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1 Introduction

Fractional differential calculus have recently been addressed by many researchers of various fields of
science and engineering such as physics, chemistry, biology, economics, control theory, and biophysics, etc.
[1-4]. In particular, the existence of solutions to fractional boundary value problems is under strong research
recently, see [5-7] and references therein.

The fractional g-difference calculus had its origin in the works by Al-Salam [8] and Agarwal [9]. More
recently, perhaps due to the explosion in research within the fractional differential calculus setting, new
developments in this theory of fractional g-difference calculus were made, specifically, g-analogues of the
integral and differential fractional operators properties such as the g-Laplace transform, g-Taylor’s formula
[10,11], just to mention some.

The question of the existence of solutions for fractional g-difference boundary value problems is in its
infancy, being few results available in the literature.

Ferreira [12] considered the existence of positive solutions to nonlinear g-difference boundary value prob-
lem:

(D?u)(t) =—f(t,u(t), 0<t<l,l<a<2

u(0) = u(l) =0.
In other paper, Ferreira [13] studied the existence of positive solutions to nonlinear g-difference boundary
value problem:

Dgu)(t) = —f(t,u(t), 0<t<l, 2<a<3

u(0) = (Dyu)(0) = 0, (Dyu)(1) = 8 > 0.
M.El-Shahed and Farah M.Al-Askar [15] studied the existence of positive solutions to nonlinear g-difference
equation:

(eDgu)(t) +a(t)f(u(t)) =0, 0<t<1,2<a<3

u(0) = (D7u)(0) = 0, yDqu(1) + BD2u(1) = 0.
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In this paper, we investigate the existence of solutions for nonlinear g-difference boundary value problem of
the form

(Dgu)(t) = —f (t,ult), (Gu)(), (u)(1), 1<t<21<a<2,

m=2 (1.1)
u(0) = uo + g(u), Dqu(l) =uy + Z biDgu(&:),
i=1
where 0 < & < 1(i=1,2,...,m—2),b; > 0 with p = 211712 b; < 1 and (c¢Dg represents the standard
Caputo fractional g-derivative), f:[0,1] x X x X x X — X is continuous, for v, 4 : [0,1] x [0,1] — [0, c0),

(ou)(t) = / At s)u(s)dgs,  (u)(t) = / 5(t, 5)u(s)dgs.

Here, (X,|| - ||) is a Banach space and C' = C([0, 1], X) denotes the Banach space of all continuous
functions from [0,1] — X endowed with a topology of uniform convergence with the norm denoted by || - ||.

2 Preliminaries on fractional g-calculus
Let ¢ € (0,1) and define
1—q°
[a]q = ?q, a € R.
The g-analogue of the power function (a — b)™ with n € Ny is

n—1
(a—b)°=1, (a—b)" = H(a—bqk), neN, a,beR.
k=0
More generally, if a € R, then

(a—b)® = aaﬂﬂ

_ a+i "
i @ bq

Note that, if b = 0 then a(®) = a®. The g-gamma function is defined by

(1-g
Fq(.’L'):W’ .’I]ER\{O,_l,_2},O<q<1,

and satisfies T'y(x + 1) = [z],T4(2).
The g-derivative of a function f(x) is here defined by

un)(@) = T =T 0 2 0), (D1)(0) = g (D)),
and g-derivatives of higher order by

f(x) if n=0,

(Dg i) = { D,DP ' f(x) if n€N.

The g-integral of a function f(x) defined in the interval [0,d] is given by
— [ st =ati-g) 3 fla)"s 0 <ldl < 1. v € 0.0]
0 -

If a € [0,b] and f is defined in the interval [0, b], its integral from a to b is defined by

/f dtf/f dtf/f
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If ¢; :bqj,forje{0,1,...,71}7 a=c,=bg", 0<q<l.
The restricted g-integral of a function f(x) defined by

-1

b b n—1 n
/ f(t)dqt=/ F@)dgt =1 =bY ¢ f(bg) =(1—q) > _cjfc;), 0<g<1,b>0, neZ.
a bg™ =0

=0

Note that the restricted integral f; f(t)dgt is just a finite sum, so no questions about convergence arise.
Obviously, if f (z) > g (z) on [a, b], then fabf Ydgt > f g(t)dgt. If 0 < k < n, then

/ab ft)dqgt = /:k ft)dgt + /Cj f()dgt

The usual Riemann integral can be considered as a limit of the restricted definite g-integral in the following

1
way. Since a = bq", ¢ = ($)". Fix a and b and let n — oo(hence, ¢ — 1). Then, f; f(t)dgt — f; f(t)dt
assuming that f (¢) is Riemann integrable on [a, b]. The above formulas were proved by the author [17].
Similarly as done for derivatives, it can be defined an operator I;', namely,

f(z) if n=0,

Uy ) = { LI (@) ifneN.

The fundamental theorem of calculus applies to these operators I, and Dy, i.e.,
(Dglyf)(x) = f(x),

and if f is continuous at z = 0, then
(I4Dq f)(x) = f(x) = (0).

and, more generally

(Dg 1y f)(x) = f(z),n €N,

n—1 .Z‘k
(g Dy f)(z) = f(z) — Z m(D’;f)(O),n eN.
k=0 9

Basic properties of the two operators can be found in the book [14]. We point out here five formulas that
will be used later, namely, the integration by parts formula

| rexagrdnt = 10005 - [ 0upiatanrae,
0
and (;Dg denotes the derivative with respect to variable ¢)
laft — 5))@ = a®(t — 5)(@,
Dq(t — S)(a) = [a]q(t - 3)(a_1)
Dyt =)' = —[a](t —g5)* 7Y,

D/fxtdt /Df:ct)dt-i—f(q:z:x)

Remark 2.1. We note that if & > 0 and a < b < ¢, then (t — a)(® > (t — b)(® [12].
The following definition was considered first in [9].
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Definition 2.2. Let o > 0 and f be a function defined on [0, 1]. The fractional g-integral of the Riemann-
Liouville type is (I f)(z) = f(x) and

1

(I8 f)(x) = ) /Oz(x —gt) V() dyt, o > 0,2 € [0,1].

Definition 2.3. The fractional g-derivative of the Riemann-Liouville type of order a@ > 0 is defined by
Dy f)(z) = f(z) and
Dg )(x) = (D17 f)(x),a >0,

where m is the smallest integer greater than or equal to a.

Definition 2.4. [16] The fractional g-derivative of the Caputo type of order « > 0 is defined by
(cDg f)(@) = (I~ Dy f) (@), 0 > 0,

where m is the smallest integer greater than or equal to a.
Next, let us list some properties that are already know in the literature.
Lemma 2.5. Let o, 8 > 0 and f be a function defined on [0, 1]. Then, the next formulas hold:

LTS £)(@) = (157 ) ),
2.(DgIg f)() = f(x).

The next result is important in the sequel. It was proved in a recent work by the author [12].
Theorem 2.1. [12] Let @ > 0 and n € N. Then, the following equality holds:

n—1 a—n+k

(I¢Dy f)(x) = Dy I3 f(x) — kZ:O PR —

(Dg.f)(0).

Theorem 2.2. [16] Let & € RT \ N. Then, the following equality holds:

m—1 k
x

I¢ Dy = — E ———(D¥f)(0).

(qC qf)(w) f(x) s Fq(k+1)( qf)( )

where m is the smallest integer greater than or equal to a.

Lemma 2.6. For a given o € C[0,1] and 1 < a < 2, the unique solution of

(cDgu)(t) = —o (1),

w2 (2.1)
u(0) = ug + g(u), Dgu(1) =uy + Y _ biDgu(&;),
i=1
is given by
t _ a—1) 1 - (a—2)
(t qs)( 1 / (1—gqs) t
u(t)=— | ——=——o(s)dys+ o (s)dys
(¥ /0 Fq(a) (s) I 1-=pJo Fq(a_l) I
m—2 .
1 & (61 _ qs)(a—Q)t 1
- — i - d t.
o | Sy (et +

Proof. Let us put m = 2. In view of Lemma 2.5 and Theorem 2.2, we have
(eDgu)(t) = —o (t) <= (I71;“cDou)(t) = —I0 (t)

tt— a—1) 2.2

(t — gs)! (2:2)

<~ U(t) = —/O WU (S) qu + Co + Clt,
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for some constants cg, c; € R. Using the boundary condition u(0) = ug + g(u), gives ¢ = ug + g(u).

Furthermore, differentiation of (2.2) with respect to ¢ produces

o — — gs)(@=2)
Dgu(z) = —/O [ = Uyt — g5) o(s)dys+c.

Lg(e)
Using the boundary conditions Dgu(1) =Y " 2 biDgu(&;), we get
1 P (1 —gs)le? (& —gs) 2 Uy
c1 1—p/0 Tola—1) o(s)d Z / a-1 () qs—l—l_p

Now, substitution of ¢y and ¢; into (2.1) gives

t (4 _ gs)@—D) 112 gs)@—2)
u(t):—/oua(s)dqs—i— ! /0(1 as) ta(s)dqs

Iy(a) 1—p Fq(ozf 1)
IR Y o R el
1p;b1/0 e RRAOL R v +“0+9()

The proof is complete. O

3 Main results

Define an operator T': C' — C by

ugt Lt —gs)le=D
(Tu) (1) u0+g()+1 e

P (1—gs)e?
=pJo Tela—1)

fs,u(s), (Pu)(s), (Yu)(s))dqys

f(s,uls), (du)(s), (Yu)(s))dys

m—2 a—2)

_ as)(
Z bz/o Zi)nf(saU(S),(qbu)(S), (Yu)(s))dgs, te0,1].

=1

Clearly, the fixed points of the operator T are solutions of problem (1.1).
To establish the main results, we need the following assumptions:
(Hy) There exist positive functions L (t), La(t), L3(t) such that

I1f (£, u(t), (u)(t), (Yu)(t) — f(t,v(t), (¢v) (t), (Yv) ()]
< La(8) lu —ol[ + La(t) |pu — gl + Ls(t) [[Yu — ¢oll, ¢ €[0,1),u,ve X

(H3) g : C — X is continuous and there exists a constant b such that

lg(u) = g()| <bllu—2lf, u,0eC

Further,
¢ ¢
/ (¢, 8)dgs / 0(t, s)dgs
0 0

IqO‘L:maX{ sup ’IaLl )’, sup ‘IQLQ )‘, sup ‘IaLg )‘}
te[0,1] t€0,1] te[0,1]

; 50 = sup
t€[0,1]

Yo = Ssup
te[0,1]

3

IS7VL (1) = max { |10 Ly (1) |, 19 Ly (1) |, |18 Ls (1) |}
I87L(&) = max {107 Ly (&), |10 Lo (&)] |10 Ls (&)] } . & =1

;2,000 m — 2.

(3.1)
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(Hs) There exists a number A < k < 1, where
1 m—2
= (140 + do) {L?L + E (I;llL (1) + Z bilgilL (fﬂ) } .
i=1
(H4) There exists a number A, where

m—2
a 1 a—1 a—1
A=b+(1+’70+50){1qL+1—p<1 L(1 +Zbl sz))}

i=1

(Hs) || f(t,u(t), (Pu) (£), (Yu) (£) [I< p (), V(t, ult), (Pu) , (Yu)) € [0, 1] x X x X x X, € LY([0, 1], RT).

Theorem 3.1.  Assume that f:[0,1] x X x X x X — X is jointly continuous function and satisfies the
assumptions (Hy) — (Hy), then problem (1.1) has a unique solution provided A < 1, where A is given in the
assumption (Hs).

Proof. Let us set sup,c(o 17 [f(t,0,0,0)] = M, and choose

e 1 ! S pgteD
T @t1) (1= p)Ty(a) (H ;bzgi )H

+ M
—-p
where A is such that A < A < 1. We show that T'B, C B,, where B, = {x € C:|| u||<r}. So let u € B,
and set G = sup,cc¢ ||g (w)|| . Then we have

1
rZ—{Hu ||+G+
1—-A

W
ol , [ a5
< ol + 6+ L2 [P ), ()9, (o) s
1 (1—gs)@=2
i [ S st (o), s s

n Zb [ st (o)), <wu><s>>|dqs}

< lluoll + G + ”“1”
_ gs)(@-D)
v %ﬂlﬂs u(s), (6u) (5), (¥) (5)) — £ (5,0,0,0)] + 1 (5,0,0, 0]} dys
@)
s (}5«7)) (1 (5, us). ($u) (9. () () — £ (5,0,0,0)] + £ (5,0,0,0) ) dys

+sz/ ()i q“ (1 (s, uls >,<¢u><s>,<¢u><s>>f(s,o,o,o>||+|f(s,o,o,o>||>dqs}

IIU1||

< lluoll + G + 1

(t—gs)7V
+/O T, (o) (L1 (s) |lu(s)|| + Lz (s) [|(du) (s)|| + L3 (s) || (¢u) (s)|| + M) dgs

1 P(L-gs)@?
T, 1—p {/0 T (a—1) (L1 () lu(s)|| + L2 (s) [|(pu) (s)|| + L3 (s) || (vu) (s)|| + M) dgs
m—2 & “us (a—2)
+ bz/ % (L1 (s) |Ju (s)]| + La (s) |(¢w) (s)|| + L3 (s) || (vu) (s)|| + M) dqs}

i=1 0 Ly EJQTDE, 2011 No./92, p. 6



[ ] f(t—gs)oY
< lluoll + G + 7 — +/O W(Ll (8) lu ()l +v0La (s) lu ()] + o Ls (s) lu (s)|| + M) dys

1 (1—gs)@=2
+ ﬂ {/O Toa—1) (L1 () [[u ()| +v0L2 (8) [[u(s)]| + doLs (s) [[u ()] + M) dgs

2)
+ Z bi / %(Ll (s) |l ()] + voLa () [[u (s)|| + doLs (s) ||u (s)]] +M)dqs}

||U1|| M)
I¢Lq (¢ I%Ly (¢ 0ol Ls (t
(q 1 (t) + 0l La (t) + 0ol 3 (1) r+ JatD)

< lluoll + G + {2 .
M

1 o— a— a—
+ E {(Iq 1L1 (1) + ’Y()Iq 1L2 (1) + 50]q 1L3 (1)) r—+

2

m— Mgl(afl)
+ Z b; ( Ia 1Ll 51)+701a 1L2 (gz)+501a 1L3 (gz)) : )}

=1

Juall M
+ IS L (1 + 0 + o)1 +
—p ( 0 0) Iy (O‘+1)

< |luo H+G+

1 _
+ TR {13 L) (A4 ~v0 + o) r +

M
-P Lq (@)

m—2

. Mé.i(afl)
+ ; bi <Iq PL(&) (140 + 60) 7 + T, (@) )}

m—2
< ol +G+ IC 1” + (1470 + o) {I“L+ L (Ig“lL(l) + Z bﬂg‘%(@)) }r

L=p i=1

m2 g(a 1)
11 1
+M{ (a+1) < Iy ( q (@) )}

m—2
1 o
< |luo |\+G+” 1” { EESTRE T <1+§ i€ 1)>}§7’
q i=1

Now, for u,v € C and for each t € | , we obtain

1(Tw) () = (Tv) ()]l

_ gg)(@ D
<lo) -9+ [ %ms u(s), (9) (). () (5)) = F(5,(5), (60) (5), (6v) ()] s

! (1- qs
- {/0 T ||f(8 u(s), (¢u) (s), (Yu) (s)) — f(s,v(s), (¢v) (s), (Yv) (5)) [l dgs

q

& (6 _ S(a 2)
£ 0 % bi—go) A s ut) <¢u><>,<wu><s>>—f<s,v<s>,<¢v><s>,<wv><s>>|dqs}

tp— gs) @D
< llg (w) —g W)l +/0 % (L1 () lu — vl + L2 (s) [|pu — o]l + L3 (s) [lu — ¢vl]) dgs

Iy (a)
1 _ (a—2)
e { T (0 0 vl + £ () = vl + L () L = )
m=2 g o (a-2)
e300 [ I (6 o]+ La o) 6w dul + La () ||wu—wv||>dqsk
—1 0 g\ )
i EJQTDE, 2011 No. 92, p. 7



< g (w) = g )| + (IgL1 (t) + 0I5 L2 (t) + GoIg Ls (1)) [Ju — v||

1
o T B () 0l L (1) + 0l s (1)

m—2
+ Z bi (1§71 L1 (&) + 0I5 La(&i) + 50]?1133(&'))} [[u— vl

i=1

1
§b|u—v||+(1+70+5o){lqo‘L+1—(IO‘ IL(1 +Zb[”‘ UL ( §Z>}||u—v|

= Allu—of

where A is given in the assumption (Hy). As A < 1, therefore T is a contraction. Thus, the conclusion
of the theorem follows by the contraction mapping principle.

Now, we state Krasnoselskii’s fixed point theorem which is needed to prove the existence of at least one
solution of (1.1). O

Theorem 3.2. Let K be a closed convex and nonempty subset of a Banach space X. Let TS be the
operators such that (i) Tu + Sv € K whenever u,v € K; (it) T is compact and continuous; (i7i) S is a
contraction mapping. Then there exists z € K such that z =Tz + Sz.

Theorem 3.3. Suppose that f : [0,1] x X x X x X — X is jointly continuous and the assumptions
(Hy) — (H3) and (Hjs) hold with

m—2
A1 b+(1+70+50){ﬁ (Ic(zllL(l)Jr Z binalL(&)>} <1

i=1

Then there exists at least one solution of the boundary value problem (1.1) on [0, 1].

Proof. Choose

el 1 ! T e
r > ||ul|| + G —|— 1 + 1+ bit; .
[[uoll —, Tkl Ty(a+1)  (1-p)Ty(a) ; ‘

and consider Q, = {u € C': ||lu|]| < r}. We define the operators 71 and T on €2, as

tt_ gs)@D
(Tyu) (1) = o — / %f (5,u(s). (6u) (5) , (o) (5)) dgs

a—1)

@)
_ Z / qa 3 tf(s, ’U,(S), (¢U) (S) ) (’lﬂu) (5))dq3} .

Let’s observe that if u,v € Q,. then Thu + Thv € ),.. Indeed it is easy to check the inequality

m—2
uall 1H 1 1 (a—1)
[T+ Tovl < ol + G + 12+ el T 1+ ) bl <r
g Py(a+1)  (1-p)Tq(a) 1:21

By (H1), it is also that T5 is a contraction mapping for Aq < 1.

Uy L1 = gs)@?
(Tou) (8) =gl + 12 +%{ | o) o) (5. () ()

EJQTDE, 2011 No. 92, p. 8



Since f is continuous, then (Thu) (¢) is continuous. Let’s now note that T} is uniformly bounded on €.
This follows from the inequality

[[ua ] [l4ll 1

IT) O < lloll + 72 + 55 (2

Now,we show that T} (€,.) is equicontinuous. The functions Thu, u € 2, are equicontinuous at ¢t = 0. For
ti1,t2 € {¢" : n € Ny}, and t; < to. Using the fact that f is bounded on the compact set [0, 1] x €, x Q, X Q.
therefore, we define sup ; , gu,pu)co,1]x 2, x 2, x0,. |1 (5 8 du, Yu)|| = fmax < 00. We have

to _ S(a_l)
/o U299 (s, u(s), (6u) (5), () () ds

[(Thu) (t2) — (Thu) (t1)]| = T, ()

t1 _gs)e D
_/0 %J‘ (5,u(s), (du) (5) , ($u) (5)) dgs

/t1 (ts — qs) ™ — (t; — gs) "
0 Iy (a)

f(s,u(s), (du) (s), (Yu) (5)) dgs

" (ty —g9) )
! / Ty (550 (00 (5), () () ds

fmax

<
T Iy(a+1)

which is independent of u € €2, when t; — t5. Indeed, let u € ),., we have

£ — 4]

fmaz

t11£%2 Fq (Oé —+ 1) 2

1 — 0.

Therefore, T7 (£2,.) is relatively compact on Q,. Hence, by Arzela-Ascoli’s Theorem, 77 is compact on ;.
Thus all the assumptions of Theorem 3.2 are satisfied and the conclusion of Theorem 3.2 implies that the
boundary value problem (1.1) has at least one solution on [0,1]. O

4  Examples

Example 4.1. Consider the following boundary value problem
s—t

t|ul 1 [Te (=0 1 [Te 5
Dy 2u(t) = = —/ d —/ ds, t € 10,1

u(0) = 0, Do su(1) = b1 Do s5u(&1),

Here, v (t,s) = ef(:t), 5(t,s) = 675%, G = %, by = %, ¢=1. With
e—1 2(y/e—1)
= = o=V )
Y0 5 ) 0 5 )
sup IpPL (t) ~ 0.167983, I02L (1)~ 0.217185, IJPL(1/2) ~ 0.141421,
t€[0,1]
we find that
1 e—1 2(/e—1) 1
AN=—+(1 0.167983 + ———— (0.217185 + 0.1 x 0.141421)| ~ 0.781358 < 1.
10+(+ 5 T 5 )[ TR oA ) <

Thus, by Theorem 3.1, the boundary value problem (4.1) has a unique solution on [0, 1].
EJQTDE, 2011 No. 92, p. 9



References

[1]
2]

3]
4]
5]
6]
7]
8]
9]

[10]

11]

12]

13]

[14]

[15]

[16]

[17]
[18]

[19]
[20]

21]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999.

K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, Wiley, New York,
1993.

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, North-
Holland Mathematical Studies, vol.204, Elsevier Science B.V., Amsterdam, 2006.

V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic systems, Cambridge Academic
Publishers, Cambridge, 2009.

Z. Bai, H. Lii, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math.
Anal. Appl. 311(2)(2005)495-505.

K. Balachandran, J.J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations
in Banach spaces, Nonlinear Anal. 72(2010)4587-4593.

K. Balachandran, S. Kiruthika, J.J. Trujillo, Existence results for fractional impulsive integrodifferential equations
in Banach spaces, Commun. Nolinear Sci. Numer. Simulat. 16(2011)1970-1977.

W.A. Al-Salam, Some fractional g-integrals and g-derivatives, Proc. Edinb. Math. Soc. (2) 15(1966-1967)135-
140.

R.P. Agarwal, Certain fractional g-integrals and g-derivatives, Proc. Cambridge Philos. Soc. 66(1969)365-370.
F.M. Atici, P.W. Eloe, Fractional g-calculus on a time scale, J. Nonlinear Math. Phys. 14(3)(2007)333-344.
P.M. Rajkovic, S.D. Marinkovic, M.S. Stankovic, Fractional integrals and derivatives in g-calculus, Appl. Anal.
Discrete Math. 1(1)(2007)311-323.

R.A.C. Ferreira, Nontrivial solutions for fractional g-difference boundary value problems, Electron. J. Qual.
Theory Differ. Equ. 2010, no.70, 1-10.

R.A.C. Ferreira, Positive solutions for a class of boundary value problems with fractional g-differences, Comput.
Math. Appl. 61(2011)367-373.

V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, New York, 2002.

M. El-Shahed, Farah M. Al-Askar, Positive solutions for boundary value problem of nonlinear fractional g-
difference equation, ISRN Mathematical Analysis, vol. 2011, Article ID 385459, 12 pages, 2011.
doi:10.5402/2011/385459.

M. S. Stankovic, P. M. Rajkovic, S. D. Marinkovic, On g-fractional derivatives of Riemann-Liouville and Caputo
type, arXiv:0909.0387 [math.CA] 2 sept. 20009.

H. Gauchman, Integral Inequalities in g-Calculus, Comput. Math. Appl. 47(2004),no. 2-3, 281-300.

V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of different types of instabilities in time fractional
reaction-diffusion systems, Comput. Math. Appl. 59(2010)1101-1107.

B. Ahmad, J.J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with
three-point boundary conditions, Comput. Math. Appl. 58(2009)1838-1843.

B. Ahmad, S.K. Ntouyas, Boundary value problems for g-difference inclusions, Abstract and Applied Analysis,
Volume 2011(2011), Article ID 292860,15 pages.

B. Ahmad, S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integro-differential
equations of fractional order, Appl. Math. Comput. 217(2010)480-487.

(Received September 7, 2011)

EJQTDE, 2011 No. 92, p. 10



