022-00201-3; MR4487863; Zbl 1500.35161
- [3] X. J. FENG, H. D. LIU, Z. T. ZHANG, Normalized solutions for Kirchhoff type equations with combined nonlinearities: the Sobolev critical case, *Discrete Contin. Dyn. Syst.* 43(2023), No. 8, 2935–2972. https://doi.org/10.3934/dcds.2023035; MR4599357; Zbl 1519.35148

- [4] N. GHOUSSOUB, Duality and perturbation methods in critical point theory, Cambridge Tracts in Mathematics, Vol. 107, Cambridge University Press, Cambridge, 1993. https://doi. org/10.1017/CB09780511551703; MR1251958; Zbl 0790.58002
- [5] Q. H. HE, Z. Y. LV, Y. M. ZHANG, X. X. ZHONG, Existence and blow up behavior of positive normalized solution to the Kirchhoff equation with general nonlinearities: mass supercritical case, J. Differential Equations 356(2023): 375–406. https://doi.org/10.1016/j. jde.2023.01.039; MR4546673; Zbl 1512.35295
- [6] J. Q. Hu, A. M. MAO, Normalized solutions to the Kirchhoff equation with a perturbation term, *Differential Integral Equations* 36(2023), No. 3–4, 289–312. https://doi.org/10. 57262/die036-0304-289; MR4503218; Zbl 1513.35236
- [7] L. JEANJEAN, Existence of solutions with prescribed norm for semilinear elliptic equations, *Nonlinear Anal.* 28(1997), No. 10, 1633–1659. https://doi.org/10.1016/S0362-546X(96) 00021-1; MR1430506; Zbl 0877.35091
- [8] L. Z. KONG, H. B. CHEN, Normalized solutions for nonlinear Kirchhoff type equations in high dimensions, *Electron. Res. Arch.* **30**(2022), No. 4, 1282–1295. https://doi.org/10. 3934/era.2022067; MR4401198; Zbl 1489.35111
- [9] G. KIRCHHOFF, Mechanik, Teubner, Leipzig, 1883.
- [10] G. B. LI, X. LUO, T. YANG, Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent, *Ann. Fenn. Math.* 47(2022), No. 2, 895–925. MR4443235; Zbl 1497.35232
- [11] J.-L. LIONS, On some questions in boundary value problems of mathematical physics, in: Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), North-Holland Math. Stud., Vol. 30, 1978, pp. 284–346. MR0519648; Zbl 0404.35002
- [12] P.-L. LIONS, Solutions of Hartree–Fock equations for Coulomb systems, Comm. Math. Phys. 109(1987), No. 1, 33–97. MR879032; Zbl 0618.35111
- [13] X. Luo, Q. F. WANG, Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in ℝ³, *Nonlinear Anal. Real World Appl.* **33**(2017), 19–32. https://doi.org/10.1016/j.nonrwa.2016.06.001; MR3543109; Zbl 1355.35076
- [14] P. A. MARKOWICH, C. A. RINGHOFER, C. SCHMEISER, Semiconductor equations, Springer-Verlag, Vienna, 1990. https://doi.org/10.1007/978-3-7091-6961-2; MR1063852; Zbl 0765.35001
- [15] S. I. Роноžаеv, A certain class of quasilinear hyperbolic equations (in Russian), *Mat. Sb.* 96(138)(1975): 152–166. MR369938
- [16] N. SOAVE, Normalized ground states for the NLS equation with combined nonlinearities, J. Differential Equations 269(2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.
 016; MR4107073; Zbl 1440.35312
- [17] Q. WANG, A. X. QIAN, Normalized solutions to the Kirchhoff equation with potential term: mass super-critical case, *Bull. Malays. Math. Sci. Soc.* 46(2023), No. 2, Paper No. 77, 25. https://doi.org/10.1007/s40840-022-01444-4; MR4547979; Zbl 1512.35310

- [18] M. I. WEINSTEIN, Nonlinear Schrödinger equations and sharp interpolation estimates, *Comm. Math. Phys.* 87(1982/83), No. 4, 567–576. MR691044; Zbl 0527.35023
- [19] H. Y. YE, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, *Math. Methods Appl. Sci.* 38(2015), No. 13, 2663–2679. https://doi.org/10. 1002/mma.3247; MR3382697; Zbl 1331.35134
- [20] H. Y. YE, The existence of normalized solutions for L²-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys. 66(2015), No. 4, 1483–1497. https: //doi.org/10.1007/s00033-014-0474-x; MR3377698; Zbl 1322.35032
- [21] H. Y. YE, The mass concentration phenomenon for L²-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys. 67(2016), No. 2, Article No. 29, 16 pp. https://doi.org/10.1007/s00033-016-0624-4; MR3483878; Zbl 1341.35059
- [22] X. Y. ZENG, Y. M. ZHANG, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett. 74(2017), 52–59. https://doi.org/10.1016/j.aml. 2017.05.012; MR3677841; Zbl 1379.35092
- [23] P. H. ZHANG, Z. Q. HAN, Normalized ground states for Kirchhoff equations in \mathbb{R}^3 with a critical nonlinearity, *J. Math. Phys.* **63**(2022), No. 2, Paper No. 021505, 15 pp. https://doi.org/10.1063/5.0067520; MR4373844; Zbl 1507.35086