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UNIQUE SOLVABILITY OF SECOND ORDER FUNCTIONAL

DIFFERENTIAL EQUATIONS WITH NON-LOCAL BOUNDARY

CONDITIONS

N. DILNA

Abstract. Some general conditions sufficient for unique solvability of the
boundary-value problem for a system of linear functional differential equations
of the second order are established. The class of equations considered covers,
in particular, linear equations with transformed argument, integro-differential
equations and neutral equations. An example is presented to illustrate the
general theory.

1. Problem formulation

The purpose of this paper, which has been motivated in part by the recent works
[11–16,18], is to establish new general conditions sufficient for the unique solvability
of the non-local boundary-value problem for systems of linear functional differential
equations on the assumptions that the linear operator l = (lk)n

k=1, appearing in
(1.1) can be estimated by certain other linear operators generating problems with
conditions (1.2), (1.3) for which the statement on the integration of differential
inequality holds. The precise formulation of the property mentioned is given by
Definition 1.1.

The proof of the main result obtained here is based on the application of [10,
Theorem 49.4], which ensures the unique solvability of an abstract equation with
an operator satisfying Lipschitz-type conditions with respect to a suitable cone.

We consider the linear boundary-value problem for a second order functional
differential equation

u′′(t) = (lu)(t) + q(t), t ∈ [a, b], (1.1)

u′(a) = r1(u), (1.2)

u(a) = r0(u), (1.3)

where l : W 2([a, b], Rn) → L1([a, b], Rn) is linear operator, ri : W 2([a, b], Rn) → R
n,

i = 0, 1, are linear functionals.
By a solution of problem (1.1)–(1.3), as usual (see, e. g., [1]), we mean a vector

function u = (uk)n
k=1 : [a, b] → R

n whose components are absolutely continuous,
satisfy system (1.1) almost everywhere on the interval [a, b], and possess properties
(1.2), (1.3).

Definition 1.1. A linear operator l = (lk)n
k=1 : W 2([a, b], Rn) → L1([a, b], Rn) is

said to belong to the set Sr0,r1
if the boundary value problem (1.1), (1.2), (1.3) has

a unique solution u = (uk)n
k=1 for any q ∈ L1([a, b], Rn) and, moreover, the solution
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of (1.1), (1.2), (1.3) possesses the property

min
t∈[a,b]

uk(t) ≥ 0, k = 1, 2, . . . , n, (1.4)

whenever the components of the function q, appearing in (1.1) are non-negative
almost everywhere on [a, b].

2. Notation

Throughout the paper, we fix a bounded interval [a, b] and a natural number n.
We use the following notation.

(1) R := (−∞,∞); ‖x‖ := max1≤i≤n |xi| for x = (xi)
n
i=1 ∈ R

n.
(2) L1([a, b], Rn) is the Banach space of all the Lebesgue integrable vector-

functions u : [a, b] → R
n with the standard norm

L1([a, b], Rn) ∋ u 7−→

∫ b

a

‖u(ξ)‖ dξ.

(3) W k([a, b], Rn), k = 1, 2, is set of vector functions u = (ui)
n
i=1 : [a, b] →

R
n with u(k−1) absolutely continuous on [a, b] and the norm given by the

formula

W k([a, b], Rn) ∋ u 7−→ ‖u‖k :=

∫ b

a

‖u(k)(ξ)‖ dξ +
k−1
∑

m=0

‖u(m)(a)‖. (2.1)

(4) For k = 1, 2, m = 0, 2, by W k
(m)([a, b], Rn) we denote the set of functions

u = (ui)
n
i=1 : [a, b] → R

n from W k([a, b], Rn) such that the components of

u(m) are non-negative a.e. on [a, b] and u
(j)
i (a) ≥ 0 for 0 ≤ j ≤ m − 1,

i = 1, 2, . . . , n.
(5) If rj : W 2([a, b], Rn) → R

n, j = 0, 1, are functionals, then the symbol
W 2

(r0,r1)
([a, b], Rn) denotes the set of all u from W 2([a, b], Rn) for which

u(a) = r0(u) and u′(a) = r1(u).
(6) W 2

(m;r0,r1)
([a, b], Rn) := W 2

(r0,r1)
([a, b], Rn) ∩ W 2

(m)([a, b], Rn) for m = 0, 2.

The symbols defined above will usually appear in the text in a shortened form,
e. g., the sets W 2([a, b], Rn) and W 2

(m;r0,r1)
([a, b], Rn) will be referred to simply as

W 2 and W 2
(m;r0,r1)

, etc. Since a, b, and n are fixed, no confusion will arise.

3. Auxiliary statements

To prove our main results, we use the following statement on the unique solv-
ability of an equation with a Lipschitz type non-linearity established in [9] (see also
[10]).

Let us consider the abstract operator equation

Fx = z, (3.1)

where F : E1 → E2 is a mapping, 〈E1, ‖·‖E1
〉 is a normed space, 〈E2, ‖·‖E2

〉 is a
Banach space over the field R, Ki ⊂ Ei, i = 1, 2, are closed cones, and z is an
arbitrary element from E2.

The cones Ki, i = 1, 2, induce natural partial orderings of the respective spaces.
Thus, for each i = 1, 2, we write x ≦Ki

y and y ≧Ki
x if and only if {x, y} ⊂ Ei

and y − x ∈ Ki.
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Theorem 3.1 ([10, Theorem 49.4]). Let the cone K2 be normal and generating.

Furthermore, let Bk : E1 → E2, k = 1, 2, be additive and homogeneous operators

such that B−1
1 and (B1 + B2)

−1 exist and possess the properties

B−1
1 (K2) ⊂ K1, (B1 + B2)

−1(K2) ⊂ K1, (3.2)

and, furthermore, let the order relation

B1(x − y) ≦K2
Fx − Fy ≦K2

B2(x − y) (3.3)

be satisfied for any pair (x, y) ∈ E2
1 such that x ≧K1

y.

Then equation (3.1) has a unique solution x ∈ E1 for an arbitrary element

z ∈ E2.

Let us recall two definitions that has been used above (see, e.g., [8, 10]).

Definition 3.1. A cone K2 ⊂ E2 is called normal if every subset of E2 bounded
with respect to the partial ordering ≦E2

generated by K2 is also bounded with
respect to the norm.

A cone K1 is said to be generating in E1 if an arbitrary element x ∈ E1 can be
represented in the form x = u − v, where {u, v} ⊂ K1.

3.1. Lemmas. We need some technical lemmas.

Lemma 3.1. The following assertions are true:

(1) W 2
(r0,r1)

is a closed subspace of W 2 with respect to the norm (2.1).

(2) The set W 2
(0;r0,r1)

is a cone in the space W 2
(r0,r1)

.

(3) The set W 2
(2;0,0) is a normal and generating cone in the space W 2

(0,0).

Proof. Assertions 1 and 2 follow immediately from the assumption that the linear
functionals rj : W 2([a, b], Rn) → R

n, j = 0, 1, are bounded.
Let us check assertion 3. If {u1, u2} ⊂ W 2

(2;0,0) and {λ1, λ2} ⊂ [0, +∞), then,

obviously, λ1u1 + λ2u2 lies in W 2
(2;0,0) as well. Suppose that u ∈ W 2

(2;0,0) and

−u ∈ W 2
(2;0,0) simultaneously. Then, according to the definition of W 2

(2;0,0), we

have u′′ ≡ 0 and, moreover, u(a) = 0, u′(a) = 0, whence it is obvious that u ≡ 0.
Thus, W 2

(2;0,0) is a cone in W 2
(0,0).

In order to prove that the cone W 2
(2;0,0) is normal, it is sufficient to show that

every set of the form

{x ∈ W 2
(0,0) : {x − u, v − x} ⊂ W 2

(2;0,0)}, (3.4)

where {u, v} ⊂ W 2
(0,0), is bounded with respect to the norm ‖·‖2 (see (2.1) with

k = 2). Indeed, if an x belongs to set (3.4), then

u′′(t) ≤ x′′(t) ≤ v′′(t), t ∈ [a, b],

componentwise. Therefore,

‖x‖2 =

∫ b

a

‖x′′(s)‖ ds ≤ max {‖u‖2, ‖v‖2} ,

which, in view of the arbitrariness of x, implies that set (3.4) is bounded.
To prove that the cone W 2

(2;0,0) is generating in the space W 2
(0,0), it is sufficient

to show that every element x of W 2
(0,0) admits a majorant in W 2

(2;0,0). Indeed, let

x ∈ W 2
(0,0) be arbitrary. Then x has the form

x(t) =

∫ t

a

(∫ s

a

X(ξ)dξ

)

ds, t ∈ [a, b], (3.5)
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where X ∈ L1. Equality (3.5) implies that, componentwise,

x(t) ≤ u(t), t ∈ [a, b],

where

u(t) :=

∫ t

a

(∫ s

a

|X(ξ)| dξ

)

ds, t ∈ [a, b]. (3.6)

It is obvious from (3.6) that u(a) = 0, u′(a) = 0, and u′′ is non-negative and,
therefore, u is an element of W 2

(2;0,0). This, due to the arbitrariness of x, proves

that W 2
(2;0,0) is generating. �

Let us define a linear operator Vl,r0,r1
: W 2

(r0,r1)
→ W 2

(0,0) by putting

(Vl,r0,r1
u)(t) := u(t) −

∫ t

a

(∫ s

a

(lu)(ξ) dξ

)

ds − (t − a) r1(u) − r0(u) (3.7)

for all u ∈ W 2
(r0,r1)

. Then the following assertion is straightforward.

Lemma 3.2. A function u from W 2 is a solution of the equation

(Vl,r0,r1
u)(t) =

∫ t

a

(∫ s

a

q(ξ)dξ

)

ds, t ∈ [a, b], (3.8)

where q ∈ L1, if and only if it is a solution of the non-local boundary value problem

(1.1)–(1.3).

The lemma below sets the relation between the property described by Defini-
tion 1.1 and the positive invertibility of operator (3.7).

Lemma 3.3. If l = (lk)n
k=1 : W 2 → L1 is a linear operator such that

l ∈ Sr0,r1
, (3.9)

then the operator Vl,r0,r1
is invertible and, moreover, its inverse V −1

l,r0,r1
satisfies the

inclusion

V −1
l,r0,r1

(W 2
(2;0,0)) ⊂ W 2

(0;r0,r1)
. (3.10)

Proof. Let the mapping l belong to the set Sr0,r1
. Given an arbitrary function

y = (yk)n
k=1 ∈ W 2

(0,0), consider the equation

Vl,r0,r1
u = y. (3.11)

Since y ∈ W 2
(0,0), we have that, in particular,

y(a) = 0, y′(a) = 0. (3.12)

In view of assumption (3.9), there exists a unique function u such that u′ is
absolutely continuous, the equation

u′′(t) = (lu)(t) + y′′(t), t ∈ [a, b], (3.13)

holds, and

u′(a) = r1(u), (3.14)

u(a) = r0(u). (3.15)

By Lemma 3.2, it follows that u is, in fact, the unique solution of equation (3.11).
In other words, u = V −1

l,r0,r1
y due to the arbitrariness of y ∈ W 2

(0,0).

Moreover, inclusion (3.9) also guarantees that if the functions yk, k = 1, 2, . . . , n,

are such that
y′′

k (t) ≥ 0, t ∈ [a, b], k = 1, 2, . . . , n, (3.16)
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then the components of u are non-negative. Therefore, V −1
l,r0,r1

y ∈ W 2
(0;r0,r1)

. How-

ever, relation (3.16), together with (3.12), means that y ∈ W 2
(2;0,0). Since y is

arbitrary, we arrive at the required inclusion (3.10). �

Lemma 3.4. For arbitrary linear operators pi : W 2 → L1, i = 1, 2, the identity

Vp1,r0,r1
+ Vp2,r0,r1

= 2V 1

2
(p1+p2),r0,r1

(3.17)

is true.

Proof. Equality (3.17) is obtained immediately from relation (3.7). �

Remark 3.1. A linear operator l = (lk)n
k=1 : W 2 → L1 belongs to the set Sr0,r1

if
problem (1.3) for the system

u′
k(t) =

∫ t

a

(pku)(s)ds + r1k(u) +

∫ t

a

qk(s)ds, t ∈ [a, b], k = 1, 2, . . . , n, (3.18)

has a unique solution u = (uk)n
k=1 for any {qk | k = 1, 2, . . . , n} ⊂ L1 and, moreover,

the solution of (3.18), (1.3) possesses property (1.4) if qk, k = 1, 2, . . . , n, are non-
negative almost everywhere on [a, b].

A number of results related to the solvability of the linear boundary-value prob-
lem (3.18), (1.3) (and therefore, by virtue of Remark 3.1, to properties of the set
Sr0,r1

) can be found, for example, in [2, 4, 5, 7, 11–14,17–19].

4. A general theorem on the solvability

The theorems presented below allow one to deduce conditions under which prob-
lem (1.3), (3.18) always has a unique solution.

Theorem 4.1. Suppose that there exist certain linear operators pi = (pik)n
k=1 :

W 2 → L1, i = 1, 2, satisfying the inclusions

p1 ∈ Sr0,r1
,

1

2
(p1 + p2) ∈ Sr0,r1

(4.1)

and such that the inequalities

(p2ku)(t) ≤ (lku)(t) ≤ (p1ku)(t), t ∈ [a, b], k = 1, 2, . . . , n, (4.2)

are fulfilled for arbitrary non-negative absolutely continuous vector function u :
[a, b] → R

n from W 2
(0;r0,r1)

.

Then the non-local boundary value problem (1.1)–(1.3) has a unique solution for

any q ∈ L1.

Proof. Let us put

E1 = W 2
(r0,r1)

, E2 = W 2
(0,0)

and define a mapping F : E1 → E2 by setting

(Fu)(t) := (Vl,r0,r1
u)(t), t ∈ [a, b], (4.3)

for any u from W 2
(0;r0,r1)

, where Vl,r0,r1
is given by (3.7). Then equation (4.3) takes

form (3.1) with

z(t) :=

∫ t

a

(∫ s

a

q(ξ)dξ

)

ds, t ∈ [a, b].

EJQTDE, 2012 No. 14, p. 5



Consider problem (1.3), (3.18). It is clear (see Remark 3.1) that an absolutely
continuous vector function u = (uk)n

k=1 : [a, b] → R
n is a solution of (1.3), (3.18)

if, and only if it satisfies the equation

Vl,r0,r1
u = z. (4.4)

Assumption (4.2) means that the estimate

−(p1ku)(t) ≤ −(lku)(t) ≤ −(p2ku)(t), t ∈ [a, b], (4.5)

is true for any u from W 2
(0;r0,r1)

and all k = 1, 2, . . . , n. For any such functions u

the relation

u′′
k(t) − (p1ku)(t) ≤ u′′

k(t) − (lku)(t) ≤ u′′
k(t) − (p2ku)(t), t ∈ [a, b], (4.6)

is true for almost all t ∈ [a, b]. Integrating (4.6), and taking property (1.2) into
account, we obtain that the inequality

u′
k(t) −

∫ t

a

(p1ku)(ξ)dξ − r1k(u) ≤ u′
k(t) −

∫ t

a

(lku)(ξ)dξ − r1k(u) ≤

≤ u′
k(t) −

∫ t

a

(p2ku)(ξ)dξ − r1k(u), k = 1, 2, . . . , n, (4.7)

holds for any u from W 2
(0;r0,r1)

and all k = 1, 2, . . . , n.

Let us define the linear mappings Bik : W 2
(r0,r1)

→ W 2
(0,0), i = 1, 2, k =

1, 2, . . . , n, by putting

(Biku)(t) := u(t) −

∫ t

a

(∫ s

a

(piku)(ξ)dξ

)

ds − (t − a)r1(u) − r0(u), t ∈ [a, b],

(4.8)
for an arbitrary u from W 2

(0;r0,r1)
. Then, integrating (4.7) and taking property (1.3)

into account, we obtain

(B1ku)(t) ≤ uk(t) − (t − a)r1k(u) − r0(u) −

∫ t

a

(∫ s

a

(lku)(ξ)dξ

)

ds

≤ (B2ku)(t), t ∈ [a, b], (4.9)

for any u = (uk)n
k=1 from W 2

(0;r0,r1)
and all k = 1, 2, . . . , n.

Construct the mappings Bi : W 2
(r0,r1)

→ W 2
(0,0), i = 1, 2, according to the formula

W 2
(r0,r1)

∋ u 7−→ Biu :=











Bi1u

Bi2u
...

Binu











, i = 1, 2. (4.10)

Then, considering the definition of the mapping Vl,r0,r1
(see formula (3.7)) and the

sets W 2
(0;r0,r1)

and W 2
(2;0,0), we see that estimates (4.6), (4.7) and (4.9) ensure the

validity of the inclusion

{B2u − Vl,r0,r1
u, Vl,r0,r1

u − B1u} ⊂ W 2
(2;0,0) (4.11)

for an arbitrary u from W 2
(0;r0,r1)

.

Finally, let us define K1 and K2 by the formulae

K1 := W 2
(0;r0,r1)

, K2 := W 2
(2;0,0). (4.12)
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By Lemma 3.1, the set K1 forms a cone in the normed space W 2
(r0,r1)

, whereas K2

is a normal and generating cone in the Banach space W 2
(0,0).

According to equalities (3.7) and (4.8), we have Bi = Vpi,r0,r1
, i = 1, 2. Further-

more, it follows from Lemma 3.4 that identity (3.17) is true and, therefore,

B1 + B2 = 2V 1

2
(p1+p2),r0,r1

. (4.13)

In view of assumption (4.1), Lemma 3.3 guarantees the invertibility of the oper-
ators Vp1,r0,r1

and V 1

2
(p1+p2),r0,r1

. Consequently, we have B−1
1 = V −1

p1,r0,r1
and, by

(4.13), the equality (B1 + B2)
−1 = 1

2V −1
1

2
(p1+p2),r0,r1

holds. The same Lemma 3.3

ensures the positivity of the inverse operators in the sense that

V −1
p1,r0,r1

(W 2
(2;0,0)) ⊂ W 2

(0;r0,r1)
,

V −1
1

2
(p1+p2),r0,r1

(W 2
(2;0,0)) ⊂ W 2

(0;r0,r1)

and, hence, inclusions (3.2) are true.
Finally, in view of assumption (4.2), we see that relation (3.3) holds with F ,

B1, and B2 given by (4.3), (4.10) with respect to the cones K1 and K2 defined by
(4.12).

Applying Theorem 3.1, we establish the unique solvability of the boundary value
problem (3.18), (1.3) for arbitrary q ∈ L1. Taking Remark 3.1 into account, we
complete the proof of Theorem 4.1. �

5. Corollaries

The following statements are true.

Corollary 5.1. Assume that there exist certain linear operators fi : W 2 → L1,

i = 1, 2, such that, for an arbitrary function u = (uk)n
k=1 : [a, b] → R

n from

W 2
(0;r0,r1)

, the inequalities

|(lku)(t) − (f1ku)(t)| ≤ (f2ku)(t), k = 1, 2, . . . , n, (5.1)

hold. Moreover, let the inclusions

f1 + f2 ∈ Sr0,r1
, f1 ∈ Sr0,r1

(5.2)

be satisfied.

Then the non-local boundary value problem (1.1)-(1.3) has a unique solution for

an arbitrary q ∈ L1.

Proof. This statement is proved similarly to [6, Theorem 2]. Indeed, it is obvious
that, for any u from W 2

(0;r0,r1)
, condition (5.1) is equivalent to the relation

−(f2ku)(t) + (f1ku)(t) ≤ (lku)(t) ≤ (f2ku)(t) + (f1ku)(t), t ∈ [a, b].

Let us put

pik := f1k − (−1)if2k, i = 1, 2, (5.3)

for any k = 1, 2, . . . , n. We see that, under conditions (5.1) and (5.2), the operators
pik : W 2 → L1, i = 1, 2, defined by formulae (5.3) satisfy conditions (4.1) and
(4.2) of Theorem 4.1. Application of Theorem 4.1 thus leads us to the assertion of
Corollary 5.1. �
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Definition 5.1. We say that an operator p = (pk)n
k=1 : W 2 → L1 is positive if, for

any u ∈ W 2
(0;r0,r1)

, the inequalities

(pku)(t) ≥ 0, k = 1, 2, . . . , n,

are true for a. e. t ∈ [a, b],

Corollary 5.2. Let there exist certain positive linear operators gi = (gik)n
k=1 :

W 2 → L1, i = 0, 1, which satisfy the inclusions

g0 ∈ Sr0,r1
, −

1

2
g1 ∈ Sr0,r1

, (5.4)

and are such that the inequalities

|(lku)(t) + (g1ku)(t)| ≤ (g0ku)(t), t ∈ [a, b], k = 1, 2, . . . , n, (5.5)

hold for any function u : [a, b] → R
n from W 2

(0;r0,r1)
.

Then the boundary value problem (1.1)-(1.3) has a unique solution for an arbi-

trary q ∈ L1.

Proof. It follows from assumption (5.5) and the positivity of the operator g1 that
the relations

|(lku)(t) +
1

2
(g1ku)(t)| = |(lku)(t) + (g1ku)(t) −

1

2
(g1ku)(t)|

≤ (g0ku)(t) +
1

2
|(g1ku)(t)|

= (g0ku)(t) +
1

2
(g1ku)(t)

are true for any u from W 2
(0;r0,r1)

. This means that l = (lk)n
k=1 admits estimate

(5.1) with the operators f1 and f2 defined by the equalities

f1 := −
1

2
g1, f2 := g0 +

1

2
g1. (5.6)

Moreover, assumption (5.4) guarantees that inclusions (5.2) hold for f1 and f2

of form (5.6). Thus, we can apply Corollary 5.1, which leads us to the required
assertion. �

Corollary 5.3. Assume that there exist positive linear operators pi = (pik)n
k=1 :

W 2 → L1, i = 1, 2, satisfying the inclusions

p1 + p2 ∈ Sr0,r1
, −

1

2
p1 ∈ Sr0,r1

and such that the inequalities

|(liu)(t) + (p1iu)(t)| ≤ (p1iu)(t) + (p2iu)(t), t ∈ [a, b], i = 1, 2, . . . , n,

are true for an arbitrary function u : [a, b] → R
n from W 2

(0;r0,r1)
.

Then problem (1.1)-(1.3) has a unique solution for any q ∈ L1.

Proof. It is sufficient to put g0 := p1 + p2, g1 := p1, notice that g0 and g1 are
positive, and apply Corollary 5.2. �

It should be noted that conditions of the statements presented above are optimal
in a certain sense and cannot be improved. For example, assumption (5.4) cannot
be replaced by any of the weaker conditions

(1 − ε) g0 ∈ Sr0,r1
, −

1

2
g1 ∈ Sr0,r1

,
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and

g0 ∈ Sr0,r1
, −

1

2 + ε
g1 ∈ Sr0,r1

,

where ε > 0, because after such a replacement the assertion of Corollary 5.2 is not
true any more. The optimality of the conditions is proved by analogy to [3, 16].

6. The case of l defined on W 1

In the general case, l from equation (1.1) is given on W 2 only and, thus, the
right-hand side term of equation (1.1) may contain u′′, which corresponds to an
equation of neutral type.

If the operator l in equation (1.1) is defined not only on W 2 but also on the
entire space W 1, then a statement equivalent to Theorem 4.1 can be obtained with
the help of results established in [6, 16].

Given an operator p : W 1 → L1, we put

(Ipu)(t) :=

∫ t

a

(pu)(s)ds, t ∈ [a, b], (6.1)

for any u from W 1, so that Ip is a map from W 1 to itself. We need the following
definition [6].

Definition 6.1. Let r : W 1 → R
n be a continuous linear vector functional. A

linear operator p : W 1 → L1 is said to belong to the set Sr if the boundary value
problem

u′(t) = (pu)(t) + v(t), t ∈ [a, b], (6.2)

u(a) = r(u) (6.3)

has a unique solution u = (uk)n
k=1 for any v = (vk)n

k=1 ∈ L1 and, moreover, the
solution of (6.2), (6.3) has non-negative components provided that the functions
vk, k = 1, 2, . . . , n, are non-negative almost everywhere on [a, b].

In the case where the operator l, which determines the right-hand side of equa-
tion (1.1), is well defined on the entire space W 1, results of the preceding sections
admit an alternative formulation. In particular, the following statements hold.

Theorem 6.1. Suppose that there exist certain linear operators pi = (pik)n
k=1 :

W 1 → L1, i = 1, 2, satisfying the inclusions

Ip1
+ r1 ∈ Sr0

,
1

2
Ip1+p2

+ r1 ∈ Sr0
, (6.4)

and such that inequalities (4.2) hold for an arbitrary u from W 1
(0;r1,r1)

.

Then the non-local boundary value problem (1.1)–(1.3) has a unique solution for

any q ∈ L1.

Theorem 6.2. Let there exist certain positive linear operators gi = (gik)n
k=1 :

W 1 → L1, i = 0, 1, which satisfy inequalities (5.5) for arbitrary u from W 1
(0;r1,r1)

,

and, moreover, are such that the inclusions

Ig0
+ r1 ∈ Sr0

, −
1

2
Ig1

+ r1 ∈ Sr0
(6.5)

hold.

Then the non-local boundary value problem (1.1)–(1.3) has a unique solution for

an arbitrary q ∈ L1.
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The proof of Theorems 6.1 and 6.2 is based on the following

Lemma 6.1. If l : W 1 → L1 is a bounded linear operator, then the inclusion

Il + r1 ∈ Sr0
(6.6)

implies that l ∈ Sr0,r1
.

Proof. According to Definition 1.1, l belongs to Sr0,r1
if and only if problem (1.1),

(1.2), (1.3) has a unique solution for any q ∈ L1 and, moreover, the solution is
non-negative for non-negative q. By integrating (1.1), we can represent problem
(1.1), (1.2), (1.3) in the equivalent form

u′(t) = (Ilu)(t) + r1(u) +

∫ t

a

q(s)ds, t ∈ [a, b], (6.7)

u(a) = r0(u), (6.8)

which, obviously, is a particular case of (6.2), (6.3) with r := r0, p := Il + r1,
and v :=

∫ ·

a
q(s)ds. However, by virtue of Definition 6.1, the unique solvability of

problem (6.7), (6.8) and the monotone dependence of its solution on q follow from
inclusion (6.6). Therefore, l ∈ Sr0,r1

. �

7. An example of a second order equation with argument deviations

Let us consider the two-point boundary value problem for the nonlinear scalar
differential equation with argument deviations

u′′(t) =

N
∑

k=1

αk(t)u(ωk(t)) + q(t), t ∈ [a, b], (7.1)

u′(a) = 0, (7.2)

u(a) = µu(b), (7.3)

where N ≥ 1, µ ∈ R, {q, α1, α2, . . . , αN} ⊂ L1 and ω1, ω2, . . . , ωN are Lebesgue
measurable functions mapping the interval [a, b] into itself and such that

ωk(t) ≤ t, k = 1, 2, . . . , N. (7.4)

The following statement is true.

Corollary 7.1. Let |µ| < 1 and

N
∑

k=1

∫ b

a

(∫ s

a

[αk(ξ)]−dξ

)

ds ≤ 2. (7.5)

Moreover, if µ 6= 0, assume also that the inequality

N
∑

k=1

∫ b

a

(∫ s

a

[αk(ξ)]+dξ

)

ds < − ln |µ| (7.6)

is fulfilled.

Then the boundary value problem (7.1), (7.2), (7.3) has a unique solution for

any q ∈ L1.

In (7.5) and (7.6), we use the notation [x]+ := max {x, 0} and [x]− := max {−x, 0}
for any x ∈ R.

EJQTDE, 2012 No. 14, p. 10



To prove Corollary 7.1, we use the following propositions concerning the scalar
linear functional differential equation

u′(t) = (pu)(t) + q(t), t ∈ [a, b], (7.7)

where p is a map from C := C([a, b], R) to L1.
We shall say that p is positive if it maps the non-negative functions from C to

almost everywhere non-negative elements of L1.

Proposition 7.1 ([7, Corollary 2.1 (a)]). Suppose that |µ| < 1 and p in (7.7) is a

positive Volterra operator. Let, moreover,

|µ| exp
(

∫ b

a

(p1)(s)ds
)

< 1. (7.8)

Then the boundary value problem (7.7), (7.3) is uniquely solvable for an arbitrary

integrable q and, moreover, the non-negativity of q implies the non-negativity of the

solution.

Proposition 7.2 ([7, Theorem 2.3]). Suppose that |µ| < 1 and p in (7.7) is a

Volterra operator such that −p is positive and

∫ b

a

|(p1)(s)|ds ≤ 1. (7.9)

Then the boundary value problem (7.7), (7.3) is uniquely solvable for every inte-

grable q. Moreover, if q is non-negative, then so does the solution of problem (7.7),
(7.3).

Proof of Corollary 7.1. We shall use Theorem 6.1. Indeed, it is easy to see that
problem (7.1), (7.2), (7.3) is a particular case of (1.1), (1.2), (1.3) with n = 1 and
the operator l : W 1 → L1 given by the formula

(lu)(t) :=
N

∑

j=1

αj(t)u(ωj(t)), t ∈ [a, b], (7.10)

and

r1(u) := 0, r0(u) := µu(b)

for any u from W 1. Let us put

(g0u)(t) :=

N
∑

k=1

[αk(t)]+u(ωk(t)), (7.11)

(g1u)(t) :=

N
∑

k=1

[αk(t)]−u(ωk(t)), t ∈ [a, b], (7.12)

for all u ∈ W 1. Then it is easy to see that inequalities (5.5) are true. Therefore,
we need to make sure that G0 ∈ Sr0

and G1 ∈ Sr0
, where

G0 := Ig0
, G1 := −

1

2
Ig1

(7.13)

for all u ∈ C.
Indeed, it is clear from (7.10), (7.11), and (7.12) that l, g0, and g1 can be

considered as mappings from C to L1, so we can use Propositions 7.1 and 7.2.
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Clearly, G0 is a positive operator, which, due to assumption (7.4), is of Volterra
type. It follows from (6.1), (7.11), and (7.13) that

∫ b

a

(G01)(s)ds =

N
∑

k=1

∫ b

a

(∫ t

a

[αk(s)]+ds

)

dt

and, hence, for µ 6= 0, assumption (7.6) implies the relation

∫ b

a

(G01)(s)ds < − ln |µ|.

This means that inequality (7.8) is satisfied. Applying Proposition 7.1, we show
that G0 ∈ Sr0

. Note that if µ = 0, then problem (7.7), (7.3) reduces to a Cauchy
problem at the point a and, as is known in this case (see, e. g., [7]), the inclusion
G0 ∈ S0 is guaranteed by the Volterra property of G0.

Similarly, it follows from (6.1), (7.12), and (7.13) that

∫ b

a

(G11)(s)ds = −
1

2

N
∑

k=1

∫ b

a

(∫ t

a

[αk(s)]−ds

)

dt. (7.14)

By assumption (7.4), G1 is a Volterra operator, and it is obvious from (7.12) that
−G1 is positive. In view of (7.14), assumption (7.5) guarantees that (7.9) is satis-
fied. Consequently, by Proposition 7.2, we have G1 ∈ Sr0

.
Thus, we have shown that all the conditions of Theorem 6.2 are satisfied. Ap-

plying that theorem, we complete the proof. �
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