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Abstract. We study the solvability of Sturm–Liouville boundary value problems for
x′′ = f (t, x, x′), t ∈ (0, 1). The nonlinearity can be defined on a bounded set and is
required to be continuous on its subset. The results obtained are based on combinations
of well-known conditions with barrier strip type conditions.
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1 Introduction

This paper is devoted to the solvability of boundary value problems (BVPs) for the equation

x′′ = f (t, x, x′), t ∈ (0, 1), (1.1)

with Sturm–Liouville boundary conditions (BCs) either

−αx(0) + βx′(0) = A, ax(1) + bx′(1) = B, (1.2)

x′(0) = A, ax(1) + bx′(1) = B, (1.3)

or
−αx(0) + βx′(0) = A, x′(1) = B, (1.4)

where f : [0, 1]× Dx × Dp → R, Dx, Dp ⊆ R, α, β, a, b > 0, and A, B ∈ R.
This paper is motivated by A. Granas et al. [6]. The authors prove that BVP (1.1), (1.2)

has a solution in C2[0, 1] assuming that the function f (t, x, p) is continuous on [0, 1]× R2 and
there is a constant M ≥ 0 such that

x f (t, x, 0) ≥ M for t ∈ [0, 1] and |x| > M (1.5)
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and the well-known Bernstein’s growth condition holds, that is, there exist positive constants
Gi, i = 1, 2, for which

| f (t, x, p)| ≤ G1 p2 + G2 for (t, x) ∈ [0, 1]× [−M0, M0], (1.6)

where M0 = max{|A/α|, |B/a|, M}. A similar result guarantees C2[0, 1]-solutions to BVPs
(1.1), (1.3) and (1.1), (1.4). In it, (1.5) is replaced by the assumption that f (t, x, p) is differen-
tiable with respect to x and there is a constant K > 0 such that

fx(t, x, p) ≥ K for (t, x, p) ∈ [0, 1]× R × {C}, (1.7)

where C = A or C = B. The conditions imposed guarantee a priori bounds. Moreover, each of
the conditions (1.5) and (1.7) provide a priori bound for the solutions to the considered BVP,
that is, for |x(t)|, and (1.6) provides the bound for |x′(t)|. The established a priori bounds are
needed for applying the Topological transversality theorem.

One of the BVPs studied in C. Tisdell [10] is (1.1), (1.2). Here, the Leray–Schauder degree
theory and a priori bounds are used. The well known condition

f (t,−R1, 0) < 0 and f (t, R2, 0) > 0, t ∈ [0, 1],

where R1 and R2 are some positive constants with min{R1, R2} > max{|A/α|, |B/a|}, gives
the bound for |x(t)|, and this for |x′(t)| follows from the assumption that there exist non-
negative constants α and K such that

| f (t, x, p)| ≤ α f (t, x, p) + K for all t ∈ [0, 1], |x| ≤ R, p ∈ R,

where R = max{R1, R2}.
Other results on the solvability of BVPs for various equations with Sturm–Liouville bound-

ary conditions can be found, for example, in M. Dobkevich and F. Sadyrbaev [3], A. M. A.
El-Sayed et al. [4, 5], T. Xue et al. [12], Y. Liu et al. [9], F. H. Wong et al. [11] and L. Zhang et
al. [13].

The purpose of this paper is to give sufficient conditions for the existence of solutions in
which growth restrictions on f (t, x, p) are not imposed, that is, we do not use condition (1.6).
It is replaced by sign conditions of barrier strips type.

The existence discussion is based on the basic existence theorem proved in R. P. Agarwal
et al. [2], which is a variant of [6, Chapter V, Theorem 1.1]. Let us prepare its wording.

Consider the BVP{
x(n) + ∑n−1

k=0 sk(t)x(k) = f (t, x, x′, . . . , x(n−1)), t ∈ [0, 1],

Vi(x) = Ai, i = 1, n,
(1.8)

of which the considered boundary value problems (1.1), (1.2)–(1.4) are special cases. Here
sk(t), k = 0, n − 1, are continuous on [0, 1], f : [0, 1]× D0 × D1 × · · · × Dn−1 → R,

Vi(x) ≡
n−1

∑
j=0

[aijx(j)(0) + bijx(j)(1)], i = 1, n,

with constants aij and bij for which ∑n−1
j=0 (a2

ij + b2
ij) > 0, i = 1, n, and Ai ∈ R.

For λ ∈ [0, 1], consider also the family of BVPs{
x(n) + ∑n−1

k=0 sk(t)x(k) = g(t, x, x′, . . . , x(n−1), λ), t ∈ [0, 1],

Vi(x) = Ai, i = 1, n,
(1.9)
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where g : [0, 1]× D0 × D1 × · · · × Dn−1 × [0, 1] → R, and sk(t), k = 0, n − 1, Vi, Ai, i = 1, n, are
as above.

Let, as usual, C[0, 1] be the Banach space of continuous functions on [0, 1] with the norm
∥x∥0 = supt∈[0,1] |x(t)|, and Cn[0, 1] be the Banach space of n-times continuously differentiable

functions with ∥x∥n = max{∥x∥0, . . . , ∥x(n)∥0}.
Let B denote the set of functions that satisfy the BCs Vi(x) = Ai, i = 1, n, and B0 be

the set of functions satisfying Vi(x) = 0, i = 1, n. Finally, let Cn
B [0, 1] = Cn[0, 1] ∩ B and

Cn
B0
[0, 1] = Cn[0, 1] ∩ B0.
We are now ready to formulate the basic existence theorem.

Theorem 1.1 ([2, Theorem 4]). Assume that:

(i) For λ = 0 problem (1.9) has a unique solution in Cn[0, 1].

(ii) Problems (1.8) and (1.9) are equivalent when λ = 1.

(iii) The map Λh : Cn
B0
[0, 1] → C[0, 1], defined by

Λhx = x(n) +
n−1

∑
k=0

sk(t)x(k),

is one-to-one.

(iv) Each solution x ∈ Cn[0, 1] to family (1.9) satisfies the bounds

mi ≤ x(i)(t) ≤ Mi for t ∈ [0, 1], i = 0, n,

where the constants −∞ < mi, Mi < ∞, i = 0, n, are independent of λ and x.

(v) There is a sufficiently small δ > 0 such that

[mi − δ, Mi + δ] ⊆ Di, i = 0, n − 1,

and the function g(t, p0, . . . , pn−1, λ) is continuous on [0, 1]× D × [0, 1], where

D = [m0 − δ, M0 + δ]× [m1 − δ, M1 + δ]× · · · × [mn−1 − δ, Mn−1 + δ];

mi, Mi, i = 0, n − 1, are as in (iv).

Then, BVP (1.8) has at least one solution in Cn[0, 1].

To apply Theorem 1.1 for studying the considered BVPs, we use families of BVPs for

x′′ = λ f (t, x, x′) + (1 − λ)(x − x′), t ∈ (0, 1), (1.1)−λ

and
x′′ = λ f (t, x, x′) + (1 − λ)(x + x′), t ∈ (0, 1), (1.1)+λ

where λ ∈ [0, 1]. They are adapted to the application of the barrier strips type conditions
used here, namely conditions (B1) and (B2) below.

In order to achieve the a priori bounds of condition (iv) of Theorem 1.1, we impose three
sets of conditions. The conditions of set A, these are (1.5) and (1.7), guarantee the a priori
bounds for each eventual C2[0, 1]-solution x(t) to the used families, those of the set B give the
bounds for x′(t), and C ensures the bounds for x′′(t).

Following are the hypotheses used in this article.
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(A1) There is a constant M ≥ 0 such that [−M, M] ⊆ Dx and

x f (t, x, 0) ≥ 0 for t ∈ [0, 1] and x ∈ Dx \ [−M, M].

In the formulation of the next hypothesis, we use the functions

v(t) = At +
B − A(a + b)

a
and w(t) = Bt +

Bβ − A
α

, t ∈ [0, 1],

and more precisely the constants mv = min[0,1] v(t), Mv = max[0,1] v(t), mw = min[0,1] w(t) and
Mw = max[0,1] w(t).

(A2) J ⊆ Dx, here J = [mv, Mv] for (1.3) and J = [mw, Mw] for (1.4), and there is a constant
K > 0 such that

fx(t, x, C) ≥ K for (t, x) ∈ [0, 1]× Dx,

where C = A for (1.3) and C = B for (1.4).

For some constants M0, Gm and GM, they will be specified later for each problem, suppose
that:

(B1) There are constants Fi, Li, i = 1, 2, such that [F2, L2] ⊆ Dp,

F2 < F1 ≤ min{−M0, Gm}, max{M0, GM} ≤ L1 < L2,

f (t, x, p) ≤ 0 for (t, x, p) ∈ [0, 1]× [−M0, M0]× [L1, L2], (1.10)

f (t, x, p) ≥ 0 for (t, x, p) ∈ [0, 1]× [−M0, M0]× [F2, F1]. (1.11)

(B2) There are constants F′
i , L′

i, i = 1, 2, such that [F′
2, L′

2] ⊆ Dp,

F′
2 < F′

1 ≤ min{−M0, Gm}, max{M0, GM} ≤ L′
1 < L′

2,

f (t, x, p) ≥ 0 for (t, x, p) ∈ [0, 1]× [−M0, M0]× [L′
1, L′

2], (1.12)

f (t, x, p) ≤ 0 for (t, x, p) ∈ [0, 1]× [−M0, M0]× [F′
2, F′

1].

(C) There are constants mi ≤ Mi, i = 0, 1, and a sufficiently small δ > 0 such that

[m0 − δ, M0 + δ] ⊆ Dx, [m1 − δ, M1 + δ] ⊆ Dp,

and f (t, x, p) is continuous on [0, 1]× [m0 − δ, M0 + δ]× [m1 − δ, M1 + δ].

The paper is organized as follows. In Section 2 we establish a priori bounds for x(t) and
x′(t) for each solution x ∈ C2[0, 1] to the families of BVPs for (1.1)−λ with BCs (1.2) or (1.3) and
for (1.1)+λ with BCs (1.2) or (1.4). In Section 3 we use the obtained bounds to prove existence
results for the considered BVPs. Examples illustrate the application of the obtained results in
Section 4.



Existence of Sturm–Liouville boundary value problems 5

2 Auxiliary results

We need a well known maximum principle, see for example [6, Chapter II, Lemma 1.1], con-
cerning equations of the form

x′′ = h(t, x, x′), t ∈ [0, 1]. (2.1)

It is based on the following assumption.

(A) There is a constant M ≥ 0 such that [−M, M] ⊆ Dx and

xh(t, x, 0) > 0 for t ∈ [0, 1] and x ∈ Dx \ [−M, M].

Lemma 2.1. Let x ∈ C2[0, 1] be a solution to equation (2.1) such that |x(t)| does not achieve its
maximum at t = 0 or t = 1. Assume further that (A) holds. Then x(t) satisfies the bound

|x(t)| ≤ M for t ∈ [0, 1].

Proof. By the assumption of the lemma, |x(t)| must achieve a positive maximum at a point
t0 ∈ (0, 1). Clearly, the function y(t) = (x(t))2 also has a maximum at t0. Thus,

y′′(t0) = 2x(t0)x′′(t0) = 2x(t0)h(t0, x(t0), 0) ≤ 0.

Next, reasoning by contradiction, assume |x(t0)| > M. Then from (A) it follows

x(t0)h(t0, x(t0), 0) > 0

and the derived contradiction proves the lemma.

The proofs of the following two lemmas follow the idea of proof of [6, Chapter II, Lemma
1.2].

Lemma 2.2. Let (A) hold. Then each solution x ∈ C2[0, 1] to (2.1), (1.3) with A = B = 0 satisfies the
bound

|x(t)| ≤ M, t ∈ [0, 1].

Proof. Suppose that |x(0)| is the maximum value of |x(t)|. We claim that |x(0)| > M is impos-
sible. To verify this, by contradiction, assume it is true. Then,

x(0)x′′(0) = x(0)h(0, x(0), 0) > 0.

Now, if x(0) < 0, then x′′(0) < 0. Because of the continuity of x′′(t) on [0, 1], there is a
neighborhood N0 ⊆ [0, 1] of t = 0 where x′′(t) < 0. This means that x′(t) is strictly decreasing
on N0 and so x′(t) < x′(0) = 0 for t ∈ N0. Consequently x(t) is also strictly decreasing on
N0 and so |x(0)| can not be the maximum of |x(t)| on [0, 1], a contradiction. If x(0) > 0,
then x′′(0) > 0, from where conclude x′(t) > x′(0) = 0 for t ∈ U0, where U0 ⊆ [0, 1] is any
neighborhood of t = 0. Thus, x(t) > x(0) > 0 for t ∈ U0, which means that |x(t)| > |x(0)|, t ∈
U0, again a contradiction. So, |x(0)| ≤ M.

Let |x(1)| be the maximum value of |x(t)|, t ∈ [0, 1]. Then, x(1)x′(1) ≥ 0 and

0 ≤ x(1)bx′(1) = x(1)(−ax(1)) = −a(x(1))2 ≤ 0,



6 G. Mihaylova and P. Kelevedjiev

which is possible if x(1) = 0. So, we have max[0,1] |x(t)| = 0, which means x(t) = 0 for
t ∈ [0, 1] and the lemma is true.

Finally, if |x(t)| achieve its maximum in (0, 1), then

|x(t)| ≤ M, t ∈ [0, 1],

by Lemma 2.1.

Lemma 2.3. Let (A) hold. Then each solution x ∈ C2[0, 1] to (2.1), (1.4) with A = B = 0 satisfies the
bound

|x(t)| ≤ M, t ∈ [0, 1].

Proof. If |x(0)| is the maximum value of |x(t)|, we have x(0)x′(0) ≤ 0 from where obtain

0 ≥ x(0)βx′(0) = x(0)(αx(0)) = α(x(0))2 ≥ 0.

This implies max[0,1] |x(t)| = |x(0)| = 0 which means x(t) = 0 on [0, 1] and so the lemma is
true.

If |x(t)| achieves its maximum at t = 1, the assumption that |x(1)| > M yields

x(1)x′′(1) = x(1)h(1, x(1), 0) > 0.

Next, following the proof of Lemma 2.2, we derive contradictions in the cases x(1) < 0 and
x(1) > 0 and conclude that |x(1)| ≤ M.

Finally, if |x(t)| achieves its maximum somewhere at the interval (0, 1), then the bound

|x(t)| ≤ M, t ∈ [0, 1],

follows from Lemma 2.1.

Following the proof of [6, Chapter II, Theorem 3.3], establish the assertion.

Lemma 2.4. Let (A) hold for (1.1). Then each solution x ∈ C2[0, 1] to (1.1)−λ , (1.2) or to (1.1)+λ , (1.2)
satisfies the bound

|x(t)| ≤ max{|A/α|, |B/a|, M}, t ∈ [0, 1].

Proof. We will prove the assertion about family (1.1)−λ , (1.2), the proof for family (1.1)+λ , (1.2)
is practically the same.

If |x(0)| is the maximum value of |x(t)| on [0, 1] we have x(0)x′(0) ≤ 0, from where obtain

0 ≥ x(0)βx′(0) = x(0)(A + αx(0)) = α(x(0))2
[ A

αx(0)
+ 1

]
.

This yields consecutively

A
αx(0)

+ 1 ≤ 0,
∣∣∣∣ A
αx(0)

∣∣∣∣ ≥ 1 and |x(0)| ≤ |A/α|.

Likewise, if |x(t)| achieves its maximum at t = 1, we obtain

|x(1)| ≤ |B/a|.
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Now, let |x(t)| achieve its maximum in an interior point of (0, 1). For the right-hand side
of equation (1.1)−λ we have

λx f (t, x, 0) + (1 − λ)x2 > 0 for each λ ∈ [0, 1], t ∈ [0, 1] and x ∈ Dx \ [−M, M],

that is, (A) is satisfied for (1.1)−λ . Thus,

|x(t)| ≤ M, t ∈ [0, 1],

by Lemma 2.1.

Now, let
L− = max{max | f (t, x, A)|, max |x − A|},

where the maximums are computed for (t, x) ∈ [0, 1]× [mv, Mv].

Lemma 2.5. Let (A2) hold for J = [mv, Mv] and C = A. Then each solution x ∈ C2[0, 1] to (1.1)−λ ,
(1.3) satisfies the bound

|x(t)| ≤ L−
min{1, K} + max{|mv|, |Mv|}, t ∈ [0, 1].

Proof. Define the function y(t) = x(t)− v(t), t ∈ [0, 1]. Since v(t) satisfies BC (1.3), y(t) is a
C2[0, 1]-solution to the homogeneous BVP

y′′ = h(t, y, y′, λ), t ∈ (0, 1),

y′(0) = 0, ay(1) + by′(1) = 0,

where h(t, y, y′, λ) = λ f (t, y + v, y′ + v′) + (1 − λ)(y + v − y′ − v′), λ[0, 1]. Besides,

yh(t, y, 0, λ) = y
(

λ f (t, y + v, v′) + (1 − λ)(y + v − v′)
)

= y
(

λ f (t, y + v, A) + (1 − λ)(y + v − A)− λ f (t, v, A)

− (1 − λ)(v − A) + λ f (t, v, A) + (1 − λ)(v − A)
)

= y
(

λ fx(t, θy + v, A)y + (1 − λ)y
)
+ y

(
λ f (t, v, A) + (1 − λ)(v − A)

)
for any θ ∈ (0, 1). Let us note, fx(t, θy + v, A), t ∈ [0, 1], is well defined since for t ∈ [0, 1]
θy(t) + v(t) ∈

[
min{mv, min[0,1] x(t)}, max{Mv, max[0,1] x(t)}

]
⊆ Dx. Then

yh(t, y, 0, λ) ≥ y2(λK + (1 − λ))− |y|L− ≥ |y|(|y|min{1, K} − L−),

from where it follows

yh(t, y, 0, λ) > 0 for t ∈ [0, 1] and |y| > L−
min{1, k}

and for each λ ∈ [0, 1]. Thus,

|y(t)| ≤ L−
min{1, k} for t ∈ [0, 1],

by Lemma 2.2. Keeping in mind that x(t) = y(t) + v(t), we obtain the lemma.
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Now, let
L+ = max{max | f (t, x, B)|, max |x + B|},

where the maximums are computed over (t, x) ∈ [0, 1]× [mw, Mw].

Lemma 2.6. Let (A2) hold for J = [mw, Mw] and C = B. Then each solution x ∈ C2[0, 1] to (1.1)+λ ,
(1.4) satisfies the bound

|x(t)| ≤ L+

min{1, K} + max{|mw|, |Mw|}, t ∈ [0, 1].

Proof. Following the proof of Lemma 2.5, introduce the function y(t) = x(t)− w(t), t ∈ [0, 1].
Since w(t) satisfies BC (1.4), y(t) is a C2[0, 1]-solution to the homogeneous BVP

y′′ = h(t, y, y′, λ), t ∈ (0, 1),

−αy(0) + βy′(0) = 0, y′(0) = 0,

where h(t, y, y′, λ) = λ f (t, y + w, y′ + w′) + (1 − λ)(y + w + y′ + w′). Besides,

yh(t, y, 0, λ) = y
(

λ f (t, y + w, w′) + (1 − λ)(y + w + w′)
)

= y
(

λ f (t, y + w, B) + (1 − λ)(y + w + B)− λ f (t, w, B)

− (1 − λ)(w + B) + λ f (t, w, B) + (1 − λ)(w + B)
)

= y
(

λ fx(t, θy + w, B)y + (1 − λ)y
)
+ y

(
λ f (t, w, B) + (1 − λ)(w + B)

)
for any θ ∈ (0, 1). Then

yh(t, y, 0, λ) ≥ y2(λK + (1 − λ))− |y|L+ ≥ |y|(|y|min{1, K} − L+),

from where it follows

yh(t, y, 0, λ) > 0 for t ∈ [0, 1] and |y| > L+

min{1, k}

and for each λ ∈ [0, 1]. Thus,

|y(t)| ≤ L+

min{1, k} for t ∈ [0, 1],

by Lemma 2.3, which yields the bound for |x(t)|.

The considerations used in the proofs of the following statements are standard for proofs
of lemmas based on barrier strips conditions. These results provide a priori bounds for
the (n − 1)th derivative of the nth-order differential equations, see for example Lemma 2
of R. P. Agarwal and P. Kelevedjiev [1], Lemma 3.1 of P. Kelevedjiev and T. Todorov [7] and
Theorem 3.1 of P. Kelevedjiev [8].

Lemma 2.7. Let (B1) hold for constants M0, Gm = (A − αM0)β−1 and GM = (A + αM0)β−1. Then
each solution x ∈ C2[0, 1] to (1.1)−λ , (1.2) with the property

−M0 ≤ x(t) ≤ M0, t ∈ [0, 1],

satisfies the bound
F1 ≤ x′(t) ≤ L1, t ∈ [0, 1].
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Proof. Reasoning by contradiction, assume that x′(t) > L1 for some t ∈ (0, 1]. Then, the
continuity of x′(t) on [0, 1] and

x′(0) =
A + αx(0)

β
≤ A + αM0

β
≤ L1

imply that the set
S− = {t ∈ [0, 1] : L1 < x′(t) ≤ L2}

is not empty. Also, that there is a γ ∈ S− such that

x′′(γ) > 0.

Because x(t) is a C2[0, 1]-solution to (1.1)−λ , we have in particular

x′′(γ) = λ f (γ, x(γ), x′(γ)) + (1 − λ)(x(γ)− x′(γ)).

Now, from (γ, x(γ), x′(γ)) ∈ S− × [−M0, M0]× (L1, L2] and (1.10) we get

λ f (γ, x(γ), x′(γ)) ≤ 0,

and x′(γ) > L1 ≥ M0 ≥ x(γ) yields x(γ)− x′(γ) < 0. As a result

x′′(γ) ≤ 0,

a contradiction. Thus,
x′(t) ≤ L1 for t ∈ [0, 1].

Similarly, assuming that x′(t) < F1 for some t ∈ (0, 1] and using that

x′(0) =
A + αx(0)

β
≥ A − αM0

β
≥ F1,

we establish that
S+ = {t ∈ [0, 1] : F2 ≤ x′(t) < F1}

is the empty set and so
x′(t) ≥ F1 for t ∈ [0, 1].

Lemma 2.8. Let (B2) hold for constants M0, Gm = (B − aM0)b−1 and GM = (B + aM0)b−1. Then
each solution x ∈ C2[0, 1] to (1.1)+λ , (1.2) with the property

−M0 ≤ x(t) ≤ M0, t ∈ [0, 1],

satisfies the bound
F′

1 ≤ x′(t) ≤ L′
1, t ∈ [0, 1].

Proof. By contradiction, assume that x′(t) > L′
1 for some t ∈ [0, 1). This means that the set

S+ = {t ∈ [0, 1] : L′
1 < x′(t) ≤ L′

2}

is not empty because x′(t) is continuous on [0, 1] and

x′(1) =
B − ax(1)

b
≤ B + aM0

b
≤ L′

1.
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Also, there is a γ ∈ S+ such that
x′′(γ) < 0.

As x(t) is a C2[0, 1]-solution to (1.1)+λ ,

x′′(γ) = λ f (γ, x(γ), x′(γ)) + (1 − λ)(x(γ) + x′(γ)).

Now, (γ, x(γ), x′(γ)) ∈ S+ × [−M0, M0]× (L′
1, L′

2] and (1.12) imply

λ f (γ, x(γ), x′(γ)) ≥ 0.

Besides, x(γ) + x′(γ) > 0 because x′(γ) > L′
1 ≥ M0 ≥ x(γ) ≥ −M0. Thus,

x′′(γ) ≥ 0,

a contradiction. Consequently,

x′(t) ≤ L′
1 for t ∈ [0, 1].

Along similar lines, assuming on the contrary that the set

S− = {t ∈ [0, 1] : F′
2 ≤ x′(t) < F′

1}

is not empty and using that

x′(1) =
B − ax(0)

b
≥ B − aM0

b
≥ F′

1,

we achieve a contradiction which implies that

F′
1 ≤ x′(t) for t ∈ [0, 1].

Lemma 2.9. Let (B1) hold for constants M0, Gm = min{−M0, A} and GM = max{M0, A}. Then
each solution x ∈ C2[0, 1] to (1.1)−λ , (1.3) with the property

−M0 ≤ x(t) ≤ M0, t ∈ [0, 1],

satisfies the bound
F1 ≤ x′(t) ≤ L1, t ∈ [0, 1].

Proof. Let, on the contrary, x′(t) < F1 for some t ∈ (0, 1]. Then, the continuity of x′(t) on [0, 1]
and x′(0) = A ≥ F1 imply that the set

S+ = {t ∈ [0, 1] : F2 ≤ x′(t) < F1}

is not empty and there is a γ ∈ S+ such that

x′′(γ) < 0.

On the other hand, since x(t) is a C2[0, 1]-solution to (1.1)−λ , we have in particular

x′′(γ) = λ f (γ, x(γ), x′(γ)) + (1 − λ)(x(γ)− x′(γ)).

But, (γ, x(γ), x′(γ)) ∈ S+ × [−M0, M0]× [F2, F1) and (1.11) imply

λ f (γ, x(γ), x′(γ)) ≥ 0,
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and x(γ)− x′(γ) > 0, because x′(γ) < F1 ≤ −M0 ≤ x(γ). As a result

x′′(γ) ≥ 0

and a contradiction is achieved. Thus,

x′(t) ≥ F1 for t ∈ [0, 1].

Similar reasoning based on the use of (1.10) shows that

S− = {t ∈ [0, 1] : L1 < x′(t) ≤ L2}

is empty and so
x′(t) ≤ L1 for t ∈ [0, 1].

The proof of the next assertion is omitted, it follows the lines of proof of Lemmas 2.7, 2.8
and 2.9.

Lemma 2.10. Let (B2) hold for constants M0, Gm = min{−M0, B} and GM = max{M0, B}. Then
each solution x ∈ C2[0, 1] to (1.1)+λ , (1.4) with the property

−M0 ≤ x(t) ≤ M0, t ∈ [0, 1],

satisfies the bound
F′

1 ≤ x′(t) ≤ L′
1, t ∈ [0, 1].

3 Existence results

BVP (1.1)−0 , (1.2), arising from (1.1)−λ , (1.2) for λ = 0, has the form

x′′ + x′ − x = 0, t ∈ (0, 1),

−αx(0) + βx′(0) = A, ax(1) + bx′(1) = B.

By standard reasoning, we obtain that the solutions of the differential equation are the func-
tions x(t) = C1er1t + C2er2t, and the system for C1 and C2 gives a unique solution to the BVP if∣∣∣∣ βr1 − α βr2 − α

(a + br1)er1 (a + br2)er2

∣∣∣∣ ̸= 0, (3.1)

where r1 = − 1+
√

5
2 and r2 = −1+

√
5

2 are the roots of the characteristic equation.

Theorem 3.1. Let (A1) hold, (B1) hold for

M0 = max{|A/α|, |B/a|, M}, Gm = (A − αM0)β−1 and GM = (A + αM0)β−1,

(C) hold for the same constant M0 and for m0 = −M0, m1 = F1, M1 = L1 and (3.1) be satisfied. Then
BVP (1.1), (1.2) has at least one solution in C2[0, 1].



12 G. Mihaylova and P. Kelevedjiev

Proof. We divide the proof into two steps.

First step. We will check the hypotheses of Theorem 1.1 for the family of BVPs (1.1)−λ , (1.2) and
BVP (1.1), (1.2) assuming firstly that the inequality in (A1) is strong, that is,

x f (t, x, 0) > 0 for t ∈ [0, 1] and x ∈ Dx \ [−M, M]. (3.2)

Condition (i) is fulfilled because we know from above that (3.1) guarantees a unique C2[0, 1]-
solution to BVP (1.1)−0 , (1.2). Apparently (ii) also holds. To check (iii) we establish, by standard
reasoning, that for an arbitrary y(t) ∈ C[0, 1] the BVP

x′′ = y(t)

−αx(0) + βx′(0) = 0, ax(1) + bx′(1) = 0,

has a unique solution in C2[0, 1], which means that the map Λh : C2
B0
[0, 1] → C[0, 1], defined

by Λhx = x′′, is one-to-one. Besides, for each solution x(t) ∈ C2[0, 1] to (1.1)−λ , (1.2) we have

m0 ≤ x(t) ≤ M0, t ∈ [0, 1], by Lemma 2.4,

and
m1 ≤ x′(t) ≤ M1, t ∈ [0, 1], by Lemma 2.7.

In view of (C), the function f (t, x, p) is continuous on [0, 1]× [m0, M0]× [m1, M1]. Thus, there
are constants m2 and M2 such that

m2 ≤ λ f (t, x, p) + (1 − λ)(x − p) ≤ M2

for λ ∈ [0, 1] and (t, x, p) ∈ [0, 1]× [m0, M0]× [m1, M1].

Since for t ∈ [0, 1] we have (x(t), x′(t)) ∈ [m0, M0]× [m1, M1], the equation (1.1)−λ implies

m2 ≤ x′′(t) ≤ M2 for t ∈ [0, 1].

Hence, (iv) also holds. Finally, (v) follows again from (C). Therefore, we can apply Theorem 1.1
to conclude that assertion is true when we have (3.2).

Second step. Now, assuming that (A1) is in the form given, consider the family of BVPs{
x′′ = fn(t, x, x′), t ∈ (0, 1),

−αx(0) + βx′(0) = A, ax(1) + bx′(1) = B,
(3.3)

where fn(t, x, x′) = f (t, x, x′) + (x − x′) : n, n = 1, 2, 3, . . . . Clearly,

x fn(t, x, 0) = x f (t, x, 0) +
x2

n
> 0 for t ∈ [0, 1], x ∈ Dx \ [−M, M],

that is, (3.2) is satisfied for each n = 1, 2, 3, . . . . Besides,

x − p
n

≤ 0 for x ∈ [−M0, M0] and p ≥ L1 ≥ M0,

x − p
n

≥ 0 for x ∈ [−M0, M0] and p ≤ F1 ≤ −M0,

and (B1) imply

fn(t, x, p) ≤ 0 for (t, x, p) ∈ [0, 1]× [−M0, M0]× [L1, L2],
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and
fn(t, x, p) ≥ 0 for (t, x, p) ∈ [0, 1]× [−M0, M0]× [F2, F1].

Thus, family (3.3) satisfies (B1) for all n = 1, 2, 3, . . . . Obviously, (3.3) satisfies (C) as well.
Finally, to verify (3.1), we just have to consider that for each fixed n = 1, 2, 3, . . . , the λ-family
corresponding to (3.3) is

x′′ = λ

(
f (t, x, x′) +

x − x′

n

)
+ (1 − λ)(x − x′), λ ∈ [0, 1],

−αx(0) + βx′(0) = A, ax(1) + bx′(1) = B,

and to see that for λ = 0 we have again BVP (1.1)−0 , (1.2). So, taking into consideration
the proved in First step, we conclude that family (3.3) has a solution xn ∈ C2[0, 1] for each
n = 1, 2, 3, . . . .

Further, just as in the proof of Lemma 2.4, we find that

|xn(t)| ≤ M0 for t ∈ [0, 1],

and just as in the proof of Lemma 2.7 establish that

F1 ≤ x′n(t) ≤ L1 for t ∈ [0, 1]

for each n = 1, 2, 3, . . . . Finally,

| fn(t, x, p)| ≤ | f (t, x, p)|+ |x − p|
n

≤ | f (t, x, p)|+ |x − p|

together with the continuity of f (t, x, p) on [0, 1]× [−M0, M0]× [F1, L1] implies that there is a
constant M2 independent of n such that

|x′′n(t)| ≤ M2 for t ∈ [0, 1].

The estimates for |xn(t)|, |x′n(t)| and |x′′n(t)| allow us to use the Arzelà–Ascoli theorem to ex-
tract a subsequence {xnk}, k = 1, 2, 3, . . . , of {xn} converging uniformly on [0, 1] to a function
x ∈ C1[0, 1]. We will show that x(t) is a C2[0, 1]-solution to BVP (1.1), (1.2). For this purpose
introduce the sequence {ynk}, k = 1, 2, 3, . . . , where ynk(t) = xnk(t)− r(t), t ∈ [0, 1], with

r(t) =
αB + aA

αa + αb + aβ
t − Aa + Ab − βB

αa + αb + aβ
.

Clearly, {ynk} converges uniformly on [0, 1] to the function y(t) = x(t)− r(t) and y ∈ C1[0, 1].
Besides, since r(t) satisfies BCs (1.2), ynk(t) is a solution to the BVP

y′′nk
= fnk(t, ynk + r, y′nk

+ r′), t ∈ (0, 1),

−αynk(0) + βy′nk
(0) = 0, aynk(1) + by′nk

(1) = 0,

and its integral form

ynk(t) =
∫ 1

0
G(t, s) fnk(s, ynk(s) + r(s), y′nk

(s) + r′(s))ds, (3.4)

for k = 1, 2, 3, . . . , where G(t, s) is the Green function for the BVP

x′′ = 0, t ∈ (0, 1),
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−αx(0) + βx′(0) = 0, ax(1) + bx′(1) = 0,

and

fnk(t, ynk + r, y′nk
+ r′) = f (t, ynk + r, y′nk

+ r′) +
ynk + r − y′nk

− r′

nk
.

Since |ynk + r − y′nk
− r′| = |xnk − x′nk

| ≤ M0 + max{|F1|, L1}, letting k → ∞ in (3.4), we obtain

y(t) =
∫ 1

0
G(t, s) f (s, y(s) + r(s), y′(s) + r′(s))ds.

Thus,

x(t) =
∫ 1

0
G(t, s) f (s, x(s), x′(s))ds + r(t),

which means that x(t) is a C2[0, 1]-solution to BVP (1.1), (1.2).

Now let us look at BVP (1.1)+0 , (1.2)

x′′ − x′ − x = 0, t ∈ (0, 1),

−αx(0) + βx′(0) = A, ax(1) + bx′(1) = B.

It has a unique solution if ∣∣∣∣ βs1 − α βs2 − α

(a + bs1)es1 (a + bs2)es2

∣∣∣∣ ̸= 0, (3.5)

where s1 = 1−
√

5
2 and s2 = 1+

√
5

2 are the roots of the characteristic equation.

Theorem 3.2. Let (A1) hold, (B2) hold for

M0 = max{|A/α|, |B/a|, M}, Gm = (B − aM0)b−1 and GM = (B + aM0)b−1,

(C) hold for the same constant M0 and for m0 = −M0, m1 = F′
1, M1 = L′

1 and (3.5) be satisfied. Then
BVP (1.1), (1.2) has at least one solution in C2[0, 1].

Proof. It is similar to the proof of the previous theorem. Now we will apply Theorem 1.1 on
the family of BVPs (1.1)+λ , (1.2).

First step. Again assume firstly that the inequality in (A1) is strong, that is, (A) holds.
The condition (i) follows from (3.5). The condition (ii) is again obvious, and the verification

of (iii) is as in Theorem 3.1. Now, the bounds

m0 ≤ x(t) ≤ M0 and m1 ≤ x′(t) ≤ M1, t ∈ [0, 1],

for each solution x(t) ∈ C2[0, 1] to (1.1)+λ , (1.2), follow by Lemmas 2.4 and 2.8, respectively,
and the bound

m2 ≤ x′′(t) ≤ M2 for t ∈ [0, 1]

follows by arguments similar to those in the proof of Theorem 3.1. Thus, (iv) holds. Finally,
(v) follows again from (C). So, the assertion is true by Theorem 1.1.

Second step. Now, (A1) is in the form given. Consider the family of BVPs{
x′′ = fn(t, x, x′), t ∈ (0, 1),

−αx(0) + βx′(0) = A, ax(1) + bx′(1) = B,
(3.6)
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where fn(t, x, x′) = f (t, x, x′) + (x + x′) : n, n = 1, 2, 3, . . . . Clearly,

x fn(t, x, 0) = x f (t, x, 0) +
x2

n
> 0 for t ∈ [0, 1], x ∈ Dx \ [−M, M],

that is, (A) is satisfied for each n = 1, 2, 3, . . . . Besides,

x + p
n

≥ 0 for x ∈ [−M0, M0] and p ≥ L′
1 ≥ M0,

x + p
n

≤ 0 for x ∈ [−M0, M0] and p ≤ F′
1 ≤ −M0,

and (B2) imply

fn(t, x, p) ≥ 0 for (t, x, p) ∈ [0, 1]× [−M0, M0]× [L′
1, L′

2],

and
fn(t, x, p) ≤ 0 for (t, x, p) ∈ [0, 1]× [−M0, M0]× [F′

2, F′
1].

Thus, family (3.6) satisfies (B2) for all n = 1, 2, 3, . . . . Obviously, (3.6) satisfies and (C). As in
the proof of Theorem 3.1, we notice that (3.5) is also fulfilled. Consequently, according to
what we proved in the First step, each boundary value problem arising from the family (3.6)
for n = 1, 2, 3, . . . has a solution xn ∈ C2[0, 1].

Further, just as in the proof of Lemma 2.4, we find that

|xn(t)| ≤ M0 for t ∈ [0, 1],

and just as in the proof of Lemma 2.8 establish that

F′
1 ≤ x′n(t) ≤ L′

1 for t ∈ [0, 1]

for each n = 1, 2, 3, . . . Besides, the continuity of | f (t, x, p)| + |x + p| on the compact set
[0, 1]× [−M0, M0]× [F′

1, L′
1] implies that there is a constant M2 independent of n such that

|x′′n(t)| ≤ M2 for t ∈ [0, 1].

By the Arzelà–Ascoli theorem the sequence {xn} has a subsequence {xnk}, k = 1, 2, 3, . . . ,
converging uniformly on [0, 1] to a function x ∈ C1[0, 1]. Next, arguing as in the proof of
Theorem 3.1, establish that x(t) is a C2[0, 1]-solution to BVP (1.1), (1.2).

It is standardly found that the BVP

x′′ + x′ − x = 0, t ∈ (0, 1),

x′(0) = A, ax(1) + bx′(1) = B,

in fact this is (1.1)−0 , (1.3), has a unique solution in C2[0, 1] if∣∣∣∣ r1 r2

(a + br1)er1 (a + br2)er2

∣∣∣∣ ̸= 0, (3.7)

where r1 and r2 are as in (3.1).
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Theorem 3.3. Let (A2) hold for J = [mv, Mv] and C = A, (B1) hold for constants

M0 =
L−

min{1, K} + max{|mv|, |Mv|}, Gm = min{−M0, A} and GM = max{M0, A},

(C) hold for the same constant M0 and for m0 = −M0, m1 = F1 and M1 = L1 and (3.7) be satisfied.
Then BVP (1.1), (1.3) has at least one solution in C2[0, 1].

Proof. We will apply Theorem 1.1 on family (1.1)−λ , (1.3). The hypothesis (i) follows immedi-
ately from (3.7). Besides, (ii) is obvious. The map Λh : C2

B0
[0, 1] → C[0, 1], defined by Λhx = x′′

is one-to-one, because for an arbitrary y(t) ∈ C[0, 1] the BVP

x′′ = y(t)

x′(0) = 0, ax(1) + bx′(1) = 0,

has a unique solution in C2[0, 1], (iii) is also fulfilled. For each solution x(t) ∈ C2[0, 1] to (1.1)−λ ,
(1.3) we have

m0 ≤ x(t) ≤ M0, t ∈ [0, 1], by Lemma 2.5,

m1 ≤ x′(t) ≤ M1, t ∈ [0, 1], by Lemma 2.9,

and the bound
m2 ≤ x′′(t) ≤ M2 for t ∈ [0, 1]

follows as in the proof of Theorem 3.1. So, (iv) also holds. Finally, (C) ensures the validity of
(v). Therefore, we can apply Theorem 1.1 to conclude that the assertion is true.

It is easily established that BVP (1.1)+0 , (1.4), namely,

x′′ − x′ − x = 0, t ∈ (0, 1),

x′(0) = A, ax(1) + bx′(1) = B,

has a unique solution if ∣∣∣∣βs1 − α βs2 − α

s1es1 s2es2

∣∣∣∣ ̸= 0, (3.8)

where s1 and s2 are as in (3.5).

Theorem 3.4. Let (A2) hold for J = [mw, Mw] and C = B, (B2) hold for constants

M0 =
L+

min{1, K} + max{|mw|, |Mw|}, Gm = min{−M0, B} and GM = max{M0, B},

(C) hold for the same constant M0 and for m0 = −M0, m1 = F′
1, M1 = L′

1 and (3.8) be satisfied. Then
BVP (1.1), (1.4) has at least one solution in C2[0, 1].

Proof. The proof is virtually the same as that of Theorem 3.3. Now, apply Theorem 1.1 on
family (1.1)+λ , (1.4). (i) follows from (3.8), to check (iii) show that for an arbitrary y(t) ∈ C[0, 1]
the BVP

x′′ = y(t)

−αx(0) + βx′(0) = 0, x′(1) = 0,

has a unique solution in C2[0, 1], and the bounds from (iv),

m0 ≤ x(t) ≤ M0, t ∈ [0, 1],

m1 ≤ x′(t) ≤ M1, t ∈ [0, 1],

for each solution x(t) ∈ C2[0, 1] to (1.1)+λ , (1.4) follow from Lemmas 2.6 and 2.10, respectively.
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4 Examples

The following examples illustrate the application of the obtained results.

Example 4.1. Consider the BVPs for the equation

x′′ = x′(x′ − 10) + (x − 2)2(x + 2), t ∈ (0, 1),

−3x(0) + 2x′(0) = 6, 2x(1) + x′(1) = −3.

We easily check that (A1) holds for M = 2. Calculate M0 = 2, Gm = 0 and GM = 6. Next,
keeping in mind that

0 ≤ (x − 2)2(x + 2) < 1 for x ∈ [−2, 2],

we can choose, for example, F2 = −4, F1 = −3, L1 = 7 and L2 = 8 to see that (B1) also hold.
(C) is obvious, and (3.1) is also easily verifiable. So, we can apply Theorem 3.1 to conclude
that the considered BVP has at least one solution in C2[0, 1].

Example 4.2. Consider the BVP

x′′ = x′3 + (x − 1)
√

x + 10, t ∈ (0, 1),

−x(0) + 4x′(0) = 5, 2x(1) + x′(1) = 4.

First observe that

x f (t, x, 0) = x(x − 1)
√

x + 10 ≥ 0 for x ∈ [−10, ∞) \ [−1, 1],

which means that (A1) is satisfied for M = 1. Then M0 = 5, Gm = −6, GM = 14. Besides,

−6
√

5 ≤ (x − 1)
√

x + 10 ≤ 4
√

15 for x ∈ [−5, 5].

So, we can choose F′
2 = −8, F′

1 = −7, L′
1 = 15 and L′

2 = 16 to check (B2). In addition f (t, x, p) =
p3 + (x − 1)

√
x + 10 is continuous on the set [0, 1]× [−5 − δ, 5 + δ]× [−7 − δ, 15 + δ], where

δ > 0 is sufficiently small, to say δ = 0.1, that is, (C) is satisfied. Checking (3.5) also presents
no difficulty. So, we can apply Theorem 3.2 to conclude that the considered BVP has a solution
in C2[0, 1].

Example 4.3. Consider the BVP

x′′ = ϕ(t, x) + Pn(x′), t ∈ (0, 1),

x′(0) = A, ax(1) + bx′(1) = B,

where the function ϕ : [0, 1]× R → R is continuous, differentiable with respect to x and there
is a constant K > 0 for which

ϕx(t, x) ≥ K > 0 for (t, x) ∈ [0, 1]× R,

the polynomial Pn(p) = ∑n
k=0 ak pk, n = 2s + 1, s ∈ N, is such that an < 0, and a and b are such

that (3.7) holds.

Clearly, (A2) is satisfied. Further, if

fmax := max |ϕ(t, x) + Pn(A)| for (t, x) ∈ [0, 1]× [mv, Mv],
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where mv and Mv are the constants used in Theorem 3.3, and

gmax := max |x − A| for (t, x) ∈ [0, 1]× [mv, Mv],

we determine first
L− = max{ fmax, gmax}

and then M0. Because the continuity of ϕ, there are constants ϕm, ϕM ∈ R such that

ϕm ≤ ϕ(t, x) ≤ ϕM for (t, x) ∈ [0, 1]× [−M0, M0].

Then, for sufficiently large p > max{M0, A} we have

Pn(p) < −max{|ϕm|, |ϕM|},

which implies that the constants L1 and L2 of (B1) exist. Besides, for sufficiently small p <

min{−M0, A} we have
Pn(p) > max{|ϕm|, |ϕM|},

which means that the constants F1 and F2 of (B1) also exist. Finally, (C) is obvious and so the
considered BVP has a solution in C2[0, 1] by Theorem 3.3.

Example 4.4. Consider the BVP

x′′ = ϕ(t, x) + Pn(x′), t ∈ (0, 1),

−αx′(0) + βx′(0) = A, x′(1) = B,

where the function ϕ[0, 1]×R → R is continuous, differentiable with respect to x and there is
a constant K > 0 for which

ϕx(t, x) ≥ K > 0 for (t, x) ∈ [0, 1]× R,

the polynomial Pn(p) = ∑n
k=0 ak pk, n = 2s + 1, s ∈ N, is such that an > 0, and α and β are such

that (3.8) holds.

An analysis similar to that of Example 4.3 shows that we can apply Theorem 3.4 to con-
clude that this BVP has a solution in C2[0, 1].

Example 4.5. Consider the BVP

x′′ = x + 10−1x′
√
(x′ + 14)(11 − x′), t ∈ (0, 1),

−x(0) + x′(0) = 3, x′(1) = 2.

We will check the conditions of Theorem 3.4. Here w(t) = 2t − 1 with mw = −1 and Mw = 1.
Then (A2) is satisfied for K = 1, J = [−1, 1] and C = 2, because fx(t, x, 2) = 1 for (t, x) ∈
[0, 1]× R. Form f (t, x, 2) = x + 2.4. Then, for (t, x) ∈ [0, 1]× [−1, 1] we have max | f (t, x, 2)| =
3.4 and max |x + 2| = 3. We calculate L+ = 3.4, M0 = 4.4, Gm = −4.4 and GM = 4.4. We are
now ready to check that (B2) is satisfied for F′

2 = −6, F′
1 = −5, L′

1 = 5 and L′
2 = 6. Keeping

in mind that f (t, x, p) is defined and continuous for (t, x, p) ∈ [0, 1]× R × [−14, 11], we easily
conclude that (C) also holds for m0 = −4.4, M0 = 4.4, m1 = −5, M1 = 5 and, to say, δ = 0.01.
Finally, to check that (3.8) is satisfied, we establish that the determinant∣∣∣∣∣ 1−

√
5

2 − 1 1+
√

5
2 − 1

1−
√

5
2 e

1−
√

5
2 1+

√
5

2 e
1+

√
5

2

∣∣∣∣∣
is different from zero. So, we can apply Theorem 3.4 to conclude that the considered BVP has
a solution in C2[0, 1].
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5 Conclusions

Here we will comment on conditions (3.1), (3.5), (3.7) and (3.8). In fact, they are not essential.
If, for example, (3.1) is not fulfilled, we can replace (1.1)−λ with

x′′ = λ f (t, x, x′) + (1 − λ)(x − kx′), t ∈ (0, 1),

where λ ∈ [0, 1] and k > 0. Now (1.1)−0 has the form

x′′ + kx′ − x = 0

and we can choose k such that its characteristic equation has roots r1 and r2 for which (3.1) is
satisfied. This necessitates a slight change in (B1), namely

F2 < F1 ≤ min{−M0/k, Gm}, max{M0/k, GM} ≤ L1 < L2,

References

[1] R. P. Agarwal, P. Kelevedjiev, On the solvability of fourth-order two-point boundary
value problems, Mathematics 8(2020), 603. https://doi.org/10.3390/math8040603

[2] R. P. Agarwal, T. Zh. Todorov, P. Kelevedjiev, Existence for two-point nth order bound-
ary value problems under barrier strips, Symmetry 15(2023), 1394. https://doi.org/10.
3390/sym15071394

[3] M. Dobkevich, F. Sadyrbaev, Types and multiplicity of solutions to Sturm–Liouville
boundary value problem, Math. Model. Anal. 20(2015), No. 1, 1–8. https://doi.org/10.
3846/13926292.2015.996259

[4] A. M. A. El-Sayed, E. M. A. Hamdallah, H. M. A. Alama, Multiple solutions of Sturm–
Liouville boundary value problem of nonlinear differential inclusion with nonlocal in-
tegral conditions, AIMS Math. 7(2022), No. 6, 11150–11164. https://doi.org/10.3934/
math.2022624

[5] A. M. A. El-Sayed, M. Sh. Mohamed, R. E. M. Embia, On the multiple solutions of a
nonhomogeneous Sturm–Liouville equation with nonlocal boundary conditions, Internat.
J. Appl. Math. 32(2019), No. 1, 35–43. https://doi.org/10.12732/ijam.v32i1.3

[6] A. Granas, R. B. Guenther, J. W. Lee, Nonlinear boundary value problems for ordinary
differential equations, Instytut Matematyczny Polskiej Akademi Nauk, Warszawa, 1985,
133 pp. Published in: Dissertationes Math. (Rozprawy Mat.) 244(1985). MR808227

[7] P. Kelevedjiev, T. Zh. Todorov, Existence of solutions of nonlinear third-order two-
point boundary value problems, Electron. J. Qual. Theory Differ. Equ. 2019, No. 23, 1–15.
https://doi.org/10.14232/ejqtde.2019.1.23

[8] P. Kelevedjiev, Existence of solutions for two-point boundary value problems, Nonlinear
Anal. 22 (1994), No. 2, 217–224. https://doi.org/10.1016/0362-546X(94)90035-3

[9] Y. Liu, S. Chen, L. Ou, Solvability of Sturm–Liouville boundary value problems for mul-
tiple order fractional differential equations, Arab. J. Math. Sci. 22(2016), No. 2, 207–231.
https://doi.org/10.1016/j.ajmsc.2015.08.001

https://doi.org/10.3390/math8040603
https://doi.org/10.3390/sym15071394
https://doi.org/10.3390/sym15071394
https://doi.org/10.3846/13926292.2015.996259
https://doi.org/10.3846/13926292.2015.996259
https://doi.org/10.3934/math.2022624
https://doi.org/10.3934/math.2022624
https://doi.org/10.12732/ijam.v32i1.3
https://www.ams.org/mathscinet-getitem?mr=808227
https://doi.org/10.14232/ejqtde.2019.1.23
https://doi.org/10.1016/0362-546X(94)90035-3
https://doi.org/10.1016/j.ajmsc.2015.08.001


20 G. Mihaylova and P. Kelevedjiev

[10] C. C. Tisdell, Existence of solutions to second-order boundary value problems without
growth restrictions, Electron. J. Qual. Theory Differ. Equ. 2016, No. 92, 1–14. https://doi.
org/10.14232/ejqtde.2016.1.92

[11] F. H. Wong, T. G. Chen, S. P. Wang, Existence of positive solutions for various boundary
value problems, Comput. Math. Appl. 56(2008), No. 4, 953–958.https://doi.org/10.1016/
j.camwa.2007.11.050

[12] T. Xue, F. Kong, L. Zhang, Research on Sturm–Liouville boundary value problems of
fractional p-Laplacian equation, Adv. Differ. Equ. 2021, No. 177. https://doi.org/10.
1186/s13662-021-03339-3

[13] L. Zhang, X. Huang, W. Ge, Positive solutions of Sturm–Liouville boundary value prob-
lems in presence of upper and lower solutions, Internat. J. Differ. Equ. 2011, ID 383294, pp.
11. https://doi.org/10.1155/2011/383294

https://doi.org/10.14232/ejqtde.2016.1.92
https://doi.org/10.14232/ejqtde.2016.1.92
https://doi.org/10.1016/j.camwa.2007.11.050
https://doi.org/10.1016/j.camwa.2007.11.050
https://doi.org/10.1186/s13662-021-03339-3
https://doi.org/10.1186/s13662-021-03339-3
https://doi.org/10.1155/2011/383294

	Introduction
	Auxiliary results
	Existence results
	Examples
	Conclusions

