

Existence of solutions to Sturm–Liouville boundary value problems

Gabriela M. Mihaylova¹ and [●] Petio S. Kelevedjiev^{$⊠2$}

¹Department of Electrical Engineering, Electronics and Automation, Faculty of Engineering and Pedagogy of Sliven, Technical University of Sofia, 8800 Sliven, Bulgaria ²Department of Qualification and Professional Development of Teachers of Sliven, Technical University of Sofia, 8800 Sliven, Bulgaria

> Received 22 June 2024, appeared 1 January 2025 Communicated by Gennaro Infante

Abstract. We study the solvability of Sturm–Liouville boundary value problems for $x'' = f(t, x, x')$, $t \in (0, 1)$. The nonlinearity can be defined on a bounded set and is required to be continuous on its subset. The results obtained are based on combinations of well-known conditions with barrier strip type conditions.

Keywords: nonlinear boundary value problem, Sturm–Liouville boundary conditions, existence, barrier strips conditions.

2020 Mathematics Subject Classification: 34B15.

1 Introduction

This paper is devoted to the solvability of boundary value problems (BVPs) for the equation

$$
x'' = f(t, x, x'), \qquad t \in (0, 1), \tag{1.1}
$$

with Sturm–Liouville boundary conditions (BCs) either

$$
-\alpha x(0) + \beta x'(0) = A, \qquad ax(1) + bx'(1) = B,\tag{1.2}
$$

$$
x'(0) = A, \qquad ax(1) + bx'(1) = B,\tag{1.3}
$$

or

$$
-\alpha x(0) + \beta x'(0) = A, \qquad x'(1) = B,
$$
\n(1.4)

where $f : [0,1] \times D_x \times D_p \to \mathbb{R}$, D_x , $D_y \subseteq \mathbb{R}$, α , β , a , $b > 0$, and $A, B \in \mathbb{R}$.

This paper is motivated by A. Granas et al. $[6]$. The authors prove that BVP (1.1) , (1.2) has a solution in $C^2[0,1]$ assuming that the function $f(t,x,p)$ is continuous on $[0,1]\times \mathbb{R}^2$ and there is a constant $M \geq 0$ such that

$$
xf(t, x, 0) \ge M \quad \text{for } t \in [0, 1] \text{ and } |x| > M \tag{1.5}
$$

 $B \cong$ Corresponding author. Email: pskeleved@abv.bg

and the well-known Bernstein's growth condition holds, that is, there exist positive constants G_i , $i = 1, 2$, for which

$$
|f(t, x, p)| \le G_1 p^2 + G_2 \quad \text{for } (t, x) \in [0, 1] \times [-M_0, M_0], \tag{1.6}
$$

where $M_0 = \max\{|A/\alpha|, |B/a|, M\}$. A similar result guarantees $C^2[0,1]$ -solutions to BVPs [\(1.1\)](#page-0-1), [\(1.3\)](#page-0-3) and (1.1), [\(1.4\)](#page-0-4). In it, [\(1.5\)](#page-0-5) is replaced by the assumption that $f(t, x, p)$ is differentiable with respect to *x* and there is a constant $K > 0$ such that

$$
f_x(t, x, p) \ge K \quad \text{for } (t, x, p) \in [0, 1] \times \mathbb{R} \times \{C\},\tag{1.7}
$$

where $C = A$ or $C = B$. The conditions imposed guarantee a priori bounds. Moreover, each of the conditions [\(1.5\)](#page-0-5) and [\(1.7\)](#page-1-0) provide a priori bound for the solutions to the considered BVP, that is, for $|x(t)|$, and [\(1.6\)](#page-1-1) provides the bound for $|x'(t)|$. The established a priori bounds are needed for applying the Topological transversality theorem.

One of the BVPs studied in C. Tisdell [\[10\]](#page-19-0) is [\(1.1\)](#page-0-1), [\(1.2\)](#page-0-2). Here, the Leray–Schauder degree theory and a priori bounds are used. The well known condition

$$
f(t, -R_1, 0) < 0
$$
 and $f(t, R_2, 0) > 0$, $t \in [0, 1]$,

where *R*₁ and *R*₂ are some positive constants with $\min\{R_1, R_2\} > \max\{|A/\alpha|, |B/\alpha|\}$, gives the bound for $|x(t)|$, and this for $|x'(t)|$ follows from the assumption that there exist nonnegative constants *α* and *K* such that

$$
|f(t,x,p)| \leq \alpha f(t,x,p) + K \quad \text{for all } t \in [0,1], |x| \leq R, p \in \mathbb{R},
$$

where $R = \max\{R_1, R_2\}$.

Other results on the solvability of BVPs for various equations with Sturm–Liouville boundary conditions can be found, for example, in M. Dobkevich and F. Sadyrbaev [\[3\]](#page-18-1), A. M. A. El-Sayed et al. [\[4,](#page-18-2) [5\]](#page-18-3), T. Xue et al. [\[12\]](#page-19-1), Y. Liu et al. [\[9\]](#page-18-4), F. H. Wong et al. [\[11\]](#page-19-2) and L. Zhang et al. [\[13\]](#page-19-3).

The purpose of this paper is to give sufficient conditions for the existence of solutions in which growth restrictions on $f(t, x, p)$ are not imposed, that is, we do not use condition [\(1.6\)](#page-1-1). It is replaced by sign conditions of barrier strips type.

The existence discussion is based on the basic existence theorem proved in R. P. Agarwal et al. [\[2\]](#page-18-5), which is a variant of [\[6,](#page-18-0) Chapter V, Theorem 1.1]. Let us prepare its wording.

Consider the BVP

$$
\begin{cases} x^{(n)} + \sum_{k=0}^{n-1} s_k(t) x^{(k)} = f(t, x, x', \dots, x^{(n-1)}), \ t \in [0, 1],\\ V_i(x) = A_i, \ i = \overline{1, n}, \end{cases}
$$
(1.8)

of which the considered boundary value problems (1.1) , (1.2) – (1.4) are special cases. Here $s_k(t)$, $k = \overline{0, n-1}$, are continuous on $[0,1]$, $f : [0,1] \times D_0 \times D_1 \times \cdots \times D_{n-1} \to \mathbb{R}$,

$$
V_i(x) \equiv \sum_{j=0}^{n-1} [a_{ij}x^{(j)}(0) + b_{ij}x^{(j)}(1)], \qquad i = \overline{1,n},
$$

with constants a_{ij} and b_{ij} for which $\sum_{i=0}^{n-1}$ $j_{j=0}^{n-1} (a_{ij}^2 + b_{ij}^2) > 0$, $i = \overline{1,n}$, and $A_i \in \mathbb{R}$.

For $\lambda \in [0, 1]$, consider also the family of BVPs

$$
\begin{cases} x^{(n)} + \sum_{k=0}^{n-1} s_k(t) x^{(k)} = g(t, x, x', \dots, x^{(n-1)}, \lambda), \ t \in [0, 1], \\ V_i(x) = A_i, \ i = \overline{1, n}, \end{cases}
$$
(1.9)

where $g : [0,1] \times D_0 \times D_1 \times \cdots \times D_{n-1} \times [0,1] \to \mathbb{R}$, and $s_k(t)$, $k = \overline{0,n-1}$, V_i , A_i , $i = \overline{1,n}$, are as above.

Let, as usual, $C[0, 1]$ be the Banach space of continuous functions on $[0, 1]$ with the norm $||x||_0 = \sup_{t \in [0,1]} |x(t)|$, and $C^n[0,1]$ be the Banach space of *n*-times continuously differentiable $\text{functions with } ||x||_n = \max\{\|x\|_0, \ldots, \|x^{(n)}\|_0\}.$

Let B denote the set of functions that satisfy the BCs $V_i(x) = A_i$, $i = \overline{1,n}$, and B_0 be the set of functions satisfying $V_i(x) = 0, i = \overline{1, n}$. Finally, let $C_{\mathcal{B}}^n[0,1] = C^n[0,1] \cap \mathcal{B}$ and $C_{\mathcal{B}_0}^n[0,1] = C^n[0,1] \cap \mathcal{B}_0.$

We are now ready to formulate the basic existence theorem.

Theorem 1.1 ([\[2,](#page-18-5) Theorem 4])**.** *Assume that:*

- *(i)* For $\lambda = 0$ problem [\(1.9\)](#page-1-2) has a unique solution in $C^n[0,1]$.
- *(ii) Problems* [\(1.8\)](#page-1-3) *and* [\(1.9\)](#page-1-2) *are equivalent when* $\lambda = 1$.
- *(iii) The map* $\Lambda_h: C^n_{\mathcal{B}_0}[0,1] \to C[0,1]$, *defined by*

$$
\Lambda_h x = x^{(n)} + \sum_{k=0}^{n-1} s_k(t) x^{(k)},
$$

is one-to-one.

(iv) Each solution $x \in C^n[0,1]$ *to family* [\(1.9\)](#page-1-2) *satisfies the bounds*

$$
m_i \leq x^{(i)}(t) \leq M_i
$$
 for $t \in [0,1], i = \overline{0,n}$,

 ν *where the constants* $-\infty < m_i$ *,* $M_i < \infty$ *,* $i = \overline{0,n}$ *, are independent of* λ *and* x *.*

(v) There is a sufficiently small δ > 0 *such that*

$$
[m_i-\delta,M_i+\delta]\subseteq D_i, \qquad i=\overline{0,n-1},
$$

and the function $g(t, p_0, \ldots, p_{n-1}, \lambda)$ *is continuous on* $[0, 1] \times D \times [0, 1]$, *where*

$$
D = [m_0 - \delta, M_0 + \delta] \times [m_1 - \delta, M_1 + \delta] \times \cdots \times [m_{n-1} - \delta, M_{n-1} + \delta];
$$

 m_i , M_i , $i = \overline{0}$, $n - 1$, are as in (iv).

Then, BVP [\(1.8\)](#page-1-3) *has at least one solution in* $Cⁿ[0, 1]$ *.*

To apply Theorem [1.1](#page-2-0) for studying the considered BVPs, we use families of BVPs for

$$
x'' = \lambda f(t, x, x') + (1 - \lambda)(x - x'), \qquad t \in (0, 1), \tag{1.1}_{\lambda}
$$

and

$$
x'' = \lambda f(t, x, x') + (1 - \lambda)(x + x'), \qquad t \in (0, 1), \tag{1.1}_{\lambda}
$$

where $\lambda \in [0,1]$. They are adapted to the application of the barrier strips type conditions used here, namely conditions **(B1)** and **(B**2**)** below.

In order to achieve the a priori bounds of condition *(iv)* of Theorem [1.1,](#page-2-0) we impose three sets of conditions. The conditions of set **A**, these are [\(1.5\)](#page-0-5) and [\(1.7\)](#page-1-0), guarantee the a priori bounds for each eventual $C^2[0,1]$ -solution $x(t)$ to the used families, those of the set **B** give the bounds for $x'(t)$, and **C** ensures the bounds for $x''(t)$.

Following are the hypotheses used in this article.

(A₁) There is a constant *M* ≥ 0 such that $[-M, M] ⊆ D_x$ and

$$
xf(t, x, 0) \ge 0 \quad \text{for } t \in [0, 1] \text{ and } x \in D_x \setminus [-M, M].
$$

In the formulation of the next hypothesis, we use the functions

$$
v(t) = At + \frac{B - A(a+b)}{a} \quad \text{and} \quad w(t) = Bt + \frac{B\beta - A}{\alpha}, \qquad t \in [0,1],
$$

and more precisely the constants $m_v = \min_{[0,1]} v(t)$, $M_v = \max_{[0,1]} v(t)$, $m_w = \min_{[0,1]} w(t)$ and $M_w = \max_{[0,1]} w(t)$.

(A₂) $J \subseteq D_x$, here $J = [m_v, M_v]$ for [\(1.3\)](#page-0-3) and $J = [m_w, M_w]$ for [\(1.4\)](#page-0-4), and there is a constant $K > 0$ such that

$$
f_x(t,x,C) \geq K \quad \text{for } (t,x) \in [0,1] \times D_x,
$$

where $C = A$ for [\(1.3\)](#page-0-3) and $C = B$ for [\(1.4\)](#page-0-4).

For some constants *M*0, *G^m* and *GM*, they will be specified later for each problem, suppose that:

(B₁)</sub> There are constants F_i , L_i , $i = 1, 2$, such that $[F_2, L_2] \subseteq D_p$,

$$
F_2 < F_1 \le \min\{-M_0, G_m\}, \quad \max\{M_0, G_M\} \le L_1 < L_2,
$$
\n
$$
f(t, m, n) < 0, \text{ for } (t, m, n) \in [0, 1] \times [0, M, M] \times [0, L] \tag{1.10}
$$

$$
f(t, x, p) \leq 0 \quad \text{for } (t, x, p) \in [0, 1] \times [-M_0, M_0] \times [L_1, L_2], \tag{1.10}
$$

$$
f(t, x, p) \ge 0 \quad \text{for } (t, x, p) \in [0, 1] \times [-M_0, M_0] \times [F_2, F_1]. \tag{1.11}
$$

(B₂)</sub> There are constants F'_i , L'_i , $i = 1, 2$, such that $[F'_2, L'_2] \subseteq D_p$,

$$
F'_2 < F'_1 \le \min\{-M_0, G_m\}, \quad \max\{M_0, G_M\} \le L'_1 < L'_2,
$$
\n
$$
f(t, x, p) \ge 0 \quad \text{for } (t, x, p) \in [0, 1] \times [-M_0, M_0] \times [L'_1, L'_2],
$$
\n
$$
f(t, x, p) \le 0 \quad \text{for } (t, x, p) \in [0, 1] \times [-M_0, M_0] \times [F'_2, F'_1].
$$
\n
$$
(1.12)
$$

(C) There are constants $m_i \leq M_i$, $i = 0, 1$, and a sufficiently small $\delta > 0$ such that

$$
[m_0 - \delta, M_0 + \delta] \subseteq D_{x}, \qquad [m_1 - \delta, M_1 + \delta] \subseteq D_p,
$$

and $f(t, x, p)$ is continuous on $[0, 1] \times [m_0 - \delta, M_0 + \delta] \times [m_1 - \delta, M_1 + \delta].$

The paper is organized as follows. In Section [2](#page-4-0) we establish a priori bounds for $x(t)$ and $x'(t)$ for each solution $x \in C^2[0,1]$ to the families of BVPs for $(1.1)^{-}_{\lambda}$ $(1.1)^{-}_{\lambda}$ with BCs [\(1.2\)](#page-0-2) or [\(1.3\)](#page-0-3) and for $(1.1)^+$ $(1.1)^+$ _λ with BCs [\(1.2\)](#page-0-2) or [\(1.4\)](#page-0-4). In Section [3](#page-10-0) we use the obtained bounds to prove existence results for the considered BVPs. Examples illustrate the application of the obtained results in Section [4.](#page-16-0)

2 Auxiliary results

We need a well known maximum principle, see for example [\[6,](#page-18-0) Chapter II, Lemma 1.1], concerning equations of the form

$$
x'' = h(t, x, x'), \qquad t \in [0, 1]. \tag{2.1}
$$

It is based on the following assumption.

(A) There is a constant $M \geq 0$ such that $[-M, M] \subseteq D_x$ and

$$
xh(t,x,0) > 0 \quad \text{for } t \in [0,1] \text{ and } x \in D_x \setminus [-M,M].
$$

Lemma 2.1. Let $x \in C^2[0,1]$ be a solution to equation [\(2.1\)](#page-4-1) such that $|x(t)|$ does not achieve its *maximum at t* = 0 *or t* = 1. Assume further that (A) holds. Then $x(t)$ satisfies the bound

$$
|x(t)| \leq M \text{ for } t \in [0,1].
$$

Proof. By the assumption of the lemma, $|x(t)|$ must achieve a positive maximum at a point $t_0 \in (0, 1)$. Clearly, the function $y(t) = (x(t))^2$ also has a maximum at t_0 . Thus,

$$
y''(t_0) = 2x(t_0)x''(t_0) = 2x(t_0)h(t_0, x(t_0), 0) \leq 0.
$$

Next, reasoning by contradiction, assume $|x(t_0)| > M$. Then from **(A)** it follows

$$
x(t_0)h(t_0, x(t_0), 0) > 0
$$

and the derived contradiction proves the lemma.

The proofs of the following two lemmas follow the idea of proof of [\[6,](#page-18-0) Chapter II, Lemma 1.2].

Lemma 2.2. Let (A) hold. Then each solution $x \in C^2[0,1]$ to [\(2.1\)](#page-4-1), [\(1.3\)](#page-0-3) with $A = B = 0$ satisfies the *bound*

$$
|x(t)| \le M, \qquad t \in [0,1].
$$

Proof. Suppose that $|x(0)|$ is the maximum value of $|x(t)|$. We claim that $|x(0)| > M$ is impossible. To verify this, by contradiction, assume it is true. Then,

$$
x(0)x''(0) = x(0)h(0, x(0), 0) > 0.
$$

Now, if $x(0) < 0$, then $x''(0) < 0$. Because of the continuity of $x''(t)$ on [0,1], there is a neighborhood $N_0 \subseteq [0,1]$ of $t = 0$ where $x''(t) < 0$. This means that $x'(t)$ is strictly decreasing on *N*⁰ and so $x'(t) < x'(0) = 0$ for $t \in N_0$. Consequently $x(t)$ is also strictly decreasing on *N*⁰ and so $|x(0)|$ can not be the maximum of $|x(t)|$ on [0,1], a contradiction. If $x(0) > 0$, then $x''(0) > 0$, from where conclude $x'(t) > x'(0) = 0$ for $t \in U_0$, where $U_0 \subseteq [0,1]$ is any neighborhood of $t = 0$. Thus, $x(t) > x(0) > 0$ for $t \in U_0$, which means that $|x(t)| > |x(0)|$, $t \in$ *U*₀, again a contradiction. So, $|x(0)| \leq M$.

Let $|x(1)|$ be the maximum value of $|x(t)|$, $t \in [0,1]$. Then, $x(1)x'(1) \ge 0$ and

$$
0 \leq x(1)bx'(1) = x(1)(-ax(1)) = -a(x(1))^2 \leq 0,
$$

which is possible if $x(1) = 0$. So, we have $\max_{[0,1]} |x(t)| = 0$, which means $x(t) = 0$ for $t \in [0, 1]$ and the lemma is true.

Finally, if $|x(t)|$ achieve its maximum in $(0, 1)$, then

$$
|x(t)| \leq M, \qquad t \in [0,1],
$$

by Lemma [2.1.](#page-4-2)

Lemma 2.3. Let (A) hold. Then each solution $x \in C^2[0,1]$ to [\(2.1\)](#page-4-1), [\(1.4\)](#page-0-4) with $A = B = 0$ satisfies the *bound*

$$
|x(t)| \le M, \qquad t \in [0,1].
$$

Proof. If $|x(0)|$ is the maximum value of $|x(t)|$, we have $x(0)x'(0) \le 0$ from where obtain

$$
0 \geq x(0)\beta x'(0) = x(0)(\alpha x(0)) = \alpha(x(0))^2 \geq 0.
$$

This implies $\max_{[0,1]} |x(t)| = |x(0)| = 0$ which means $x(t) = 0$ on [0, 1] and so the lemma is true.

If $|x(t)|$ achieves its maximum at $t = 1$, the assumption that $|x(1)| > M$ yields

$$
x(1)x''(1) = x(1)h(1, x(1), 0) > 0.
$$

Next, following the proof of Lemma [2.2,](#page-4-3) we derive contradictions in the cases $x(1) < 0$ and $x(1) > 0$ and conclude that $|x(1)| \leq M$.

Finally, if $|x(t)|$ achieves its maximum somewhere at the interval $(0, 1)$, then the bound

$$
|x(t)| \le M, \qquad t \in [0,1],
$$

follows from Lemma [2.1.](#page-4-2)

Following the proof of [\[6,](#page-18-0) Chapter II, Theorem 3.3], establish the assertion.

Lemma 2.4. *Let* (A) *hold for* [\(1.1\)](#page-0-1)*. Then each solution* $x \in C^2[0,1]$ *to* (1.1)^{$\frac{1}{\lambda}$} $\frac{1}{\lambda}$, [\(1.2\)](#page-0-2) *or to* [\(1.1\)](#page-0-1)^{$+$} *λ ,* [\(1.2\)](#page-0-2) *satisfies the bound*

$$
|x(t)| \le \max\{|A/\alpha|, |B/a|, M\}, \qquad t \in [0,1].
$$

Proof. We will prove the assertion about family $(1.1)^{-}_{\lambda}$ $(1.1)^{-}_{\lambda}$ $\bar{\lambda}$, [\(1.2\)](#page-0-2), the proof for family [\(1.1\)](#page-0-1)⁺_λ *λ* , [\(1.2\)](#page-0-2) is practically the same.

If $|x(0)|$ is the maximum value of $|x(t)|$ on $[0,1]$ we have $x(0)x'(0) \leq 0$, from where obtain

$$
0 \geq x(0)\beta x'(0) = x(0)(A + \alpha x(0)) = \alpha(x(0))^2 \Big[\frac{A}{\alpha x(0)} + 1\Big].
$$

This yields consecutively

$$
\frac{A}{\alpha x(0)} + 1 \le 0, \qquad \left| \frac{A}{\alpha x(0)} \right| \ge 1 \quad \text{and} \quad |x(0)| \le |A/\alpha|.
$$

Likewise, if $|x(t)|$ achieves its maximum at $t = 1$, we obtain

$$
|x(1)| \leq |B/a|.
$$

 \Box

Now, let $|x(t)|$ achieve its maximum in an interior point of $(0, 1)$. For the right-hand side of equation $(1.1)^{-}_{\lambda}$ $(1.1)^{-}_{\lambda}$ we have

$$
\lambda x f(t, x, 0) + (1 - \lambda) x^2 > 0 \quad \text{for each} \quad \lambda \in [0, 1], t \in [0, 1] \quad \text{and} \quad x \in D_x \setminus [-M, M],
$$

that is, **(A)** is satisfied for $(1.1)^{-}_{\lambda}$ $(1.1)^{-}_{\lambda}$ $\overline{\lambda}$. Thus,

$$
|x(t)| \leq M, \qquad t \in [0,1],
$$

by Lemma [2.1.](#page-4-2)

Now, let

$$
L_{-} = \max\{\max |f(t, x, A)|, \max |x - A|\},\
$$

where the maximums are computed for $(t, x) \in [0, 1] \times [m_v, M_v]$.

Lemma 2.5. *Let* (A₂) *hold for* $J = [m_v, M_v]$ *and* $C = A$. *Then each solution* $x \in C^2[0,1]$ *to* $(1.1)^{-1}$ $(1.1)^{-1}$ *λ* , [\(1.3\)](#page-0-3) *satisfies the bound*

$$
|x(t)| \leq \frac{L_{-}}{\min\{1,K\}} + \max\{|m_v|, |M_v|\}, \qquad t \in [0,1].
$$

Proof. Define the function $y(t) = x(t) - v(t)$, $t \in [0, 1]$. Since $v(t)$ satisfies BC [\(1.3\)](#page-0-3), $y(t)$ is a *C* 2 [0, 1]-solution to the homogeneous BVP

$$
y'' = h(t, y, y', \lambda), \t t \in (0, 1),
$$

$$
y'(0) = 0, \t ay(1) + by'(1) = 0,
$$

where $h(t, y, y', \lambda) = \lambda f(t, y + v, y' + v') + (1 - \lambda)(y + v - y' - v')$, $\lambda[0, 1]$. Besides,

$$
yh(t, y, 0, \lambda) = y\Big(\lambda f(t, y + v, v') + (1 - \lambda)(y + v - v')\Big)
$$

= $y\Big(\lambda f(t, y + v, A) + (1 - \lambda)(y + v - A) - \lambda f(t, v, A)$
 $- (1 - \lambda)(v - A) + \lambda f(t, v, A) + (1 - \lambda)(v - A)\Big)$
= $y\Big(\lambda f_x(t, \theta y + v, A)y + (1 - \lambda)y\Big) + y\Big(\lambda f(t, v, A) + (1 - \lambda)(v - A)\Big)$

for any $\theta \in (0, 1)$. Let us note, $f_x(t, \theta y + v, A), t \in [0, 1]$, is well defined since for $t \in [0, 1]$ θ *y*(*t*) + *v*(*t*) \in $\left[\min\{m_v,\min_{[0,1]} x(t)\},\max\{M_v,\max_{[0,1]} x(t)\}\right]$ \subseteq $D_x.$ Then

$$
yh(t,y,0,\lambda) \geq y^2(\lambda K + (1-\lambda)) - |y|L_{-} \geq |y|(|y| \min\{1,K\} - L_{-}),
$$

from where it follows

$$
yh(t, y, 0, \lambda) > 0
$$
 for $t \in [0, 1]$ and $|y| > \frac{L}{\min\{1, k\}}$

and for each $\lambda \in [0, 1]$. Thus,

$$
|y(t)| \le \frac{L_-}{\min\{1,k\}} \quad \text{for } t \in [0,1],
$$

by Lemma [2.2.](#page-4-3) Keeping in mind that $x(t) = y(t) + v(t)$, we obtain the lemma.

 \Box

Now, let

$$
L_{+} = \max\{\max |f(t, x, B)|, \max |x + B|\},\
$$

where the maximums are computed over $(t, x) \in [0, 1] \times [m_w, M_w]$.

Lemma 2.6. Let (A_2) hold for $J = [m_w, M_w]$ and $C = B$. Then each solution $x \in C^2[0,1]$ to $(1.1)^+_{\lambda}$ $(1.1)^+_{\lambda}$ *λ* , [\(1.4\)](#page-0-4) *satisfies the bound*

$$
|x(t)| \leq \frac{L_+}{\min\{1,K\}} + \max\{|m_w|, |M_w|\}, \qquad t \in [0,1].
$$

Proof. Following the proof of Lemma [2.5,](#page-6-0) introduce the function $y(t) = x(t) - w(t)$, $t \in [0, 1]$. Since $w(t)$ satisfies BC [\(1.4\)](#page-0-4), $y(t)$ is a $C^2[0,1]$ -solution to the homogeneous BVP

$$
y'' = h(t, y, y', \lambda), \quad t \in (0, 1),
$$

$$
-\alpha y(0) + \beta y'(0) = 0, \quad y'(0) = 0,
$$

where $h(t, y, y', \lambda) = \lambda f(t, y + w, y' + w') + (1 - \lambda)(y + w + y' + w')$. Besides,

$$
yh(t, y, 0, \lambda) = y\Big(\lambda f(t, y + w, w') + (1 - \lambda)(y + w + w')\Big)
$$

= $y\Big(\lambda f(t, y + w, B) + (1 - \lambda)(y + w + B) - \lambda f(t, w, B)$
 $- (1 - \lambda)(w + B) + \lambda f(t, w, B) + (1 - \lambda)(w + B)\Big)$
= $y\Big(\lambda f_x(t, \theta y + w, B)y + (1 - \lambda)y\Big) + y\Big(\lambda f(t, w, B) + (1 - \lambda)(w + B)\Big)$

for any $\theta \in (0,1)$. Then

$$
yh(t,y,0,\lambda) \geq y^2(\lambda K + (1-\lambda)) - |y|L_+ \geq |y|(|y| \min\{1,K\} - L_+),
$$

from where it follows

$$
yh(t, y, 0, \lambda) > 0
$$
 for $t \in [0, 1]$ and $|y| > \frac{L_+}{\min\{1, k\}}$

and for each $\lambda \in [0, 1]$. Thus,

$$
|y(t)| \le \frac{L_+}{\min\{1,k\}} \quad \text{for } t \in [0,1],
$$

by Lemma [2.3,](#page-5-0) which yields the bound for $|x(t)|$.

The considerations used in the proofs of the following statements are standard for proofs of lemmas based on barrier strips conditions. These results provide a priori bounds for the (*n* − 1)th derivative of the *n*th-order differential equations, see for example Lemma 2 of R. P. Agarwal and P. Kelevedjiev [\[1\]](#page-18-6), Lemma 3.1 of P. Kelevedjiev and T. Todorov [\[7\]](#page-18-7) and Theorem 3.1 of P. Kelevedjiev [\[8\]](#page-18-8).

Lemma 2.7. *Let* **(B₁)** *hold for constants* M_0 , $G_m = (A - \alpha M_0)\beta^{-1}$ *and* $G_M = (A + \alpha M_0)\beta^{-1}$. *Then each solution* $x \in C^2[0, 1]$ *to* $(1.1)^{-1}$ $(1.1)^{-1}$ *λ* , [\(1.2\)](#page-0-2) *with the property*

$$
-M_0 \leq x(t) \leq M_0, \qquad t \in [0,1],
$$

satisfies the bound

$$
F_1 \le x'(t) \le L_1, \qquad t \in [0, 1].
$$

Proof. Reasoning by contradiction, assume that $x'(t) > L_1$ for some $t \in (0,1]$. Then, the continuity of $x'(t)$ on [0,1] and

$$
x'(0) = \frac{A + \alpha x(0)}{\beta} \le \frac{A + \alpha M_0}{\beta} \le L_1
$$

imply that the set

$$
S_{-} = \{t \in [0,1]: L_1 < x'(t) \le L_2\}
$$

is not empty. Also, that there is a $\gamma \in S_-\$ such that

$$
x''(\gamma) > 0.
$$

Because $x(t)$ is a $C^2[0,1]$ -solution to $(1.1)^{-}_{\lambda}$ $(1.1)^{-}_{\lambda}$ $\overline{\lambda}$, we have in particular

$$
x''(\gamma) = \lambda f(\gamma, x(\gamma), x'(\gamma)) + (1 - \lambda)(x(\gamma) - x'(\gamma)).
$$

Now, from $(γ, x(γ), x'(γ)) ∈ S_ → [-M_0, M_0] × (L_1, L_2]$ and [\(1.10\)](#page-3-0) we get

 $\lambda f(\gamma, x(\gamma), x'(\gamma)) \leq 0$,

and $x'(\gamma) > L_1 \ge M_0 \ge x(\gamma)$ yields $x(\gamma) - x'(\gamma) < 0$. As a result

 $x''(\gamma) \leq 0$,

a contradiction. Thus,

$$
x'(t) \le L_1 \text{ for } t \in [0,1].
$$

Similarly, assuming that $x'(t) < F_1$ for some $t \in (0,1]$ and using that

$$
x'(0) = \frac{A + \alpha x(0)}{\beta} \ge \frac{A - \alpha M_0}{\beta} \ge F_1,
$$

we establish that

$$
S_+ = \{t \in [0,1] : F_2 \le x'(t) < F_1\}
$$

is the empty set and so

$$
x'(t) \ge F_1 \quad \text{for } t \in [0,1].
$$

Lemma 2.8. *Let* **(B₂**)</sub> *hold for constants* M_0 , $G_m = (B - aM_0)b^{-1}$ *and* $G_M = (B + aM_0)b^{-1}$. *Then each solution* $x \in C^2[0,1]$ *to* $(1.1)^+_{\lambda}$ $(1.1)^+_{\lambda}$ *λ* , [\(1.2\)](#page-0-2) *with the property*

$$
-M_0 \leq x(t) \leq M_0, \qquad t \in [0,1],
$$

satisfies the bound

$$
F_1' \le x'(t) \le L_1', \qquad t \in [0,1].
$$

Proof. By contradiction, assume that $x'(t) > L'_1$ for some $t \in [0,1)$. This means that the set

$$
S_+ = \{t \in [0,1]: L'_1 < x'(t) \le L'_2\}
$$

is not empty because $x'(t)$ is continuous on [0, 1] and

$$
x'(1) = \frac{B - ax(1)}{b} \le \frac{B + aM_0}{b} \le L'_1.
$$

Also, there is a $\gamma \in S_+$ such that

$$
x''(\gamma) < 0.
$$

As $x(t)$ is a $C^2[0, 1]$ -solution to $(1.1)^+_{\lambda}$ $(1.1)^+_{\lambda}$ *λ* ,

$$
x''(\gamma) = \lambda f(\gamma, x(\gamma), x'(\gamma)) + (1 - \lambda)(x(\gamma) + x'(\gamma)).
$$

Now, $(γ, x(γ), x'(γ)) ∈ S₊ × [−M₀, M₀] × (L'₁, L'₂] and (1.12) imply$ $(γ, x(γ), x'(γ)) ∈ S₊ × [−M₀, M₀] × (L'₁, L'₂] and (1.12) imply$ $(γ, x(γ), x'(γ)) ∈ S₊ × [−M₀, M₀] × (L'₁, L'₂] and (1.12) imply$

$$
\lambda f(\gamma, x(\gamma), x'(\gamma)) \geq 0.
$$

Besides, $x(\gamma) + x'(\gamma) > 0$ because $x'(\gamma) > L'_1 \ge M_0 \ge x(\gamma) \ge -M_0$. Thus,

 $x''(\gamma) \geq 0$,

a contradiction. Consequently,

$$
x'(t) \le L'_1 \quad \text{for } t \in [0,1].
$$

Along similar lines, assuming on the contrary that the set

$$
S_{-} = \{t \in [0,1] : F_2' \le x'(t) < F_1'\}
$$

is not empty and using that

$$
x'(1) = \frac{B - ax(0)}{b} \ge \frac{B - aM_0}{b} \ge F'_1,
$$

we achieve a contradiction which implies that

$$
F_1' \le x'(t) \quad \text{for } t \in [0,1].
$$

Lemma 2.9. *Let* **(B₁**)</sub> *hold for constants* M_0 , $G_m = \min\{-M_0, A\}$ *and* $G_M = \max\{M_0, A\}$. *Then each solution* $x \in C^2[0, 1]$ *to* $(1.1)^{-1}$ $(1.1)^{-1}$ *λ* , [\(1.3\)](#page-0-3) *with the property*

$$
-M_0 \leq x(t) \leq M_0, \qquad t \in [0,1],
$$

satisfies the bound

$$
F_1 \leq x'(t) \leq L_1, \qquad t \in [0,1].
$$

Proof. Let, on the contrary, $x'(t) < F_1$ for some $t \in (0, 1]$. Then, the continuity of $x'(t)$ on $[0, 1]$ and $x'(0) = A \geq F_1$ imply that the set

$$
S_+ = \{t \in [0,1] : F_2 \le x'(t) < F_1\}
$$

is not empty and there is a $\gamma \in S_+$ such that

$$
x''(\gamma) < 0.
$$

On the other hand, since $x(t)$ is a $C^2[0,1]$ -solution to $(1.1)^{-}_{\lambda}$ $(1.1)^{-}_{\lambda}$ $\overline{\lambda}$, we have in particular

$$
x''(\gamma) = \lambda f(\gamma, x(\gamma), x'(\gamma)) + (1 - \lambda)(x(\gamma) - x'(\gamma)).
$$

But, $(\gamma, x(\gamma), x'(\gamma)) \in S_+ \times [-M_0, M_0] \times [F_2, F_1)$ and [\(1.11\)](#page-3-2) imply

$$
\lambda f(\gamma, x(\gamma), x'(\gamma)) \geq 0,
$$

and $x(\gamma) - x'(\gamma) > 0$, because $x'(\gamma) < F_1 \leq -M_0 \leq x(\gamma)$. As a result

 $x''(\gamma) \geq 0$

and a contradiction is achieved. Thus,

$$
x'(t) \ge F_1 \quad \text{for } t \in [0,1].
$$

Similar reasoning based on the use of [\(1.10\)](#page-3-0) shows that

$$
S_{-} = \{t \in [0,1]: L_1 < x'(t) \le L_2\}
$$

is empty and so

$$
x'(t) \le L_1 \quad \text{for } t \in [0,1].
$$

The proof of the next assertion is omitted, it follows the lines of proof of Lemmas [2.7,](#page-7-0) [2.8](#page-8-0) and [2.9.](#page-9-0)

Lemma 2.10. *Let* **(B₂**)</sub> *hold for constants* M_0 , $G_m = \min\{-M_0, B\}$ *and* $G_M = \max\{M_0, B\}$. *Then each solution* $x \in C^2[0,1]$ *to* $(1.1)^+_{\lambda}$ $(1.1)^+_{\lambda}$ *λ* , [\(1.4\)](#page-0-4) *with the property*

$$
-M_0 \leq x(t) \leq M_0, \qquad t \in [0,1],
$$

satisfies the bound

$$
F_1' \le x'(t) \le L_1', \qquad t \in [0,1].
$$

3 Existence results

BVP $(1.1)_0^ (1.1)_0^ _{0}^{-}$, [\(1.2\)](#page-0-2), arising from $(1.1)_{\lambda}^{-}$ $(1.1)_{\lambda}^{-}$ $\overline{\lambda}$, [\(1.2\)](#page-0-2) for $\lambda = 0$, has the form

$$
x'' + x' - x = 0, \t t \in (0, 1),
$$

- $\alpha x(0) + \beta x'(0) = A, \t ax(1) + bx'(1) = B.$

By standard reasoning, we obtain that the solutions of the differential equation are the functions $x(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$, and the system for C_1 and C_2 gives a unique solution to the BVP if

$$
\begin{vmatrix} \beta r_1 - \alpha & \beta r_2 - \alpha \\ (a + br_1)e^{r_1} & (a + br_2)e^{r_2} \end{vmatrix} \neq 0,
$$
\n(3.1)

where $r_1 = -\frac{1+\sqrt{5}}{2}$ $\frac{1-\sqrt{5}}{2}$ and $r_2 = \frac{-1+\sqrt{5}}{2}$ $\frac{1+\sqrt{5}}{2}$ are the roots of the characteristic equation.

Theorem 3.1. *Let* **(A1)** *hold,* **(B1)** *hold for*

$$
M_0 = \max\{|A/\alpha|, |B/a|, M\},
$$
 $G_m = (A - \alpha M_0)\beta^{-1}$ and $G_M = (A + \alpha M_0)\beta^{-1}$,

(C) *hold for the same constant* M_0 *<i>and for* $m_0 = -M_0$, $m_1 = F_1$, $M_1 = L_1$ *and* [\(3.1\)](#page-10-1) *be satisfied. Then BVP* [\(1.1\)](#page-0-1), [\(1.2\)](#page-0-2) *has at least one solution in* $C^2[0,1]$ *.*

Proof. We divide the proof into two steps.

First step. We will check the hypotheses of Theorem [1.1](#page-2-0) for the family of BVPs $(1.1)^{-}_{\lambda}$ $(1.1)^{-}_{\lambda}$ $\frac{1}{\lambda}$, [\(1.2\)](#page-0-2) and BVP [\(1.1\)](#page-0-1), [\(1.2\)](#page-0-2) assuming firstly that the inequality in **(A1)** is strong, that is,

$$
xf(t, x, 0) > 0
$$
 for $t \in [0, 1]$ and $x \in D_x \setminus [-M, M]$. (3.2)

Condition *(i)* is fulfilled because we know from above that [\(3.1\)](#page-10-1) guarantees a unique $C^2[0,1]$ solution to BVP $(1.1)₀$ $(1.1)₀$ $_0^-$, [\(1.2\)](#page-0-2). Apparently *(ii)* also holds. To check *(iii)* we establish, by standard reasoning, that for an arbitrary $y(t) \in C[0, 1]$ the BVP

$$
x'' = y(t)
$$

- $\alpha x(0) + \beta x'(0) = 0$, $ax(1) + bx'(1) = 0$,

has a unique solution in $C^2[0,1]$, which means that the map $\Lambda_h: C^2_{\mathcal{B}_0}[0,1] \to C[0,1]$, defined by $\Lambda_h x = x''$, is one-to-one. Besides, for each solution $x(t) \in C^2[0,1]$ to $(1.1)^{-}_{\lambda}$ $(1.1)^{-}_{\lambda}$ λ [,] [\(1.2\)](#page-0-2) we have

$$
m_0 \le x(t) \le M_0, \qquad t \in [0,1], \quad \text{by Lemma 2.4,}
$$

and

$$
m_1 \le x'(t) \le M_1, \qquad t \in [0,1], \quad \text{by Lemma 2.7.}
$$

In view of **(C)**, the function $f(t, x, p)$ is continuous on $[0, 1] \times [m_0, M_0] \times [m_1, M_1]$. Thus, there are constants m_2 and M_2 such that

$$
m_2 \leq \lambda f(t, x, p) + (1 - \lambda)(x - p) \leq M_2
$$

for $\lambda \in [0, 1]$ and $(t, x, p) \in [0, 1] \times [m_0, M_0] \times [m_1, M_1]$.

Since for $t \in [0, 1]$ we have $(x(t), x'(t)) \in [m_0, M_0] \times [m_1, M_1]$, the equation $(1.1)^{-}_{\lambda}$ $(1.1)^{-}_{\lambda}$ *λ* implies

$$
m_2 \leq x''(t) \leq M_2 \quad \text{for } t \in [0,1].
$$

Hence, *(iv)* also holds. Finally, *(v)* follows again from **(C)**. Therefore, we can apply Theorem [1.1](#page-2-0) to conclude that assertion is true when we have [\(3.2\)](#page-11-0).

Second step. Now, assuming that **(A1)** is in the form given, consider the family of BVPs

$$
\begin{cases}\nx'' = f_n(t, x, x'), \ t \in (0, 1), \\
-\alpha x(0) + \beta x'(0) = A, \ ax(1) + bx'(1) = B,\n\end{cases}
$$
\n(3.3)

where $f_n(t, x, x') = f(t, x, x') + (x - x') : n, n = 1, 2, 3, \dots$ Clearly,

$$
xf_n(t,x,0) = xf(t,x,0) + \frac{x^2}{n} > 0 \text{ for } t \in [0,1], x \in D_x \setminus [-M, M],
$$

that is, (3.2) is satisfied for each $n = 1, 2, 3, \ldots$. Besides,

$$
\frac{x-p}{n} \le 0 \quad \text{for } x \in [-M_0, M_0] \text{ and } p \ge L_1 \ge M_0,
$$

$$
\frac{x-p}{n} \ge 0 \quad \text{for } x \in [-M_0, M_0] \text{ and } p \le F_1 \le -M_0,
$$

and (B_1) imply

$$
f_n(t, x, p) \le 0
$$
 for $(t, x, p) \in [0, 1] \times [-M_0, M_0] \times [L_1, L_2]$,

and

$$
f_n(t, x, p) \ge 0
$$
 for $(t, x, p) \in [0, 1] \times [-M_0, M_0] \times [F_2, F_1]$.

Thus, family [\(3.3\)](#page-11-1) satisfies (B_1) for all $n = 1, 2, 3, \ldots$ Obviously, (3.3) satisfies **(C)** as well. Finally, to verify [\(3.1\)](#page-10-1), we just have to consider that for each fixed $n = 1, 2, 3, \dots$, the λ -family corresponding to [\(3.3\)](#page-11-1) is

$$
x'' = \lambda \left(f(t, x, x') + \frac{x - x'}{n} \right) + (1 - \lambda)(x - x'), \quad \lambda \in [0, 1],
$$

-
$$
\alpha x(0) + \beta x'(0) = A, \quad ax(1) + bx'(1) = B,
$$

and to see that for $\lambda = 0$ we have again BVP $(1.1)₀$ $(1.1)₀$ $\overline{0}$, [\(1.2\)](#page-0-2). So, taking into consideration the proved in *First step*, we conclude that family [\(3.3\)](#page-11-1) has a solution $x_n \in C^2[0,1]$ for each $n = 1, 2, 3, \ldots$

Further, just as in the proof of Lemma [2.4,](#page-5-1) we find that

$$
|x_n(t)| \leq M_0 \quad \text{for } t \in [0,1],
$$

and just as in the proof of Lemma [2.7](#page-7-0) establish that

$$
F_1 \le x'_n(t) \le L_1 \quad \text{for } t \in [0,1]
$$

for each $n = 1, 2, 3, \ldots$. Finally,

$$
|f_n(t, x, p)| \le |f(t, x, p)| + \frac{|x - p|}{n} \le |f(t, x, p)| + |x - p|
$$

together with the continuity of $f(t, x, p)$ on $[0, 1] \times [-M_0, M_0] \times [F_1, L_1]$ implies that there is a constant *M*² independent of *n* such that

$$
|x_n''(t)| \leq M_2 \quad \text{for } t \in [0,1].
$$

The estimates for $|x_n(t)|$, $|x'_n(t)|$ and $|x''_n(t)|$ allow us to use the Arzelà–Ascoli theorem to extract a subsequence $\{x_{n_k}\}\text{, } k=1,2,3,\ldots$, of $\{x_n\}$ converging uniformly on $[0,1]$ to a function $x \in C^1[0,1]$. We will show that $x(t)$ is a $C^2[0,1]$ -solution to BVP [\(1.1\)](#page-0-1), [\(1.2\)](#page-0-2). For this purpose introduce the sequence { y_{n_k} }, $k = 1, 2, 3, ...$, where $y_{n_k}(t) = x_{n_k}(t) − r(t)$, $t ∈ [0, 1]$, with

$$
r(t) = \frac{\alpha B + aA}{\alpha a + \alpha b + a\beta}t - \frac{Aa + Ab - \beta B}{\alpha a + \alpha b + a\beta}.
$$

Clearly, $\{y_{n_k}\}$ converges uniformly on [0, 1] to the function $y(t) = x(t) - r(t)$ and $y \in C^1[0,1]$. Besides, since $r(t)$ satisfies BCs [\(1.2\)](#page-0-2), $y_{n_k}(t)$ is a solution to the BVP

$$
y''_{n_k} = f_{n_k}(t, y_{n_k} + r, y'_{n_k} + r'), \qquad t \in (0, 1),
$$

$$
-\alpha y_{n_k}(0) + \beta y'_{n_k}(0) = 0, \qquad ay_{n_k}(1) + by'_{n_k}(1) = 0,
$$

and its integral form

$$
y_{n_k}(t) = \int_0^1 G(t,s)f_{n_k}(s,y_{n_k}(s) + r(s),y'_{n_k}(s) + r'(s))ds,
$$
\n(3.4)

for $k = 1, 2, 3, \ldots$, where $G(t, s)$ is the Green function for the BVP

$$
x'' = 0, \qquad t \in (0,1),
$$

$$
-\alpha x(0) + \beta x'(0) = 0, \qquad ax(1) + bx'(1) = 0,
$$

and

$$
f_{n_k}(t, y_{n_k}+r, y'_{n_k}+r')=f(t, y_{n_k}+r, y'_{n_k}+r')+\frac{y_{n_k}+r-y'_{n_k}-r'}{n_k}.
$$

Since $|y_{n_k} + r - y'_{n_k} - r'| = |x_{n_k} - x'_{n_k}| \le M_0 + \max\{|F_1|, L_1\}$, letting $k \to \infty$ in [\(3.4\)](#page-12-0), we obtain

$$
y(t) = \int_0^1 G(t,s)f(s,y(s) + r(s),y'(s) + r'(s))ds.
$$

Thus,

$$
x(t) = \int_0^1 G(t,s)f(s,x(s),x'(s))ds + r(t),
$$

which means that $x(t)$ is a $C^2[0,1]$ -solution to BVP [\(1.1\)](#page-0-1), [\(1.2\)](#page-0-2).

Now let us look at BVP $(1.1)₀⁺$ $(1.1)₀⁺$ $_0^+$, [\(1.2\)](#page-0-2)

$$
x'' - x' - x = 0, \t t \in (0, 1),
$$

- $\alpha x(0) + \beta x'(0) = A, \t ax(1) + bx'(1) = B.$

It has a unique solution if

$$
\begin{vmatrix} \beta s_1 - \alpha & \beta s_2 - \alpha \\ (a + bs_1)e^{s_1} & (a + bs_2)e^{s_2} \end{vmatrix} \neq 0,
$$
 (3.5)

where $s_1 = \frac{1-\sqrt{5}}{2}$ $\frac{1+\sqrt{5}}{2}$ and $s_2 = \frac{1+\sqrt{5}}{2}$ $\frac{2.5}{2}$ are the roots of the characteristic equation.

Theorem 3.2. *Let* **(A1)** *hold,* **(B2)** *hold for*

$$
M_0 = \max\{|A/\alpha|, |B/a|, M\},
$$
 $G_m = (B - aM_0)b^{-1}$ and $G_M = (B + aM_0)b^{-1}$,

(C) *hold for the same constant* M_0 *and for* $m_0 = -M_0$, $m_1 = F'_1$, $M_1 = L'_1$ *and* [\(3.5\)](#page-13-0) *be satisfied. Then BVP* [\(1.1\)](#page-0-1), [\(1.2\)](#page-0-2) *has at least one solution in* $C^2[0,1]$ *.*

Proof. It is similar to the proof of the previous theorem. Now we will apply Theorem [1.1](#page-2-0) on the family of BVPs $(1.1)^+_{\lambda}$ $(1.1)^+_{\lambda}$ *λ* , [\(1.2\)](#page-0-2).

First step. Again assume firstly that the inequality in **(A1)** is strong, that is, **(A)** holds.

The condition *(i)* follows from [\(3.5\)](#page-13-0). The condition *(ii)* is again obvious, and the verification of *(iii)* is as in Theorem [3.1.](#page-10-2) Now, the bounds

$$
m_0 \le x(t) \le M_0
$$
 and $m_1 \le x'(t) \le M_1$, $t \in [0,1]$,

for each solution $x(t) \in C^2[0,1]$ to $(1.1)^+_{\lambda}$ $(1.1)^+_{\lambda}$ $^+_{\lambda}$, [\(1.2\)](#page-0-2), follow by Lemmas [2.4](#page-5-1) and [2.8,](#page-8-0) respectively, and the bound

$$
m_2 \leq x''(t) \leq M_2 \quad \text{for } t \in [0,1]
$$

follows by arguments similar to those in the proof of Theorem [3.1.](#page-10-2) Thus, *(iv)* holds. Finally, *(v)* follows again from **(C)**. So, the assertion is true by Theorem [1.1.](#page-2-0)

Second step. Now, **(A1)** is in the form given. Consider the family of BVPs

$$
\begin{cases}\nx'' = f_n(t, x, x'), \ t \in (0, 1), \\
-\alpha x(0) + \beta x'(0) = A, \ ax(1) + bx'(1) = B,\n\end{cases}
$$
\n(3.6)

where $f_n(t, x, x') = f(t, x, x') + (x + x') : n, n = 1, 2, 3, \dots$ Clearly,

$$
xf_n(t, x, 0) = xf(t, x, 0) + \frac{x^2}{n} > 0 \text{ for } t \in [0, 1], x \in D_x \setminus [-M, M],
$$

that is, **(A)** is satisfied for each $n = 1, 2, 3, \ldots$. Besides,

x + *p*

$$
\frac{x+p}{n} \ge 0 \quad \text{for } x \in [-M_0, M_0] \text{ and } p \ge L'_1 \ge M_0,
$$

$$
\frac{x+p}{n} \le 0 \quad \text{for } x \in [-M_0, M_0] \text{ and } p \le F'_1 \le -M_0,
$$

and **(B2)** imply

$$
f_n(t, x, p) \ge 0
$$
 for $(t, x, p) \in [0, 1] \times [-M_0, M_0] \times [L'_1, L'_2],$

and

$$
f_n(t, x, p) \le 0
$$
 for $(t, x, p) \in [0, 1] \times [-M_0, M_0] \times [F'_2, F'_1].$

Thus, family [\(3.6\)](#page-13-1) satisfies (B_2) for all $n = 1, 2, 3, \ldots$ Obviously, (3.6) satisfies and **(C)**. As in the proof of Theorem [3.1,](#page-10-2) we notice that [\(3.5\)](#page-13-0) is also fulfilled. Consequently, according to what we proved in the *First step*, each boundary value problem arising from the family [\(3.6\)](#page-13-1) for *n* = 1, 2, 3, . . . has a solution $x_n \in C^2[0,1]$.

Further, just as in the proof of Lemma [2.4,](#page-5-1) we find that

$$
|x_n(t)| \leq M_0 \quad \text{for } t \in [0,1],
$$

and just as in the proof of Lemma [2.8](#page-8-0) establish that

$$
F_1' \le x'_n(t) \le L_1' \quad \text{for } t \in [0,1]
$$

for each $n = 1, 2, 3, \ldots$ Besides, the continuity of $|f(t, x, p)| + |x + p|$ on the compact set $[0, 1] \times [-M_0, M_0] \times [F'_1, L'_1]$ implies that there is a constant M_2 independent of *n* such that

$$
|x_n''(t)| \leq M_2 \quad \text{for } t \in [0,1].
$$

By the Arzelà–Ascoli theorem the sequence $\{x_n\}$ has a subsequence $\{x_{n_k}\}, k = 1, 2, 3, \ldots$, converging uniformly on [0,1] to a function $x \in C^1[0,1]$. Next, arguing as in the proof of Theorem [3.1,](#page-10-2) establish that $x(t)$ is a $C^2[0,1]$ -solution to BVP [\(1.1\)](#page-0-1), [\(1.2\)](#page-0-2). \Box

It is standardly found that the BVP

$$
x'' + x' - x = 0, \quad t \in (0, 1),
$$

\n
$$
x'(0) = A, \quad ax(1) + bx'(1) = B,
$$

in fact this is $(1.1)₀$ $(1.1)₀$ $_0^{\text{-}}$, [\(1.3\)](#page-0-3), has a unique solution in $\mathcal{C}^2[0,1]$ if

$$
\begin{vmatrix} r_1 & r_2 \ (a+br_1)e^{r_1} & (a+br_2)e^{r_2} \end{vmatrix} \neq 0,
$$
 (3.7)

where r_1 and r_2 are as in [\(3.1\)](#page-10-1).

Theorem 3.3. *Let* (A_2) *hold for* $J = [m_v, M_v]$ *and* $C = A$, (B_1) *hold for constants*

$$
M_0 = \frac{L_-}{\min\{1,K\}} + \max\{|m_v|, |M_v|\}, \qquad G_m = \min\{-M_0, A\} \quad and \quad G_M = \max\{M_0, A\},
$$

(C) *hold for the same constant* M_0 *and for* $m_0 = -M_0$, $m_1 = F_1$ *and* $M_1 = L_1$ *and* [\(3.7\)](#page-14-0) *be satisfied. Then BVP* [\(1.1\)](#page-0-1), [\(1.3\)](#page-0-3) *has at least one solution in* $C^2[0,1]$ *.*

Proof. We will apply Theorem [1.1](#page-2-0) on family $(1.1)^{-}$ $(1.1)^{-}$ *λ* , [\(1.3\)](#page-0-3). The hypothesis *(i)* follows immedi-ately from [\(3.7\)](#page-14-0). Besides, *(ii)* is obvious. The map $\Lambda_h: C^2_{B_0}[0,1] \to C[0,1]$, defined by $\Lambda_h x = x''$ is one-to-one, because for an arbitrary $y(t) \in C[0, 1]$ the BVP

$$
x'' = y(t)
$$

x'(0) = 0, $ax(1) + bx'(1) = 0$,

has a unique solution in $C^2[0,1]$, *(iii)* is also fulfilled. For each solution $x(t) \in C^2[0,1]$ to $(1.1)^{-1}$ $(1.1)^{-1}$ *λ* , (1.3) we have

$$
m_0 \le x(t) \le M_0
$$
, $t \in [0,1]$, by Lemma 2.5,
\n $m_1 \le x'(t) \le M_1$, $t \in [0,1]$, by Lemma 2.9,

and the bound

$$
m_2 \leq x''(t) \leq M_2 \quad \text{for } t \in [0,1]
$$

follows as in the proof of Theorem [3.1.](#page-10-2) So, *(iv)* also holds. Finally, **(C)** ensures the validity of *(v)*. Therefore, we can apply Theorem [1.1](#page-2-0) to conclude that the assertion is true. \Box

It is easily established that BVP $(1.1)₀⁺$ $(1.1)₀⁺$ $_0^+$, [\(1.4\)](#page-0-4), namely,

$$
x'' - x' - x = 0, \t t \in (0, 1),
$$

\n
$$
x'(0) = A, \t ax(1) + bx'(1) = B,
$$

has a unique solution if

$$
\begin{vmatrix} \beta s_1 - \alpha & \beta s_2 - \alpha \\ s_1 e^{s_1} & s_2 e^{s_2} \end{vmatrix} \neq 0,
$$
 (3.8)

where s_1 and s_2 are as in [\(3.5\)](#page-13-0).

Theorem 3.4. *Let* (A_2) *hold for* $J = [m_w, M_w]$ *and* $C = B$, (B_2) *hold for constants*

$$
M_0 = \frac{L_+}{\min\{1,K\}} + \max\{|m_w|, |M_w|\}, \qquad G_m = \min\{-M_0, B\} \quad and \quad G_M = \max\{M_0, B\},
$$

(C) *hold for the same constant* M_0 *and for* $m_0 = -M_0$, $m_1 = F'_1$, $M_1 = L'_1$ *and* [\(3.8\)](#page-15-0) *be satisfied. Then BVP* [\(1.1\)](#page-0-1), [\(1.4\)](#page-0-4) *has at least one solution in* $C^2[0,1]$ *.*

Proof. The proof is virtually the same as that of Theorem [3.3.](#page-15-1) Now, apply Theorem [1.1](#page-2-0) on family $(1.1)^+_\lambda$ $(1.1)^+_\lambda$ ^{*+}*</sup>, [\(1.4\)](#page-0-4). *(i)* follows from [\(3.8\)](#page-15-0), to check *(iii)* show that for an arbitrary *y*(*t*) ∈ *C*[0, 1] the BVP

$$
x'' = y(t)
$$

- $\alpha x(0) + \beta x'(0) = 0$, $x'(1) = 0$,

has a unique solution in *C* 2 [0, 1], and the bounds from *(iv)*,

$$
m_0 \le x(t) \le M_0,
$$
 $t \in [0, 1],$
\n $m_1 \le x'(t) \le M_1,$ $t \in [0, 1],$

for each solution $x(t) \in C^2[0,1]$ to $(1.1)^+_{\lambda}$ $(1.1)^+_{\lambda}$ *λ* , [\(1.4\)](#page-0-4) follow from Lemmas [2.6](#page-7-1) and [2.10,](#page-10-3) respectively. \Box

4 Examples

The following examples illustrate the application of the obtained results.

Example 4.1. Consider the BVPs for the equation

$$
x'' = x'(x'-10) + (x-2)^2(x+2), \qquad t \in (0,1),
$$

$$
-3x(0) + 2x'(0) = 6, \qquad 2x(1) + x'(1) = -3.
$$

We easily check that (A_1) holds for $M = 2$. Calculate $M_0 = 2$, $G_m = 0$ and $G_M = 6$. Next, keeping in mind that

$$
0 \le (x-2)^2(x+2) < 1 \quad \text{for } x \in [-2,2],
$$

we can choose, for example, $F_2 = -4$, $F_1 = -3$, $L_1 = 7$ and $L_2 = 8$ to see that (B_1) also hold. **(C)** is obvious, and [\(3.1\)](#page-10-1) is also easily verifiable. So, we can apply Theorem [3.1](#page-10-2) to conclude that the considered BVP has at least one solution in $C^2[0,1]$.

Example 4.2. Consider the BVP

$$
x'' = x'^3 + (x - 1)\sqrt{x + 10}, \quad t \in (0, 1),
$$

-x(0) + 4x'(0) = 5, 2x(1) + x'(1) = 4.

First observe that

$$
xf(t, x, 0) = x(x - 1)\sqrt{x + 10} \ge 0 \text{ for } x \in [-10, \infty) \setminus [-1, 1],
$$

which means that **(A₁**) is satisfied for $M = 1$. Then $M_0 = 5$, $G_m = -6$, $G_M = 14$. Besides,

$$
-6\sqrt{5} \le (x-1)\sqrt{x+10} \le 4\sqrt{15} \quad \text{for } x \in [-5,5].
$$

So, we can choose $F'_2 = -8$, $F'_1 = -7$, $L'_1 = 15$ and $L'_2 = 16$ to check **(B₂)**. In addition $f(t, x, p) =$ $p^3 + (x-1)\sqrt{x+10}$ is continuous on the set $[0,1] \times [-5-\delta,5+\delta] \times [-7-\delta,15+\delta]$, where δ > 0 is sufficiently small, to say δ = 0.1, that is, **(C)** is satisfied. Checking [\(3.5\)](#page-13-0) also presents no difficulty. So, we can apply Theorem [3.2](#page-13-2) to conclude that the considered BVP has a solution in $C^2[0,1]$.

Example 4.3. Consider the BVP

$$
x'' = \phi(t, x) + P_n(x'), \qquad t \in (0, 1),
$$

$$
x'(0) = A, \qquad ax(1) + bx'(1) = B,
$$

where the function ϕ : $[0,1] \times \mathbb{R} \to \mathbb{R}$ is continuous, differentiable with respect to *x* and there is a constant $K > 0$ for which

$$
\phi_x(t,x) \geq K > 0 \quad \text{for } (t,x) \in [0,1] \times \mathbb{R},
$$

the polynomial $P_n(p) = \sum_{k=0}^n a_k p^k$, $n = 2s + 1$, $s \in \mathbb{N}$, is such that $a_n < 0$, and a and b are such that [\(3.7\)](#page-14-0) holds.

Clearly, **(A2)** is satisfied. Further, if

$$
f_{\max} := \max |\phi(t,x) + P_n(A)| \quad \text{for } (t,x) \in [0,1] \times [m_v, M_v],
$$

where m_v and M_v are the constants used in Theorem [3.3,](#page-15-1) and

$$
g_{\max}:=\max|x-A|\quad\text{for $(t,x)\in[0,1]\times[m_v,M_v]$},
$$

we determine first

$$
L_{-} = \max\{f_{\max}, g_{\max}\}
$$

and then M_0 . Because the continuity of ϕ , there are constants ϕ_m , $\phi_M \in \mathbb{R}$ such that

$$
\phi_m \leq \phi(t,x) \leq \phi_M \quad \text{for } (t,x) \in [0,1] \times [-M_0, M_0].
$$

Then, for sufficiently large $p > max{M_0, A}$ we have

$$
P_n(p)<-\max\{|\phi_m|,|\phi_M|\},
$$

which implies that the constants L_1 and L_2 of (\mathbf{B}_1) exist. Besides, for sufficiently small $p <$ $min{ -M_0, A}$ we have

$$
P_n(p) > \max\{|\phi_m|, |\phi_M|\},
$$

which means that the constants F_1 and F_2 of (\mathbf{B}_1) also exist. Finally, (\mathbf{C}) is obvious and so the considered BVP has a solution in $C^2[0,1]$ by Theorem [3.3.](#page-15-1)

Example 4.4. Consider the BVP

$$
x'' = \phi(t, x) + P_n(x'), \qquad t \in (0, 1),
$$

$$
-\alpha x'(0) + \beta x'(0) = A, \qquad x'(1) = B,
$$

where the function $\phi[0,1] \times \mathbb{R} \to \mathbb{R}$ is continuous, differentiable with respect to *x* and there is a constant $K > 0$ for which

$$
\phi_x(t,x) \geq K > 0 \quad \text{for } (t,x) \in [0,1] \times \mathbb{R},
$$

the polynomial $P_n(p) = \sum_{k=0}^n a_k p^k$, $n = 2s + 1$, $s \in \mathbb{N}$, is such that $a_n > 0$, and α and β are such that [\(3.8\)](#page-15-0) holds.

An analysis similar to that of Example [4.3](#page-16-1) shows that we can apply Theorem [3.4](#page-15-2) to conclude that this BVP has a solution in $C^2[0,1]$.

Example 4.5. Consider the BVP

$$
x'' = x + 10^{-1}x'\sqrt{(x'+14)(11-x')}, \qquad t \in (0,1),
$$

-x(0) + x'(0) = 3, x'(1) = 2.

We will check the conditions of Theorem [3.4.](#page-15-2) Here $w(t) = 2t - 1$ with $m_w = -1$ and $M_w = 1$. Then **(A₂)** is satisfied for $K = 1$, $J = [-1, 1]$ and $C = 2$, because $f_x(t, x, 2) = 1$ for $(t, x) \in$ $[0, 1] \times \mathbb{R}$. Form $f(t, x, 2) = x + 2.4$. Then, for $(t, x) \in [0, 1] \times [-1, 1]$ we have max $|f(t, x, 2)| =$ 3.4 and max $|x + 2| = 3$. We calculate $L_{+} = 3.4$, $M_{0} = 4.4$, $G_{m} = -4.4$ and $G_{M} = 4.4$. We are now ready to check that **(B₂)** is satisfied for $F'_2 = -6$, $F'_1 = -5$, $L'_1 = 5$ and $L'_2 = 6$. Keeping in mind that *f*(*t*, *x*, *p*) is defined and continuous for $(t, x, p) \in [0, 1] \times \mathbb{R} \times [-14, 11]$, we easily conclude that **(C)** also holds for $m_0 = -4.4$, $M_0 = 4.4$, $m_1 = -5$, $M_1 = 5$ and, to say, $\delta = 0.01$. Finally, to check that [\(3.8\)](#page-15-0) is satisfied, we establish that the determinant

$$
\begin{vmatrix}\n\frac{1-\sqrt{5}}{2}-1 & \frac{1+\sqrt{5}}{2}-1 \\
\frac{1-\sqrt{5}}{2}e^{\frac{1-\sqrt{5}}{2}} & \frac{1+\sqrt{5}}{2}e^{\frac{1+\sqrt{5}}{2}}\n\end{vmatrix}
$$

is different from zero. So, we can apply Theorem [3.4](#page-15-2) to conclude that the considered BVP has a solution in $C^2[0,1]$.

5 Conclusions

Here we will comment on conditions [\(3.1\)](#page-10-1), [\(3.5\)](#page-13-0), [\(3.7\)](#page-14-0) and [\(3.8\)](#page-15-0). In fact, they are not essential. If, for example, [\(3.1\)](#page-10-1) is not fulfilled, we can replace $(1.1)^{-}_{\lambda}$ $(1.1)^{-}_{\lambda}$ with

$$
x'' = \lambda f(t, x, x') + (1 - \lambda)(x - kx'), \qquad t \in (0, 1),
$$

where $\lambda \in [0, 1]$ and $k > 0$. Now $(1.1)_0^{-1}$ $(1.1)_0^{-1}$ $_0^-$ has the form

$$
x'' + kx' - x = 0
$$

and we can choose *k* such that its characteristic equation has roots r_1 and r_2 for which [\(3.1\)](#page-10-1) is satisfied. This necessitates a slight change in **(B1)**, namely

$$
F_2 < F_1 \le \min\{-M_0/k, G_m\}, \quad \max\{M_0/k, G_M\} \le L_1 < L_2,
$$

References

- [1] R. P. AGARWAL, P. KELEVEDJIEV, On the solvability of fourth-order two-point boundary value problems, *Mathematics* **8**(2020), 603. <https://doi.org/10.3390/math8040603>
- [2] R. P. AGARWAL, T. ZH. TODOROV, P. KELEVEDJIEV, Existence for two-point *n*th order boundary value problems under barrier strips, *Symmetry* **15**(2023), 1394. [https://doi.org/10.](https://doi.org/10.3390/sym15071394) [3390/sym15071394](https://doi.org/10.3390/sym15071394)
- [3] M. DOBKEVICH, F. SADYRBAEV, Types and multiplicity of solutions to Sturm–Liouville boundary value problem, *Math. Model. Anal.* **20**(2015), No. 1, 1–8. [https://doi.org/10.](https://doi.org/10.3846/13926292.2015.996259) [3846/13926292.2015.996259](https://doi.org/10.3846/13926292.2015.996259)
- [4] A. M. A. EL-SAYED, E. M. A. HAMDALLAH, H. M. A. ALAMA, Multiple solutions of Sturm– Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions, *AIMS Math.* **7**(2022), No. 6, 11150–11164. [https://doi.org/10.3934/](https://doi.org/10.3934/math.2022624) [math.2022624](https://doi.org/10.3934/math.2022624)
- [5] A. M. A. El-SAYED, M. SH. MOHAMED, R. E. M. EMBIA, On the multiple solutions of a nonhomogeneous Sturm–Liouville equation with nonlocal boundary conditions, *Internat. J. Appl. Math.* **32**(2019), No. 1, 35–43. <https://doi.org/10.12732/ijam.v32i1.3>
- [6] A. GRANAS, R. B. GUENTHER, J. W. LEE, Nonlinear boundary value problems for ordinary differential equations, Instytut Matematyczny Polskiej Akademi Nauk, Warszawa, 1985, 133 pp. Published in: *Dissertationes Math. (Rozprawy Mat.)* **244**(1985). [MR808227](https://www.ams.org/mathscinet-getitem?mr=808227)
- [7] P. KELEVEDJIEV, T. ZH. TODOROV, Existence of solutions of nonlinear third-order twopoint boundary value problems, *Electron. J. Qual. Theory Differ. Equ.* **2019**, No. 23, 1–15. <https://doi.org/10.14232/ejqtde.2019.1.23>
- [8] P. KELEVEDJIEV, Existence of solutions for two-point boundary value problems, *Nonlinear Anal.* **22** (1994), No. 2, 217–224. [https://doi.org/10.1016/0362-546X\(94\)90035-3](https://doi.org/10.1016/0362-546X(94)90035-3)
- [9] Y. LIU, S. CHEN, L. OU, Solvability of Sturm–Liouville boundary value problems for multiple order fractional differential equations, *Arab. J. Math. Sci.* **22**(2016), No. 2, 207–231. <https://doi.org/10.1016/j.ajmsc.2015.08.001>
- [10] C. C. TISDELL, Existence of solutions to second-order boundary value problems without growth restrictions, *Electron. J. Qual. Theory Differ. Equ.* **2016**, No. 92, 1–14. [https://doi.](https://doi.org/10.14232/ejqtde.2016.1.92) [org/10.14232/ejqtde.2016.1.92](https://doi.org/10.14232/ejqtde.2016.1.92)
- [11] F. H. Wong, T. G. CHEN, S. P. WANG, Existence of positive solutions for various boundary value problems, *Comput. Math. Appl.* **56**(2008), No. 4, 953–958.[https://doi.org/10.1016/](https://doi.org/10.1016/j.camwa.2007.11.050) [j.camwa.2007.11.050](https://doi.org/10.1016/j.camwa.2007.11.050)
- [12] T. XUE, F. KONG, L. ZHANG, Research on Sturm-Liouville boundary value problems of fractional *p*-Laplacian equation, *Adv. Differ. Equ.* **2021**, No. 177. [https://doi.org/10.](https://doi.org/10.1186/s13662-021-03339-3) [1186/s13662-021-03339-3](https://doi.org/10.1186/s13662-021-03339-3)
- [13] L. ZHANG, X. HUANG, W. GE, Positive solutions of Sturm–Liouville boundary value problems in presence of upper and lower solutions, *Internat. J. Differ. Equ.* **2011**, ID 383294, pp. 11. <https://doi.org/10.1155/2011/383294>