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ON A HIGHER ORDER TWO DIMENSIONAL
THERMOELASTIC SYSTEM COMBINING A LOCAL
AND NONLOCAL BOUNDARY CONDITIONS

SAID MESLOUB

ABSTRACT. Due to their importance and numerous applications,
evolution mixed problems with nonlocal constraints in the bound-
ary conditions have been extensively studied during the two last
decades. In this paper, we consider an initial boundary value prob-
lem for a higher order thermoelastic system arising in linear ther-
moelasticity which combines some Dirichlet and weighted integral
boundary conditions. The studied system modelizes in general a
Kirchoff plate. We prove the well posedness of the given prob-
lem. Our proofs are mainly based on some a priori bounds in some
Sobolev type space functions and on some density arguments.

1. Introduction

During the few last decades, many researchers have studied linear
and nonlinear systems of thermoelastic equations and many results
have been published. Most of these results were dealing with the study
of existence, asymptotic behavior, regularity, controllability, propa-
gation of singularities and blow up of solutions. For example Assila
[1], has studied global existence and asymptotic behavior of solutions
for a purely linear multidimensional system of nonhomogeneous and
anisotropic thermoelasticity, associated with nonlinear boundary con-
ditions. Dafermos and Hsiao [4], Hrusa and Messaoudi [6], Munoz-
Rivera [15], Racke [16], Racke and Shibata [17] and Slemrod[19] have
studied and obtained some results about the existence, regularity, con-
trollability and long-time behavior of some systems of thermoelasticity.
Also Racke and Wang [18] have considered some linear and semilin-
ear Cauchy problems and described the propagation of singularities.
Mixed problems for thermoelastic systems become very hard to handle
in case of the presence of nonlocal constraints in the boundary (such
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as an integral condition instead of a Dirichlet or Neumann classical
condition). There are two types of nonlocal problems, spatial nonlocal
problems and time nonlocal problems. These type of mixed problems,
arise mainly when the data on the boundary cannot be measured di-
rectly, but it can be replaced by a nonlocal condition such as an integral
condition. Physically, this kind of condition can represent a mean, a
total energy or a total mass. Boundary value problems with nonlocal
constraints have many important applications such as in underground-
water flow, population dynamics, chemical diffusion, thermoelasticity,
heat conduction processes, certain biological processes, nuclear reactor
dynamics, control theory, medical science, biochemistry, and transmis-
sion theory. Nonlocal problems were first investigated by using the
method of separation of variables and the corresponding eigenvalues
and eigenfunctions were considered. Later on, other methods such as
the functional analysis method, the energetic method and the method
of singular integral equations were applied to mixed nonlocal problems
but with great difficulties. For some nonlocal mixed problems for par-
abolic and hyperbolic equations the reader should refer to Mesloub
[7,8,9,10], Mesloub and Mesloub.F [12], Mesloub and Messaoudi [13]
and Mesloub and Bouziani [11].

Motivated by the previous studies, we consider the following ini-
tial boundary value problem for a fourth order two dimensional linear
thermoelastic system with Dirichlet and nonlocal constraints of integral

type:

(

Liu= T84 N2y — a0+ cru+ coup = fla, y, 1), (z,y, t) €Q,
£20 = % - TIAQ + 0‘9+&Aut = g(:li, Y, t)a (.T, Y, t) S Q7
u(ﬂ?, Y, O) = uo(a:,y), ut('ra Y, 0) = Ul(ﬂf, y)7 ‘9(1’, Y, O) = ‘90(377 y),
u(0, y, t) =0, wu(a,y,t) =0, 0<y<b 0<t<T,

u(z, 0,t) =0, u(z, b, t)=0, 0<z<a, 0<t<T,
o @Fudx =0, fob yrudy =0, [ 2*0dz =0, fob y*0dy =0, k=0, 1.

1)
where @@ = Q x [0, T, with Q = (0, a) x (0, b), T < 00, a < oo and
b < oo.

The given data satisfy the consistency conditions




and

a b a
/ t*u.dr = 0, / Y uody = 0, / *uyde = 0, (3)
0 0 0
b a b
/ yPurdy = 0, / 2*0,dx = 0, / y*0.dy =0, k=0,1.
0 0 0

Problem (1) arises in linear thermoelasticity. It modelizes a Kirchoff
plate, where wu is the displacement, # is the thermal damping. The
integral conditions may be interpreted as the average and the weighted
average of the displacement and the thermal damping, and «, 3, 1, o,
c1 and ¢y are positive constants.

On the basis of some a priori bounds, energy estimates and some den-
sity arguments, we prove the existence, uniqueness and the continuous
dependence of the solution on the data of the given problem (1).The
paper is organized as follows: In section 1, we start by an introduction
about previous and related results concerning the subject. In section
2, we introduce some notations, function spaces and reformulation of
the studied problem. Section 3 is devoted to the study of uniqueness
of the solution of the stated problem. In the fourth and last section,
we establish the existence of the weak solution of our problem and give
some remarks. At the end of the paper, we give a list of some used
references.

2. Notations, functional frame, some auxiliary inequalities
and reformulation of the problem

We denote by L?(Q) the usual square integrable functions space, and
byW, " (Q) the Sobolev space having the inner product

(, Vo) = (s V) 12ig) + (Ues Va)ra(g) -
Let BJ*(0,a) (See [2,3]) be the space constituted of functions u €
L?(0,a), if m = 0 and of functions u such that S"u € L?(0,a), if
m > 1, where
z &1 Em—1

1 xr
I = ———— [ (=" WV (€, t)dE = o | V(n,t)dndép_s...dEy,
3 <m_1>![<x €IV (€, by // / (1, 6)d € .,
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a

with inner product (u,v)pp(0.0) = /%?u STvdz, and associated norm

0
Hu”Bgn(o,a) = [ISTull 20,4y » for m > 1.

We also use the function spaces C'(I, BJ* (Q)), C(I, By™ (Q)), C(I, ByY ()
and C(I, By (Q)) of continuous mappings from I = [0, 7] onto the
Hilbert spaces B} (Q), By™* (Q), ByY(Q), and By™¥ (Q) respectively,
and with inner products (respectively) given by

(u, 0)Bp) = / ST u.Svdrdy,  (u,v) /
Q Q
é

Spu.Svdedy,

(u,v)Bé,y(Q) = /%yu.%yvdxdy, (u,v) plovg) = | Sayt.Seyvdydz.

Q

The following inequalities are used in our paper:
A) For every u € L*(A) (A is either (0,d) or ) and all m € IN*,
we have the inequalities

d2
2 2
||h||Bgz(o,d) < 9 ||h||B;"*1(o,d) (1%)
and
2 d2 " 2 *
||h||B§"(O,d) < 9 '||h||L2(0,d)’ (2 )
NI a? 2 *
IulFa@ < 5 lulfay (3%)
(ab)
1Al 51m ) = [Sayhllz2gq) < 1A - (4%)

B) Growall’s Lemma [5, Lemma 7.1|. If fl( ), fo(s) and f3(s) are
nonnegative functions on (0, 7), fi (s) and f5 (s) integrable functions,
and f3 (s) is nondecreasing on (0, T'), then if [ fi (t)dt + fo(s) <
cfo fo (t)dt + f3(s), then fo fi(t)dt + fo(s) < exp (cs) f3(s).

C) Cauchy £— 1nequahty For all € > 0, and for arbitrary a, b in R,
we have

€, 2 1 2
jabl < Sl + - .

Let us now formulate problem (1) in its operator form. Problem
(1) can be viewed as the problem of solving the operator equation:
JU = G, with U = (’LL, 9), JU = (Jlu, JQ@), and G= (Gl, Gz) =

({f7 uo) ul} 9 {g; 90}) 9 WheI‘e
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Jlu = {Elu, Elu, fgu}, J29 = {,629, 630} .

The unbounded operator A is considered on the Banach space B into

a Hilbert space H with domain D(.J) defined by

U= (u, 0) € (L*(Q))” such that w, 0y, uy, T, 5%, us,
Utgx, Uty, Utyy c L2 (Q), 1=14

D(J) = {
(4)

and the functions U = (u, ) satisfy boundary conditions in (1). Here
B is the Banach space obtained by enclosing D (J) with respect to the
finite norm

2 2
10 = (Il o) pesgan + s 3 D mye

) ) 1/2
+ JJu(x, ., T)HC([,B%’?’(Q)) +10(., '77—)”0([73%’””!(5)))) ,(5)

where

xT

x Y
o= [uly.tde, By / [ u(€, n, t)dnde.

0

The elements U = (u, §) € B are the set of continuous functions u and
0 on I = [0, T], where functions u have values in By™ (Q), By? (Q) and
have derivatives u; which are continuous on I with values in By (Q)
and @ have values in By (Q).

Let H = H; x Hy be the Hilbert space {L? (Q) x W} () x L? ()} x
{L?(Q) x L*(92)} having the finite norm

||G||§{ = ||f||iQ(Q) + ||u0||12/V21(Q) + ||U1||3;2(Q) + ||9||i2(Q) + ||90||i2(ﬂ) . (6)

3. Uniqueness of solution

We now state the first result concerning the uniqueness of solution
of problem (1).

Theorem 1. For any function U = (u, 0) € D (J), there exists a
positive constant C' > 0 independent of U, such that

U5 = C 19U < 0 (7)
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Proof. Taking the inner product in L?(Q,) of equations Liu =

[, Lou = g and the intgrodifferential operators $%,u, and 32,0,

respectively, where Q7 = (0, 7) x Q with 0 <7 < T, we have

1 (u, %iyut) + Cc2 (Ut, %iyut) + (utt’ %iyut)

L2(QT) L2(Q7) L2(Q7)

ot ot ot
+ <—,Z, %iyut) + 2 (%, %iyut) + (—?:, %iyut)
Oz L2(@Q7) Oz*0y 2@y \ 2(@Q

20 ) (329 ) )
—a | ==, S, —a| =, S, +ﬁ(9t, Si 9) .
(8$’2 Y L2(Qm) 8y2 Y L2(QT) voIL2(QT)

%0 9%0
i (?7 %iye) - (Wa %iy‘9>
L2(Q) Yy 2(Q)

Pu Pu
6, 320 32 0 — 3%
+0 (6, 3548) pa(gr) T (a:c?at’ Sy )B(QT) T (ay2at’ Ve (0"
2 2
= (f? Smyut) L2(Q7) + (97 gxye) L2(Q7) " (8)

By successive integration by parts of each term of (8), and using
boundary conditions in (1),we derive the following equalities:

1 2 C2 2
6] (’LL, %iyut)LQ(QT) = 5 ||%$yu(7 '7T)||L2(Q) - 5 ||%xyu0||L2(Q) ) (9)

2
Co (Ut, %iyut)LQ(QT) = C2 ||%$yut||L2(QT) ) (10)
2 1 Cx 2 1 Cx 2
(utta ‘yxyut)LQ(QT) = 5 H‘yl“yut('a '7T>HL2(Q) - 5 H‘sl“yul”LQ(Q) ’ (11)
0*u 1 ) 1 Ouo?
B ut) = — ISyuz(z, 77200y — = H% — , (12)
(a‘”4 " ey 2 P27 02l agq

84u 2 2
2( $2 ut) = [Julz, y, T)I720) — luollze (13)
29,27 >xy » I L3(Q) ollL2(22)
ox 8y L2(Qm)

2

84’11/ 9 ) 1 2 1 8uo
a4 %x Uy =3 ||%a:u ('7 Y, T)H PN %$ )
<8y4 y 2@ 9 y L) 9 oy L2(@)
(14)
829 2 Cx 3
—a | 55 Syt = a (S0, Syu)zgr) (15)
L*(Q7)
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629 2 Cx Cx
—o | T iUt =« (\91‘9; \sxut)lﬁ(Qf) ) (16)

oy 12(@7)
ﬁ 2 ﬁ 2

B (6, S myﬁ)LQ(QT) =3 1Sayf (5 )l 7200) — 5 1Saybollioy . (17)
(20 w0) =l (18)

T\oa2 207 ) Loy~ TPV H@)

629 2 ) 2
(2=, 320 — 0 [1S,0(% /e 19
(G 950) . =119 (19
2

g (9’ %iyﬁ) L2(Q7) =0 ”%iByHHL?(QT) ) (20)
2 9 (Syues $y0) 2000 s 21
) (8x28t y )L2(QT @ Syt 3y )L2(Q ) (21)
2.0 a (Sots, Su0) 200 s 929
(0y26t )LQ(QT v Sal)1on (22)
(fa %myut) L2(QT) - (%xyfa gacyult)LQ(Qr) ) (23)
(g7 :vye) L2(QT) = (%:vyg’ %mye)LQ(QT) ' (24)

If we use Cauchy-e- inequality given in C), Poincare’ inequality of type
(4*), and equalities (9) — (24), then equation (8) reduces to

1Syl o) ey + 1Syt (o) ey + 11300 (g 72y
1Sty (o 1 D) 2agg + 1Sy (@ o Ty + [Sayiel 2o
ISyt (@, 1) 22y + (98 (-, T>H; o

el + Moo, + %2

S Cl + ’ an

L2(Q + H‘fryUOHB(Q

@) + ||90||L2(Q) + ||f||L2(QT) (25)
2 2

+ HgHL?(Q‘F) + ||%xyut||L2(QT) + 1Sy 72 om

where

a®> b2 (ab)® B(ab)® ¢

maX{la T4 s s a2
. a? b2 co
mm{za Iv—}

C) = .
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Applying the Gronwall’s lemma given in B) to inequality (25) and
discarding the fourth, sixth and seventh term of its left-hand, we
obtain

2 2 2
”%l“yu('a '7T>HL2(Q) + ”%l“yut ('a '77—)HL2(Q) + H%Iu ('7 Y, T)”LQ(Q)

2 2
+ISyu (=, . T>HL2(Q) + [[Sayf (- -JT)”LQ(Q)

2 2 2

U + || Uo + 105

< e [ Tl + ool + 1By o0
T i) + l9llz2 )

Each term on the left-hand side of (26) is bounded and since the
right-hand of the above inequality (26) is independent of 7, we can take
the least upper bound of each term of the left-hand side with respect
to 7 over [0, T, we get the desired estimate (7) with C' = C1e“T. This
completes the proof of Theorem 1.

It can be proved in a standard way that the operator J: B — H =
H, x Hjy is closable.

Proposition 2. The operator J: B — H = H; x H, has a closure
See [15].

Let J be the closure of J and D(J) its domain of definition. We
define the strong generalized solution of problem (1) as the solution of
the operator equation JU = (Jiu, Jof), with Jiu = {Lu, l1u, lHu},
Jo = {Ls0, (30}, (Jiu, Jo0) € H. If we pass to the limit in (7) we
have the result

Corollary 3. There exists a positive constant C' such that

W% —c|Ju|; <o, vUueD(J). (27)

We deduce from the a priori estimate (27) that a strong generalized so-
lution of (1) if it exists is unique and depends continuously on G= (Gj,
G2) = ({f, wo, u1},{g, 6-}) € H, and that the range R (J) of J is
closed in H and R (J) = R(J).

Existence of the solution of the stated problem.

Theorem 4. Problem (1) has a unique strong solution verifying

ou

we C(I, By (), we C(I BY (), 0 € C(I, BY™ (@), 22 € C(1, By™ ().
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Moreover, the functions Syu, Syu, , Spyf, a0 depend continuously
on the free terms f € L?(Q), g € L*(Q), and on the initial data
u, € Wi (), uy € L*(Q), 0, € L? (), that is

(., -aT)”2c(1,B;’x’y(Q)) < ClJUl,
u(z, ., T)HC([,B;@/(Q)) < C|JU[g,
Ju(., v, 7’)“0(1,3;1(9)) < ClJU|y,
[Jue (., -77')”0(1,35’%-’/(9)) < ClJU[g,
100, P vy < CIIUL - (28)

Proof. To establish the existence of the solution of problem (1), it
is sufficient to prove that the image of the operator J is dense in H.
General case for density: Since H is a Hilbert space, R(J) = H is
equivalent to the orthogonality of a vector ® = (Gy, Go) = ({01, 09, 03}, {04, 05}) €

H to the range R (J), that is the equality
+ (lau, 04) 2y + (ls0, T5) 12
+ (£1U, O-l)L?(Q) + (EQQa OQ)LQ(Q) + (£1U, 03)W21(Q)
= 0, (29)
for all U = (u, 0) € D (J), implies that ® = 0. Let Dy(J) be a subset
of D(J) for which fyu = 0, lou =0, €30 = 0. If U € Dy(J), then (29)
reduces to
(Lru, 01)L2(Q) + (L2, 02)L2(Q) = 0. (30)
We have to prove that ¥ = (0, 02) = 0 everywhere in @. Thus we
must prove the following special case (of density) and then go back to
the general case.

Proposition 5. If, for some function ¥ = (o, 05) € (L*(Q))” and
for all elements U € D, (J), we have

(,Clu, Ul)LQ(Q) + (£2t9, O'Q)LQ(Q) = 0, (31)
then U vanishes almost everywhere in Q).
Proof. Since relation (31) holds for any element of D, (J), we then
take an element U = (u, #) with a special form given by

(07 0)7 0 S t S S,
U= (fst(T_t>uTTdT7 fst@TdT>, s<t<T,
(32)

EJQTDE, 2012 No. 50, p. 9
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such that (uy, 6;) is a solution of the system

T

T
Siyutt =F(r,t) = / o1 (r, T)dr, %iyet =Fy(r, t) = / oo (r, T)dT,
t

t

(33)

o1 (r, 7)dr, and By (z, t) = [T oy (r, 7) dr. Tt

t

where By (z, t) = [T
is clear that
g1 — —%iyuttt, 09 = —%iyett. (34)
Proposition 6. The function ¥ = (o, 05) € (L2 (Q))” defined in
(34) is in (L2 (Q))?.

Proof. it can be carried out as in [10].
Now, replacing the functions ojand oy given by (34) in (31), we
obtain

2 2 2
—C1 (U, meuttt)Lz(Q) — C2 (Ut, meuttt)LQ(Q) - (Utt, meuttt)LQ(Q)

M o o
- (W’ %iyuttt) -2 (8 29,2 %iyuttt> - (W’ %iyuttt>
o 2(Q) oy L2(Q) y 2(Q

00 0%0
+o W s %iyuttt) + (m s %iyuttt)
x 12(Q) Y L2(Q)

Taking into account the special form of U given by (32) and (33),
using boundary conditions in (1) and integrating by parts each terms
of (35), gives

-1 (u, %iyuttt)LQ(Q) = cl/ St Syt dadydt
= — / Syt Syt dadydt

&1
= 5 H%l“yut ('7 ) T)Hiﬂ(ﬂ)? (36)
EJQTDE, 2012 No. 50, p. 10
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2 _ Cx Cx
—Cy (U,t, \$$yuttt)L2(Q) = C2/ \Smut.\smyyutttda:dydt
S

= —Cy / Syl Saytdadydt
S

2
= (g ||%xyutt||L2(Q) ’ (37)

- (utta %iyuttt) 2Q) / Spttst - SpyyUsedxdydt

s

= — / %xyutt.%xyutttdl’dydt

1

2
-5 [Saytiee (- -, 3)||L2(Q) , (38)

O*u PPu

— (@, %iyuttt> = %.%xyyutttdxdydt

L2(Q) Qs

82

= — 8—;; . %Zutttdl‘dydt

Qs

= /Q ux-%zutttx dxdydt

= — / Syl Sy Uz drdydt

s

= / Sy Uie- Sy sz drdydt

s

1 2
= 5 lISyua '7T)”L2(Q) ’ (39)
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-9 Q2
o202

0ty

83
axﬁy
-2 0. a—yQ.Syutttde'dydt

2 / Uy Syuedrdydt
Qs

\sxyyutttdxdydt

-2 / u. Uy dxdydt

2 / U ugdrdydt

Hut (SL’, Y, T)HiQ(Q) ) (40)
Bu

0. 0y

/ uySiutttydxdydt

\fl-xyutttdl'dydt

— / Sty Sptpydrdydt
Qs

/ Sptiy - Spyy drdydt

1 2
5 ”%muty ('a Y, T)HLQ(Q) ) (41)

— / 0. Spyyunedadydt

« / QSZutttdxdydt

— / 0.y udxdydt

a (Syb, %yutt)B(Qs) ) (42)
EJQTDE, 2012 No. 50, p. 12



0%0
o < 92 %iyuttt> = —« / 0y . SpzyUnrdadydt
y 12(Q) .

_ﬁ (eta giyett)[/g(

Q)

= « / Q.Siutttdxdydt

= —oz/ $.0.Spuydxdydt

= « (%lﬂt, %mutt)Lg(Qs) ,

== /8 %xet.sxyyettdl’dydt

Qs
= _ﬁ %xyﬁt.%myﬁttdxdydt
Qs
p

= 5 ||%xy0t ('7 ) S)HiQ(Q) )

20
N\ 73 Suybu = —n [ 0,.S.0xdxdydt

Oz 12(Q) Qs

0*0
U (a—yQa gQQCyett

—0 (9, %iyett)m(

Q)

= 7 / 0.520, dadydt

= - / 0., Oy dadydt
QS

2
= n H%yetH]ﬁ(Qs) 5

2
)m(@) = 180l 0,

= cr/ S0 Sy O dadydt

= —0/ Syl Sy dadydt

= o |ISuAl7

EJQ%%%, 2012 No. 50, p
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3 2
o (2 g2, — o U pdedydt
oxot ™
12(Q) Qs

Qs

= « / Syue. Sy Ondrdydt

= —Q (%yutt, %yet)Lg(Qs), (48)

Pu ., 0*u
— 0 = —— Sy drdydt
) (5’92575’ S tt)m(@) “ o, et

= a/ St S0 dxdydt
= —Q (%xutt, %x9t>L2(Qs)a (49)

Combining equalities (36) — (49) and (35) we obtain
[ 2 [ 2

B [Sayuee (-5 - 3)”L2(Q) + 2 1Sy tiar (. '7T>HL2(Q)

1

2 2

e (@, y, T)lpa) + 5 1Seun (5 95 D20

s

2
2 2 €1 2

+n ”%zet”L?(Qs) +o ”%xyet”m(cgs) + o [Sayue (-5 -, T)”L2(Q)

2 2
+5 [1Saybe (5 - S)”L2(Q) +T7H%y0t”L2(Qs)

+co ||%a:yutt||i2(ﬂ)

= 0, (50)

where Qs =Q x (s, T').

Equality (50) implies that S ,uy (¢, ¢, s) =0 on Q, and J,,0; =0
on@s, hence we deduce that ¥ = (oy, 09) = (0, 0) almost everywhere
in Q.

Proceeding in this way step by step, we prove that ¥ = 0 almost

every where in ().
EJQTDE, 2012 No. 50, p. 14



Now back to the general case: Since U = (01, 03) = 0 everywhere in
@, therefore equality (29) becomes

(Cru, 03)y1 ) + (L2, 04) 20y + (030, 05) 2q) = 0. (51)

Since the three quantities in (51) vanish independently and since the
ranges of the trace operators /1, {5, and {3 are respectively everywhere
dense in the spaces W3 (), L? (), and L? (), therefore it follows,
from (51), that o3 = 04 = 05 = 0. Hence R (J) = H. This achieves
the proof of Theorem 4.

Remark: The following larger class of problems may handled by
using the previous same techniques

( Liu ; + N?u — a0 + (cru + couy) = f(x, y,t ,0,u), (z,y,t) €Q,
Lo =B —nAb + 00 + alu, — csAu = g(z, y, t 0,u), (z, y, t)eq
(l‘, Y, )—’LLO( ) ut(x Y, 0)—’LL1(ZL‘ y) Q(I‘ Y, 0) (ZL‘, y),
u(0, v, )—0 u(a, y, 1) =0, 0<y<b 0<t<T,
w(z, 0, t) =0, u(z, b, t)=0, 0<z<a, 0<t<T,
foa rFudr = 0, fobykudy: 0, foa 2*0dx = 0, fobyk‘@dy:O, k=0,1,
(47)

9

\

where the functions f and ¢ satisfy the conditions

|f(z, y,t 01,u1) — f(z, gt JO2,u2)| < p(|0 — Oa] + |ur — ua),
|g($, yat 7€17u1)_g($7 yat ,02,U2)| S (|01—02|+|U1—U2|)

and «, (3, n, 0,c¢; and ¢y are positive constants.

We first deal with the associated linear problem, that is when f(z,
y,t 0,u) = f(x, y,t ) and g(x, y, t ,0,u) = g(z, y, t ) and then,
on the basis of the obtained results of the linear problem, we apply
an iterative process to establish the existence and uniqueness of the
nonlinear problem.

Acknowledgment: The author extends his appreciation to the
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