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7 rue René Descartes, 67084 Strasbourg Cédex, France.

E-mail: aassila@math.u-strasbg.fr

Abstract: We prove the existence and uniqueness of a global solution of a
damped quasilinear hyperbolic equation. Key point to our proof is the use
of the Yosida approximation. Furthermore, we apply a method based on a
specific integral inequality to prove that the solution decays exponentially to
zero when the time t goes to infinity.

Key words and phrases: nonlinear damping, global existence, Yosida approx-
imation, integral inequality, exponential decay.

AMS Subject Classification: 35B40, 35L70.

1. Introduction

Let Ω ⊂ R
N be a bounded domain with smooth boundary Γ. In this

paper we are concerned with the global existence and asymptotic behavior
of solutions to the mixed problem

(P )















u′′ − f(‖∇u‖2
2)∆u + g(u′) = h(x, t) in Ω × R+,

u = 0 on Γ0 × R+,
∂u
∂ν

= 0 on Γ1 × R+,

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω.

Here f(·) is a C1-class function satisfying f(s) ≥ m0 > 0 for s ≥ 0 with m0

constant, {Γ0, Γ1} is a partition of Γ such that Γ̄0 ∩ Γ̄1 = ∅, Γ0 6= ∅, Γ1 6= ∅,
and g is a continuous increasing odd function such that g′(x) ≥ τ > 0.

Physically, the problem (P) occurs in the study of vibrations of flexible
structures in a bounded domain. The motivation for incorporating internal
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material damping in the quasilinear wave equation as in the first equation of
(P) arises from the fact that inherent small material damping is present in
real materials. Hence from the physical point of view we say that internal
structural damping force will appear so long as the system vibrates.

The problem (P) with h = 0, g(x) = δx (δ > 0) and Γ1 = ∅ was studied
by De Brito [3]. She has shown the existence and uniqueness of global so-
lutions for sufficiently small initial data by using a Galerkin method. When
g(x) = δx and Γ0 = ∅, Ikehata [4] has shown the existence of global solutions
by a Galerkin method, the key point of his proof is to restrict (P) to the
range of −∆ on which −∆ is positive definite. In fact the restricted problem
can be solved by a Galerkin method exactly as in De Brito [3]. When g is
nonlinear, Ikehata’s approach seems to be very difficult. The author in [1] has
been successful in proving the global existence and establishing the precise
decay rate of solutions when Γ1 = ∅, g is nonlinear without any smallness
conditions on the initial data and without the assumption g′(x) ≥ τ > 0.

Our study is motivated by Ikehata and Okazawa’s work [5] where global
existence was proved when g(x) = δx (δ > 0) and Dirichlet or Neumann
boundary condition by using the Yosida approximation method together
with compactness arguments. In our work, the feedback g is nonlinear, and
furthermore we study the asymptotic behavior of the global solution when
h = 0.

The contents of this paper are as follows. In section 2, we give our main
results. In section 3, we establish the existence of global solutions. In section
4, we study the asymptotic behavior of solutions of (P) with h = 0.

2. Statement of the main theorems

We define the energy of the solution u to problem (P) by the formula

(2.1) E(t) = 1
2
‖u′(t)‖2

2 + f̄(‖∇u‖2
2)

where f̄ =
∫ s

0
f(t) dt and ‖ · ‖n denotes the usual norm of Ln(Ω). Our main

results are

Theorem 2.1

For any (u0, u1) ∈ (H2(Ω)∩H1
Γ0

(Ω))×H1
Γ0

(Ω) and h ∈ L1(0,∞; H1(Ω))∩
L∞(0,∞; L2(Ω)) satisfying

(2.2)
B1C1

m0

[

(|∆u0|2 +
1

m0
|∇u1|2)

1
2 +

1√
m0

∫ ∞

0

|∇h| dt

]

< τ

there exists a unique solution u(t) on [0,∞) to problem (P) such that

u ∈ L∞(0,∞; H2(Ω) ∩ H1
Γ0

(Ω)) ∩ BC([0,∞), H1
Γ0

(Ω)),
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u′ ∈ L∞(0,∞; H1
Γ0

(Ω)) ∩ BC([0,∞), L2(Ω)),

u′′ ∈ L∞(0,∞; L2(Ω)),














u′′ − f(‖∇u‖2
2)∆u + g(u′) = h in L2(Ω) a.e. on (0,∞)

u = 0 on Γ0 × R+,
∂u
∂ν = 0 on Γ1 × R+,

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω.

Here B1, C1 are positive constants defined by

(2.3) C1 =
√

2E(0) +

∫ ∞

0

|h| dt

B1 = max
0≤s≤

C2
1

m0

|f ′(s)|

and BC([0,∞); L2(Ω)) denotes the set of all L2(Ω)- bounded continuous func-
tions on [0,∞).

Theorem 2.2

In addition to the conditions in theorem 2.1, we assume that f is non-
decreasing, h = 0 and

(2.5) |g(x)| ≤ C2|x| if |x| ≤ 1,

(2.6) |g(x)| ≤ 1 + C3|x|q if |x| > 1 (q ≥ 1)

then we have the decay property

E(t) ≤ E(0)e1−t/C4 for all t ≥ 0

where C4 = C(Ω)(1 + E(0)
q−1
2q .

Before giving the proofs, we recall the:

Lemma 2.3 ([5] Lemma 3.1)

Let A be a nonnegative selfadjoint operator in a Hilbert space H with

the norm | · |, Aλ its Yosida approximation and (Aλ)
1
2 the square root of

Aλ (λ > 0). Then

(2.8) ‖(Aλ)
1
2 ‖ ≤ 1√

λ
(λ > 0),

(2.9) |v − J
1
2
λ v| ≤

√
λ|(Aλ)

1
2 v|, v ∈ H,

EJQTDE, 1998 No. 7, p. 3



here Jλ = (I + λA)−1 (λ > 0).

Lemma 2.4 ([6] Theorem 8.1)

Let E : R+ → R+ be a non-increasing function and assume that there
exists a constant T > 0 such that

∫ ∞

t

E(s) ds ≤ TE(t) ∀t ∈ R+,

then
E(t) ≤ E(0)e1− t

T ∀t ≥ T.

Lemma 2.5 ([5] Lemma 3.2)

Let F and G be nonnegative continuous functions on [0, T ]. If

F (t)2 ≤ C +

∫ t

0

F (s)G(s) ds on [0, T ],

then

F (t) ≤
√

C +
1

2

∫ t

0

G(s) ds on [0, T ],

where C > 0 is a constant.

Lemma 2.5 is a special case of an inequality that can be found in Bihari
[2].

3. Global existence

Let −∆λ (λ > 0) be the Yosida approximation of −∆ and (∇λ)1/2 be
the square root of −∆λ, that is (∇λ)1/2 = (−∆λ)1/2(I + λ∆)−1/2.

First, we solve the approximate problem

(Pλ)

{

u′′
λ − f(‖∇λuλ‖2

2)∆λuλ + g(u′
λ) = h in Ω × R+,

uλ(0) = u0 ∈ H2(Ω) ∩ H1
Γ0

(Ω), u′
λ(0) = u1 ∈ H1

Γ0
(Ω).

Problem (Pλ) can be easily solved by successive approximation method.
Hence problem (Pλ) has a unique local solution uλ ∈ C1([0, Tλ), L2(Ω)) on
some interval [0, Tλ). We shall see that uλ(t) can be extended to [0,∞).

Lemma 3.1

Let C1 be the constant defined by (2.3). Then the following inequality
holds

(3.1) |u′
λ|2 + m0|∇λuλ|2 + 2τ

∫ t

0

|u′
λ|2 ds ≤ C2

1 .
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Proof

Multiplying both sides of the first equation in (Pλ) by 2u′
λ, we have

d

dt
|u′

λ|2 + f(|∇λuλ|2)
d

dt
|∇λuλ|2 + 2(g(u′

λ), u′
λ) = 2(h, u′

λ) a.e. on [0, Tλ).

After integration on [0, t], we see that

|u′
λ(t)|2 + f̄(|∇λuλ|2) + 2τ

∫ t

0

|u′
λ(s)|2 ds ≤ 2E(0) + 2

∫ t

0

|h(s)||u′
λ(s)| ds.

It follows from lemma 2.5 that

|u′
λ|2 + m0|∇λuλ|2 + 2τ

∫ t

0

|u′
λ(s)|2 ds ≤

(

√

2E(0) +

∫ ∞

0

|h(s)| ds

)2

:= C2
1 .

Lemma 3.2

Set

Zλ(t) = |∆λuλ(t)|2 +
|∇λu′

λ(t)|2
f(|∇λuλ(t)|2) .

Assume that on [0, Tλ)

(3.3)

∣

∣

∣

∣

d

dt
f(|∇λuλ(t)|2)

∣

∣

∣

∣

≤ 2τf(|∇λuλ(t)|2)

then for t ∈ [0, Tλ) we have

(3.4) Zλ(t)1/2 ≤
(

|∆u0|2 +
1

m0
|∇u1|2

)1/2

+
1√
m0

∫ ∞

0

|∇h(s)| ds.

Proof

Multiplying the both sides of the first equation in (Pλ) by −2∆λu′
λ(t),

we have

d

dt
|∇λu′

λ(t)|2+f(|∇λuλ(t)|2) d

dt
|∆λuλ(t)|2 = 2(h,−∆λu′

λ)−2g′(u′
lambda)|∇λu′

λ(t)|2.

It follows that

f(|∇λuλ(t)|2)Z ′
λ(t) ≤ 2|∇λh||∇λu′

λ(t)| −
[

d
dt

f(|∇λuλ|2)
f(|∇λuλ|2)

+ 2τ

]

|∇λu′
λ(t)|2.

By (3.3) we obtain

Z ′
λ(t) ≤ 2√

m0
|∇λh|Zλ(t)1/2.
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Integrating this inequality on [0, t], we have

Zλ(t) ≤ Zλ(0) +
2√
m0

∫ t

0

|∇λh|Zλ(s)1/2 ds.

Since Zλ(0) ≤ |∆u0| + 1
m0

|∇u1|2, it follows from lemma 2.5 that

Zλ(t)1/2 ≤ (|∆u0|2 +
1

m0
|∇u1|2)1/2 +

1√
m0

∫ t

0

|∇λh| ds,

then we obtain (3.4).

Lemma 3.3

Set

αλ(t) =
1

f(|∇λuλ|2)

∣

∣

∣

∣

d

dt
f(|∇λuλ|2)

∣

∣

∣

∣

.

If (2.2) is satisfied, then we have

αλ(t) < 2τ on [0, Tλ).

Proof

First we show that
αλ(0) < 2τ.

Since
∣

∣

∣

∣

d

dt
f(|∇λuλ|2)

∣

∣

∣

∣

≤ 2B1|u′
λ||∆λuλ| ≤ 2B1C1Zλ(t)1/2,

we have by definition

(3.8) αλ(t) ≤ 2B1C1
Zλ(t)1/2

f(|∇λuλ|2)
≤ 2

m0
B1C1Zλ(t)1/2.

Setting t = 0 in (3.7), we see from (2.2) that αλ(0) < 2τ . Now suppose that
(3.6) does not hold on [0, Tλ). Since αλ(t) is continuous, (3.7) implies that
there is a t∗ > 0 such that αλ(t) < 2τ on [0, t∗), and

(3.9) αλ(t∗) = 2τ

i.e. (3.3) is satisfied on [0, t∗]. Therefore, it follows from lemma 3.2 and (2.2)
that

(3.10) Zλ(t∗)1/2 <
m0

B1C1
τ.

Combining (3.10) with (3.8), we obtain αλ(t∗) < 2τ . This contradicts (3.9).
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Lemma 3.4

Set

C5 = (|∆u0|2 +
1

m0
|∇u1|2)1/2 +

1√
m0

∫ ∞

0

|∇h|.

If (2.2) is satisfied, B1C1C5 < m0τ , then

|∆λuλ(t)|2 +
1

B0
|∇λu′

λ(t)|2 ≤ C2
5 on [0, Tλ),

where we set B0 = max
0≤s≤

C2
1

m0

M(s), and hence

(3.12) |u′′
λ(t)| ≤ B0C5 + C6 + ess sup{h(s) : 0 ≤ s < ∞}

where C6 = max0≤x≤C1
|g(x)|.

Proof

It follows from lemmas 3.2 and 3.3 that Zλ(t) ≤ C2
5 , so we obtain (3.11).

Next, multiplying the both sides of the first equation in (Pλ) by u′′
λ(t), we

have

|u′′
λ(t)|2 = (h − g(u′

λ) − f(|∇λuλ|2)∆λuλ, u′′
λ) a.e. on (0, Tλ).

Therefore, (3.12) follows from lemma 3.1 and lemma 3.4.

Lemma 3.5

Assume that (2.2) is satisfied. Then for any λ > 0 there exists a unique
global solution uλ ∈ C1([0,∞), L2(Ω)) of the approximate problem (Pλ) such
that u′

λ(·) is locally absolutely continuous on [0,∞) and the first equation in
(Pλ) holds a.e. on [0,∞).

Proof

Let uλ(t) be a solution of (Pλ) on [0, Tλ). Since u′
λ(t) and u′′

λ(t) are
uniformly bounded in L2(Ω), uλ(Tλ) and u′

λ(Tλ) exist and we can choose
them as new initial values. Moreover, since uλ(t) is uniformly bounded,
the local Lipschitz continuity of the mapping u → f(|∇λu|2)∆λu is always
verified. Therefore, uλ(t) can be extended onto the semi-infinite interval
[0,∞).

Lemma 3.6

There is a subsequence {uλn
(·)} of {uλ(·)} and u(·) ∈ BC([0,∞), L2(Ω))

such that for any T > 0

(3.13) uλn
(·) → u(·) in C([0, T ], L2(Ω)) as n → ∞,
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where λn > 0 (n ∈ N) and λn → 0 (n → ∞), BC([0,∞), L2(Ω)) is the set of
all L2-valued bounded continuous functions on [0,∞).

Proof

By the fact that ‖uλ‖2 is bounded on [0, Tλ) and lemma 3.1, it follows

that J
1/2
λ uλ and ∇λuλ belong to BC([0,∞), L2(Ω)). By the definition of ∇λ

we have
J

1/2
λ uλ(t) = (I + ∇)−1(J

1/2
λ uλ(t) + ∇λuλ(t)),

this implies that for each t > 0, {J1/2
λ uλ(t)} is bounded in H1

Γ0
(Ω), and

then relatively compact in L2(Ω). As {J1/2
λ uλ(·)} is equicontinuous, we can

apply the Ascoli-Arzela theorem to {J1/2
λ uλ(·)} in C([0, T ], L2) for any T > 0.

Thus, there exist a subsequence {J1/2
λn

uλn
(·)} and u(·) ∈ BC([0,∞), L2) such

that for any T > 0

(3.14) J
1/2
λn

uλn
(·) → u(·) in C([0, T ], L2) as n → ∞.

By (2.9) we conclude that for any T > 0

uλn
(·) → u(·) in C([0, T ], L2) as n → ∞.

Lemma 3.7

Let {λn} and u(·) be as in lemma 3.6. Assume that (2.2) is satisfied.
Then u(·) ∈ BC1([0,∞), L2) and there is a subsequence {µn} of {λn} such
that for any T > 0

(3.15) u′
µn

(·) → u′(·) in C([0, T ], L2) as n → ∞.

Furthermore, u(·) ∈ L∞(0,∞; H2 ∩ H1
Γ0

), u′(·) ∈ L∞(0,∞; H1
Γ0

) and

(3.16) ∆λn
uλn

→ ∆u weakly in L2 as n → ∞,

(3.17) ∇µn
u′

µn
→ ∇u′ weakly in L2 as n → ∞.

Here BC1([0,∞), L2) := {u ∈ BC([0,∞), L2); u′ ∈ BC([0,∞), L2)}.
Proof

As J
1/2
λn

u′
λn

and ∇λn
u′

λn
belong to BC([0,∞), L2) and that J

1/2
λn

u′′
λn

∈
L∞(0, T ; L2), (3.15) can be proved in the same way as in the proof of lemma
3.6, in fact we have

u(t) = u0 +

∫ t

0

v(s) ds with v(s) = lim
n→∞

u′
µn

(s).
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Since ∆λn
uλn

and ∇µn
u′

µn
belong to BC([0,∞), L2), (3.16) and (3.17) follow

from (3.13) and (3.15) respectively. Therfore we have

(3.18) |∆u| ≤ lim inf
n→∞

|∆λn
uλn

| ≤ C5,

(3.19) |∇u′| ≤ lim inf
n→∞

|∇µn
u′

µn
| ≤

√

B0C5

i.e. u ∈ L∞(0,∞; H2 ∩ H1
Γ0

) and u′ ∈ L∞(0,∞; H1
Γ0

).

Lemma 3.8

Let u and {λn} be as in lemma 3.6. Assume that (2.2) is satisfied. Then
u ∈ BC([0,∞); H1

Γ0
) and for any T > 0

(3.20) ∇λn
uλn

→ ∇u in C([0, T ], L2) as n → ∞,

and hence

(3.21) f(|∇u|2)∆u = weak lim
n→∞

f(|∇λn
uλn

|2)∆λn
uλn

.

Proof

We have

|∇λn
uλn

−∇u|2 = |∇λn
uλn

|2 − |∇u|2 + 2(u − J
1/2
λn

uλn
,−∆u).

By (3.14) and (3.18)-(3.19) it suffices to show that

(3.22) |∇λn
uλn

|2 → |∇u|2 in C([0, T ]) as n → ∞,

which is equivalent to

(uλn
,−∆λn

uλn
) → (u,−∆u) in C([0, T ]) as n → ∞.

But since

(u,−∆u)− (uλn
,−∆λn

uλn
) = (u−Jλn

uλn
,−∆u)+ (uλn

,−∆λn
u+∆λn

uλn
)

= (u − Jλn
u,−∆u) + (u − uλn

,−∆λn
u) + (−∆λn

uλn
, u − uλn

),

we have

|(u,−∆u)−(uλn
,−∆λn

uλn
)| ≤ λn|−∆u|2 +(|−∆u|+ |−∆λn

uλn
|)|u−uλn

|.

Hence (3.22) follows from (3.13) and (3.18)-(3.19). Thus we obtain (3.20).
Furthermore as

|∇u| = lim
n→∞

|∇λn
uλn

| ≤ C1√
m0

,
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we see that u ∈ BC([0,∞), H1
Γ0

). For the proof of (3.21), since f(·) is of
class C1, we can use the mean value theorem, and so the proof follows from
(3.1), (3.16) and (3.22).

Lemma 3.9

Let u and {µn} be as in lemma 3.7, then u′ has a (strong) derivative
u′′ ∈ L∞(0,∞; L2) and

(3.23) u′′
µn

→ u′′ weakly in L2 as n → ∞ a.e.

and hence

(3.24) u′′ − f(‖∇u‖2
2)∆u + g(u′) = h a.e.

Proof

¿From (3.12), we note that u′ is Lipschitz continuous. Therefore u′ is
differentiable a.e. on (0,∞) with u′′ ∈ L∞(0,∞; L2). It follows from the
previous lemma that

u′′
µn

→ w weakly in L2 (n → ∞),

where w = h − g(u′) + f(‖∇u‖2
2)∆u. So we see from the Banach-Steinhauss

theorem that

∫ t+h

t

(w(s), z) ds = lim
n→∞

∫ t+h

t

(u′′
µn

, z) ds z ∈ L2.

It then follows from (3.15) that

1

h

∫ t+h

t

(w(s), z) ds =
(u′(t + h) − u′(t), z)

h
.

Passing to the limit h → 0, we obtain w = u′′ a.e. on (0,∞).

Lemma 3.10

Let u be as in lemma 3.6. Assume that (2.2) is satisfied, then u is the
unique solution to problem (P).

The proof follows immediately from the Gronwall’s lemma.

4. Asymptotic behavior

EJQTDE, 1998 No. 7, p. 10



In this section we consider the problem

(P1)















u′′ − f(‖∇u‖2
2)∆u + g(u′) = 0 in Ω × R+,

u = 0 on Γ0 × R+,
∂u
∂ν

= 0 on Γ1 × R+,

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω.

The energy defined by (2.1) is such that

E′(t) = −
∫

Ω

u′g(u′) dx ≤ 0,

hence the energy is non-increasing.

Multiplying the first equation in (P1) with u and integrating by parts,
we obtain

(4.1) 2

∫ T

0

E(t) dt = −
[
∫

Ω

uu′ dx

]T

0

+ 2

∫ T

0

∫

Ω

(u′2 − ug(u′)) dxdt+

+

∫ T

0

∫

Ω

(

∫ |∇u|2

0

f(s) ds) dxdt−
∫ T

0

∫

Ω

f(|∇u|2)|∇u|2 dxdt

for all 0 < T < +∞.

Whence, since f is non-decreasing, we obtain

(4.2) 2

∫ T

0

E(t) dt ≤ −
[
∫

Ω

uu′ dx

]T

0

+ 2

∫ T

0

∫

Ω

(u′2 − ug(u′)) dxdt.

¿From now on, we shall denote by c(Ω) different positive constants which
depend only on Ω. It is easy to verify that

(4.3) −
[
∫

Ω

uu′ dx

]T

0

+ 2

∫ T

0

∫

Ω

u′2 dxdt ≤ c(Ω)E(0).

By hypotheses (2.5)-(2.6) we have

(4.4)

∣

∣

∣

∣

∫

Ω

ug(u′) dx

∣

∣

∣

∣

≤ c(Ω)E1/2|E′|1/2 + c(Ω)E1/2|E′|q/(q+1).

We apply the Young inequality to the two terms of the RHS of (4.4), we
obtain

(4.5) c(Ω)E1/2|E′|1/2 ≤ c(Ω)|E′| + 1

3
E,
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and

(4.6) c(Ω)E1/2|E′|q/(q+1) = c(Ω)(|E′|
q

q+1 E
q−1

2(q+1) )(E
1

q+1 )

≤ c(Ω)E(0)
q−1
2q |E′| + 1

3
E.

Therfore, we conclude that

(4.7)

∫ T

0

E(t) dt ≤ c(Ω)(1 + E(0)
q−1
2q )E(0),

that is
∫ +∞

0

E(t) dt ≤ c(Ω)(1 + E(0)
q−1
2q )E(0),

and by lemma 2.4 we arrive at

E(t) ≤ E(0)e1− t
γ ∀t ≥ 0

with γ = c(Ω)(1 + E(0)
q−1
2q ).
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