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ON SINGULAR SOLUTIONS FOR SECOND ORDER DELAYED

DIFFERENTIAL EQUATIONS

MIROSLAV BARTUŠEK

Abstract. Asymptotic properties and estimate of singular solutions (either
defined on a finite interval only or trivial in a neighbourhood of ∞) of the

second order delay differential equation with p-Laplacian are investigated.

1. Introduction

In this paper, we consider the second order nonlinear delay differential equation

(1)
(

a(t)|y′|p−1y′
)′

+ r(t)
∣

∣y(ϕ(t))
∣

∣

λ
sgn y

(

ϕ(t)
)

= 0

where p > 0, λ > 0, a ∈ C0(R+), r ∈ C0(R+), ϕ ∈ C0(R+), a(t) > 0, r(t) > 0,
ϕ(t) ≤ t on R+ and lim

t→∞
ϕ(t) = ∞.

If p = λ, it is known as the half-linear equation, while if λ > p, we say that
equation (1) is of the super-half-linear type, and if λ < p, we will say that it is of
the sub-half-linear type.

We begin by defining what is mean by a solution of equation (1) as well as some
basic properties of solutions.

Definition 1. Let T ∈ (0,∞], ϕ0 = inf
t∈R+

ϕ(t), φ ∈ C0[ϕ0, 0], and y′
0 ∈ R. We say

that a function y is a solution of (1) on [0, T ) (with the initial conditions (φ, y′
0)) if

y ∈ C0[ϕ0, T ), y ∈ C1[0, T ), a|y′|p−1y′ ∈ C1[0, T ), (1) holds on [0, T ), y(t) = φ(t)
on [ϕ0, 0], and y′

+(0) = y′
0.

We assume that solutions are defined on their maximal interval of existence to
the right.

Equation (1) can be written as the equivalent system

(2)
y′
1 = a− 1

p (t)|y2|
1
p sgn y2 ,

y′
2 = −r(t)

∣

∣y(ϕ(t))
∣

∣

λ
sgn y

(

ϕ(t)
)

.

The relationship between a solution y of (1) and a solution (y1, y2) of the system
(2) is

(3) y1(t) = y(t) and y2(t) = a(t)
∣

∣y′(t)
∣

∣

p−1
y′(t) ,

and when discussing a solution y of (1), we will often use (3) without mention.
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Definition 2. Let y be a solution of (1) defined on [0, T ), T ≤ ∞. It is called
singular of the 1st kind if T = ∞, τ ∈ (0,∞) exists such that y ≡ 0 on [τ,∞) and
y is nontrivial in any left neighbourhood of τ . Solution y is called singular of the
2nd kind if T < ∞ and put τ = T . It is called proper if T = ∞ and it is nontrivial
in any neighbourhood of ∞. Singular solutions of either 1st or 2nd kind are called
singular.

Note, that a solution of (1) is either proper, or singular or trivial on (ϕ0,∞).
Singular solutions of the second kind are sometimes called noncontinuable. When
discussing singular solutions, τ will be the number in Definition 2 in all the paper
without mention.

Remark 1. If y is a singular solution of (1) of the 2nd kind, then it is defined on
[0, τ), τ < ∞ and it cannot be defined at t = τ ; so, lim sup

t→τ
(|y1(t)| + |y2(t)|) = ∞.

From this and from (2)

(4) lim sup
t→τ

∣

∣y2(t)
∣

∣ = ∞ .

Definition 3. Let y be a singular solution of (1) of the 1st kind (of the 2nd kind).
Then it is called oscillatory if there exists a sequence of its zeros tending to τ and
it is called nonoscillatory otherwise.

Singular solutions of (1) without delay, i.e. of

(5)
(

a(t)|y′|p−1y′
)′

+ r(t)|y|λ sgn y = 0 ,

have been studied by many authors, see e.g. [1, 5], [9]–[16] and the references therein.
Note, that the first existence results are obtained in [12] for p = 1, a = 1 and r ≤ 0.
In the monography of Kiguradze and Chanturia [13] it is a good overview of results
for p = 1 and a = 1.

Eq. (5) may have singular solutions. Heidel [11] (Coffman, Ulrych [9]) proved
the existence of an equation of type (5), a ≡ 1, p = 1 with singular solutions of the
1st kind (of the 2nd kind) in case λ < p (λ > p); in this case r is continuous but not
of locally bounded variation. If a and r are smooth enough, then singular solutions
of (5) do not exist (see Theorem A below). As concerns to Eq. (1), the existence
of singular solutions of the second kind are investigated in [4] in case r ≤ 0. The
existence and properties of singular solutions of either the first kind or of the second
kind in case r ≥ 0 seem not to be studied at all.

The following theorem sums up results concerning to Eq. (5).

Theorem A. Let r ∈ C0(R+) and r(t) > 0 on R+.

(i) If λ ≥ p, then there exists no singular solution of (5) of the 1st kind.

(ii) If λ ≤ p, then there exists no singular solution of (5) of the 2nd kind.

(iii) If a
1
p r ∈ C1(R+), then all solutions of (5) are proper.

Proof. (i), (ii): See Theorems 1.1 and 1.2 in [15]. (iii): It follows from Theorem 2
in [5]. �

Note that estimates of such kind of solutions are proved by Kvinikadze, see
references in [13]. In [1] (for p = 1, a = 1, r ≤ 0) precise asymptotic formulas of all
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solutions are obtained for differential equations of the third and fourth orders, see
also [3]. About uniform estimates of solutions of quasi-linear ordinary differential
equations see [2]. In [16] estimates of singular solutions of the second kind of a
system of second order differential equations (of the form (5)) are derived.

Theorem B ([16], Theorem 2). Let r ∈ C0(R+) and r(t) > 0 on R+. Let λ > p,

y be a singular solution of (5) of the second kind, T ∈ [0, τ), τ − T ≤ 1, r0 =
max

T≤s≤τ
r(s), C0 = 2λ+2 in case p > 1 and C0 = 22λ+1 in case p ≤ 1. Then a

positive constant C = C(p, λ, τ, r0) exists such that

∣

∣y2(t)
∣

∣ + C0r0

∣

∣y(t)
∣

∣

λ
≥ C(τ − t)−

p(λ+1)
λ−p , t ∈ [T, τ) .

It is important to study the existence of proper/singular solutions. When study-
ing solutions of (1) and (5), some authors sometimes investigate properties of solu-
tions that are defined on R+ only without proving the existence of them. Moreover,
sometimes, proper solutions have crucial role in a definition of some problems, see
e.g. the limit-point/limit-circle problem in [6], [8]. Furthermore, noncontinuable so-
lutions appear e.g. in water flow problems (flood waves, a flow in sewerage systems),
see e.g. [4].

Our goal is to study properties of singular solutions and to extend Theorems A
and B to (1).

For convenience, we define the constants and the function

δ =
p + 1

p
, γ =

p + 1

p(λ + 1)
, R(t) = a

1
p (t) r(t) , t ∈ R+ .

If y is a solution of (1), then we set on its interval of existence

(6) F (t) = R−1(t)
∣

∣y2(t)
∣

∣

δ
+ γ

∣

∣y(t)
∣

∣

λ+1
.

Notice that F (t) ≥ 0 for every solution of (1) and

(7) F ′(t) = −
R′(t)

R2(t)

∣

∣y2(t)
∣

∣

δ
+ δy′(t) e(t)

with

(8) e(t)
def
=

∣

∣y(t)
∣

∣

λ
sgn y(t) −

∣

∣y(ϕ(t))
∣

∣

λ
sgn y

(

ϕ(t)
)

.

From (6)

(9)

∣

∣y(t)
∣

∣ ≤
(

γ−1F (t)
)

1
λ+1 ,

∣

∣y2(t)
∣

∣ ≤
[

R(t)F (t)
]

p

p+1 ,

∣

∣y′(t)
∣

∣ ≤ a− 1
p (t)R

1
p+1 (t)F

1
p+1 (t) .

2. Singular solutions of the 2nd kind

The following theorem shows that such solutions do not exist in case λ ≤ p.

Theorem 1. If λ ≤ p, then all solutions of (1) are defined on R+

Proof. It is proved in Lemma 7 in [6] for r < 0, for arbitrary r the proof is the
same, it is necessary to replace r by |r|. �
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The following theorem gives us basic properties.

Theorem 2. Let y be a singular solution of (1) of the second kind. Then it is

oscillatory and ϕ(τ) = τ . If, moreover, R ∈ C1(R+), then ϕ(t) 6≡ t in any left

neighbourhood of τ .

Proof. Suppose, contrarily, that ϕ(τ) < τ . Then an interval I = [τ1, τ) exists
such that τ1 < τ and sup

t∈I
ϕ(t) < τ . From this and from (1) we have |y′

2(t)| =

r(t)|y(ϕ(t))|λ ≤ sup
t∈I

r(t)|y(ϕ(t))|λ < ∞. Hence, y2 is bounded on I that contradicts

(4). Hence, ϕ(τ) = τ .
Let y be nonoscillatory. Suppose, for the simplicity, that y is positive in a left

neighbourhood of τ . Then, with respect to ϕ(τ) = τ , τ1 < τ exists such that

(10) y
(

ϕ(t)
)

> 0 on I
def
= [τ1, τ) .

As according to (2) and (10), y2 is decreasing on I and (4) implies

(11) lim
t→τ−

y2(t) = −∞ .

From this τ2 ∈ I exists such that

(12) y′(t) < 0 on [τ2, τ)

and the integration of (1) and (11)
∫ τ

τ2

r(t)yλ
(

ϕ(t)
)

dt = y2(τ2) − lim
t→τ−

y2(t) = ∞ .

Hence, lim sup
t→τ−

y(t) = ∞ that contradicts (12) and y is oscillatory.

Let y be a singular solution of (1) and ϕ(t) ≡ t on a left neighbourhood J on
τ . Then y is a singular solution of (5) on J . A contradiction with Theorem A(iii)
proves that ϕ(t) 6≡ t in any left neighbourhood of τ . �

Remark 2. According to Theorem 1 there exists no singular solution of (1) of the
second kind in case ϕ(t) < t on R+; all solutions are defined on R+. This fact was
used by many authors for special types of (1), see e.g. [10], [4] (r < 0).

The following two lemmas serve us for estimate of solutions.

Lemma 1. Let ω > 1, t0 ∈ R+, K > 0, Q be a continuous nonnegative function

on [t0,∞) and u be continuous and nonnegative on [t0,∞) satisfying

(13) u(t) ≤ K +

∫ t

t0

Q(s)uω(s) ds on [t0, T ), T ≤ ∞ .

If

(ω − 1)Kω−1

∫ ∞

t0

Q(s) ds < 1(14)

then

u(t) ≤ K
[

1 − (ω − 1)Kω−1

∫ t

t0

Q(s) ds
]1/(1−ω)

, t ∈ [t0, T ) .(15)
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Proof. It is proved in Lemma 2.1 in [14] for m = ω and p = 1. �

Lemma 2. Let λ > p,
∫ ∞

0 r(s)
( ∫ s

0 a− 1
p (σ) dσ

)λ
ds < ∞, y be a solution of (1)

defined on [0, T ), T ≤ ∞ and let t0 ∈ [0, T ). If y∗ = max
ϕ(t0)≤s≤t0

|y(s)| and

(16)
[

|y2(t0)|+ 2λ yλ
∗

∫ ∞

t0

r(s) ds
]

λ
p
−1

∫ ∞

t0

r(s)
(

∫ s

t0

a− 1
p (σ) dσ

)λ

ds < 2−λ p

λ − p
.

Then T = ∞ and y is defined on R+.

Proof. Suppose, contrarily, that y is singular of the 2nd kind. Then T = τ < ∞
and denote by

v(t) = sup
t0≤s≤t

|y2(s)| for t ∈ I
def
= [t0, T ) .

It follows from (2) that

|y2(t)| ≤ |y2(t0)| +

∫ t

t0

r(s) |y
(

ϕ(s)
)

|λ ds

and

|y(t)| ≤ |y(t0)| +

∫ t

t0

a− 1
p (s)|y2(s)|

1
p ds , t ∈ I .

Hence, for t0 ≤ s ≤ t < T we have

|y2(s)| ≤ |y2(t0)| +

∫ s

t0

r(z)
[

y∗ + v
1
p (z)

∫ z

t0

a− 1
p (σ) dσ

]λ

dz

≤ |y2(t)| + 2λyλ
∗

∫ ∞

t0

r(σ) dσ + 2λ

∫ t

t0

r(z)
(

∫ z

t0

a− 1
p (σ) dσ

)λ

v
λ
p (z) dz .

From this

(17) v(t) ≤ |y2(t0)| + 2λyλ
∗

∫ ∞

t0

r(σ) dσ + 2λ

∫ t

t0

r(z)
(

∫ z

t0

a− 1
p (σ) dσ

)λ

v
λ
p (z) dz .

Put ω = λ
p > 1, u = v, K = |y2(t0)| + 2λyλ

∗

∞
∫

t0

r(s) ds

and Q(t) = 2λr(t)
( t

∫

t0

a− 1
p (σ) dσ

)λ

.

Then (16) and (17) imply (13) and (14), and according to Lemma 1, (15) is valid.
As T < ∞, y2 is bounded on J . A contradiction with (4) proves the statement. �

Remark 3. Note that Lemma 2 is valid even if we suppose r ≥ 0 instead of r > 0
on R+.

Remark 4. The idea of the proof is due to Medveď and Pekárková [14] (with
ϕ(t) ≡ t); it is used also in [7] for (1) with t − ϕ(t) ≤ const. on R+.

The next theorem derives an estimate from below of a singular solution of the
second kind.
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Theorem 3. Let λ > p and let y be a singular solution of (1) of the 2nd kind. Let

T ∈ [0, τ), a∗ = min
T≤s≤τ

a(s), r∗ = max
T≤s≤τ

r(s) and y∗(t) = max
ϕ(t)≤s≤t

|y(s)| on [T, τ).

Then

(18) |y2(t)| + 2λ+1yλ
∗ (t) r∗(τ − t) ≥ K(τ − t)

−p(λ+1)
λ−p

on [T, τ) with K =
(

2−2λ−1 (λ+1)p
λ−p a

λ
p

∗ r−1
∗

)

p

λ−p . Especially, a left neighbourhood I

of τ exists such that

(19) a(τ)|y′(t)|p + 2λ+1yλ
∗ (t) r(τ)(τ − t) ≥ K1(τ − t)

−p(λ+1)
λ−p

on I with K1 =
[

2−2λ−3−λ
p

(λ+1)p
λ−p a

λ
p (τ)r−1(τ)

]

p

λ−p .

Proof. Let y be a singular solution of (1) of the 2nd kind defined on [0, τ). Let
t̄ ∈ [T, τ) be fixed. Define

r̄(t) = r(t) ā(t) = a(t) for t ∈ [0, τ ] ,

r̄(t) =
r(τ)

τ − t̄
(−t + 2τ − t̄) , ā(t) =

a(τ)

τ − t̄
(−t + 2τ − t̄) for t ∈ (τ, 2τ − t̄]

r̄(t) = 0 , ā(t) = 0 for t > 2τ − t̄ ;

note that r̄ and ā are continuous on R+ and are linear on [τ, 2τ − t̄]. Furthermore,
we have

∫ ∞

t̄

r̄(s)
(

∫ s

t̄

ā− 1
p (σ) dσ

)λ

ds ≤ r∗a
−λ

p

∗

∫ 2τ−t̄

t̄

(s − t̄)λ ds

≤
2λ+1

λ + 1
r∗ a

−λ
p

∗ (τ − t̄)λ+1(20)

and
∫ ∞

t̄

r(s) ds ≤

∫ 2τ−t̄

t̄

r∗ ds = 2r∗(τ − t̄) .(21)

Consider an auxilliary equation

(22)
(

ā(t)|z′|p−1z′
)

+ r̄(t)|z(ϕ)|λ sgn z(ϕ) = 0 .

Then z = y is the singular solution of (22) of the second kind defined on [0, τ).
Suppose that (18) is not valid for t = t̄, i.e.

(23)
[

|y2(t̄) + 2λ+1yλ
∗ (t̄) r∗(τ − t̄)

]
λ
p
−1

< 2−2λ−1 (λ + 1)p

λ − p
a

λ
p

∗ r−1
∗ (τ − t̄)−λ−1

holds. We apply Lemma 2 and Remark 3 with T = τ and t0 = t̄. Then it follows
from (20), (21) and (23) that all assumptions of Lemma 2 are valid. Hence, z is
defined on R+ and the contradiction with z to be singular proves that (18) is valid.
Furthermore, a left neighbourhood I of t = τ exists such that

r∗ ≤ 2r(τ) and
a(τ)

2
≤ a∗ ≤ 2a(τ)

and (20) follows from this and from (18). �
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Remark 5. The used method of the proof of Theorem 2 is due to Pekárková [16]
(for ϕ(t) ≡ t).

Corollary 1. Every singular solution of (1) of the second kind is unbounded.

Remark 6. In case ϕ(t) ≡ t, Theorem 3 gives us similar estimate than Theorem B
but it can be used also for τ − t > 1.

Corollary 2. Let y be a singular solution of (1) of the second kind. Then a

sequence {tk}
∞
k=1 of local extremes and constant M > 0 exist such that lim

k→∞
tk = τ

and
∣

∣y(tk)
∣

∣ ≥ M(τ − tk)
−p(λ+1)
λ(λ−p) , k = 1, 2, . . .

Proof. Let y be a singular solution of the 2nd kind. Then according to Lemma 2
and Corollary 2 it is oscillatory and unbounded. Hence, an increasing sequence
{tk}

∞
k=1 exists such that lim

t→∞
tk = τ , y has the local extreme at tk and

∣

∣y(tk)
∣

∣ ≥ |y(t)| for t ∈ [ϕ0, tk] , k = 1, 2, . . .

Then y′(tk) = 0, max
ϕ(tk)≤s≤tk

|y(s)| = |y(tk)|, and the statement follows from (19). �

3. Singular solution of the 1st kind

This paragraph begins with some basic properties

Theorem 4. Let y be a singular solution of (1) of the first kind. Then it is

oscillatory and ϕ(τ) = τ . Moreover,

(i) if R ∈ C1(R+), then ϕ(t) 6≡ t in any left neighbourhood of τ ;

(ii) if R ∈ C1(R+), λ ≥ p and ϕ is nondecreasing in a left neighbourhood J of

τ , then a left neighbourhood J1 of τ exists such that ϕ(t) < t on J1.

Proof. Let y be a singular solution of (1) of the first kind. Then

y(t) = 0 for t ≥ τ(24)

and

y(t) 6≡ 0 in any left neighbourhood of τ .(25)

Suppose, contrarily, that ϕ(τ) < τ . Then lim
t→∞

ϕ(t) = ∞ implies the existence of τ1

such that τ1 > τ and ϕ(t) > τ for t ≥ τ1. Denote I = [τ, τ1]. Then according to (1)
and (24)

(26) y(ϕ(t)) = −r−
1
λ (t)

∣

∣

(

a(t)|y′(t)|p−1y′(t)
)′∣

∣

1/λ
sgn

(

a(t)|y′(t)|p−1y′(t)
)′

= 0

for t ∈ I. As ϕ(τ1) > τ we have

[ϕ(τ), τ ] ⊂ [ϕ(τ), ϕ(τ1)] ⊂ {ϕ(t) : t ∈ I} .

From this and from (26), y(t) = 0 on [ϕ(τ), τ ] that contradicts (25). Hence, ϕ(τ) =
τ .
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We prove that y is oscillatory. Suppose, contrarily, that y(t) > 0 in a left
neighbourhood of τ ; case y(t) < 0 can be studied similarly. From this and from
ϕ(τ) = τ an interval I1 = [τ2, τ), τ2 < τ exists such

(27) y
(

ϕ(t)
)

> 0 for t ∈ I1 .

As, according to (2), y2 is decreasing on I1 and (24) implies y2(τ) = 0 we have
y2 > 0 on I1; hence, y′ > 0 on I1. The contradiction with (27) and (24) proves that
y is oscillatory.

Case (i). The proof follows from Theorem A(iii) by the same way as in the proof
of Theorem 1.

Case (ii). Let λ ≥ p and R ∈ C1(R+). Then (i) implies ϕ is nontrivial in any
left neighbourhood of τ . Suppose that an increasing sequence {τk}

∞
k=1 exists such

that lim
k→∞

τk = τ and ϕ(τk) = τk. As ϕ is nondecreasing in J , {τk} may be choosen

such that

(28) ϕ(t) ∈ [τk, τ ] for t ∈ [τk, τ ] .

It follows from (24) and (25) that y2(τ) = 0 and F (τ) = 0. Denote F̄k =
max

τk≤s≤τ
F (s). Then (28), (7) and (9) imply

F (s) = −

∫ τ

s

F ′(σ) dσ ≤ F̄k

∫ τ

τk

|R′(σ)|

R(σ)
dσ

+ 2δγ−λF̄ω
k

∫ τ

τk

a− 1
p (σ)R

1
p+1 (σ) dσ

for s ∈ [τk, τ ] where ω = 1
p+1 + λ

λ+1 ≥ 1 due to λ ≥ p. Hence,

(29) F̄k ≤ F̄k

∫ τ

τk

|R′(σ)|

R(σ)
dσ + 2δγ−λF̄ω

k

∫ τ

τk

a− 1
p (σ)R

1
p+1 (σ) dσ

k = 1, 2, . . . . As lim
k→∞

F̄k = F (τ) = 0 and

lim
k→∞

∫ τ

τk

|R′(σ)|

R(σ)
dσ = 0, lim

k→∞

∫ τ

τk

a− 1
p (σ)R

1
p+1 (σ) dσ = 0

we obtain the contradiction in (29) for large k. Hence, {τk} does not exists and the
statement holds in this case. �

The following result is a consequence of Theorem 2 and Theorem 4.

Theorem 5. If ϕ(t) < t on R+, then all solutions of (1) are proper.

Lemma 3. Let y be a singular solution of the 1st kind, let T ∈ [0, τ) be such that

(30)

∫ τ

T

R−1(t)|R′(t)| dt ≤
1

2
,

I = [T, τ ], K > 0, ω ≥ 0 and |e(t)| ≤ K(τ − t)ω on I. Then

F (t) ≤ K1(τ − t)δ(ω+1) , t ∈ I

where K1 =
[

2δ(ω + 1)−1K max
0≤σ≤τ

a− 1
p (σ)R

1
p+1 (σ)

]δ
.
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Proof. Let y be a singular solution of the 1st kind. Then (9) implies

R−1(t)|y2(t)|
δ ≤ F (t) , |y′(t)| ≤ C F

1
p+1 (t)

on I with C = max
t∈I

a− 1
p (t)R

1
p+1 (t) > 0. Define F̄ (t) = max

s∈[t,τ ]
F (s) for t ∈ I. From

this and from (7), (8) and (30)

F (s) = −

∫ τ

t

F ′(σ) dσ ≤

∫ τ

t

R−1(σ)|R′(σ)|F (σ) ds + δ

∫ τ

t

|y′(σ)e(σ)| ds

≤ F̄ (t)

∫ τ

T

R−1(σ)|R′(σ)| ds + C1

∫ τ

t

F
1

p+1 (σ)(τ − σ)ωds

≤
F̄ (t)

2
+

C1

ω + 1
F̄

1
p+1 (t)(τ − t)ω+1

for t ∈ I and t ≤ s ≤ τ where C1 = δKC. Hence,

F̄ (t) ≤
F̄ (t)

2
+

C1

ω + 1
F̄

1
p+1 (t)(τ − t)ω+1

or

F (t) ≤ F̄ (t) ≤ K1(τ − t)δ(ω+1) on I.

�

The following theorem gives us an estimate from above of singular solutions of
the 1st kind.

Theorem 6. Let y be a singular solution of (1) of the 1st kind and M > 0 be such

that ϕ′(t) ≤ M in a left neighbourhood S of τ .

(i) Let λ ≥ p and m > 0. Then a positive constant K and a left neighbourhood

J of τ exist such that

|y(t)| ≤ K(τ − t)m , |y2(t)| ≤ K(τ − t)
(λ+1)m

p+1 on J.

(ii) Let λ < p and ε > 0. Then a positive constant K and a left neighbourhood

J of τ exist such that

|y(t)| ≤ K(τ − t)
p+1
p−λ

−ε , |y2(t)| ≤ K(τ − t)
p(λ+1)

p−λ
−ε on J.

Proof. Let y be a singular solution of the 1st kind. According to Theorem 4 ϕ(τ) =
τ . Moreover, lim

t→τ−
y(t) = lim

t→τ−
y2(t) = 0 and an interval I = [T, τ ] ⊂ S, 0 ≤ T1 < T

exists such that (30) and

|y(t)|λ ≤
1

2
, |y(ϕ(t))|λ ≤

1

2
for t ∈ I .

Hence, (8) implies |e(t)| ≤ 1 on I and it follows from Lemma 3 (with I = I, K = 1,
ω = 0)

(31) F (t) ≤ K(T − t)δ , t ∈ I

with

(32) K =
[

2δ max
0≤σ≤T

a− 1
p (σ)R

1
p+1 (σ)

]δ
.
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Let {In}
∞
n=1 be such that I1 = I, In = [Tn, τ ], Tn < Tn+1 < τ and ϕ(t) ∈ In for

t ∈ In+1, n = 1, 2, . . . ; this sequence exists due to ϕ(t) ≤ t and ϕ(τ) = τ .
We prove the estimate

(33) F (t) ≤ Kn(τ − t)ωn on In

by the mathematical induction, where

(34) ω1 = δ , ωn+1 = δ
[ λ

λ + 1
ωn + 1

]

, n = 1, 2, . . .

and

K1 = K , Kn+1 = K
[

γ− λ
λ+1

(

1+
λ

λ + 1
ωn

)−1
(

1+Mωn
λ

λ+1
)

K
λ

λ+1
n

]δ

, n = 1, 2, . . .

For n = 1 (33) follows from (31) and (32). Suppose the validity of (33) for n. Then
(6) and (33) imply

|y(t)|λ ≤
(

γ−1F (t)
)

λ
λ+1 ≤ γ− λ

λ+1 K
λ

λ+1
n (τ − t)

λ
λ+1ωn , t ∈ In

and

|y(ϕ(t))|λ ≤ γ− λ
λ+1 K

λ
λ+1
n M

λ
λ+1ωn(τ − t)

λ
λ+1ωn , t ∈ In+1

as

0 ≤ τ − ϕ(t) = ϕ(τ) − ϕ(t) = ϕ′(ξ)(τ − t) ≤ M(τ − t) , ξ ∈ [t, τ ] .

From this and from (8)

|e(t)| ≤ γ− λ
λ+1 K

λ
λ+1
n

[

1 + M
λ

λ+1ωn
]

(τ − t)
λ

λ+1ωn = Ln(τ − t)wn ,

where

wn =
λ

λ + 1
ωn and Ln = γ− λ

λ+1 K
λ

λ+1
n

[

1 + Mwn
]

.

Now, we use Lemma 3 with I = In+1, K = Ln and ω = wn and we obtain
F (t) ≤ Kn+1(τ − t)ωn+1 . Hence, (33) holds for all n = 1, 2, . . . Denote by

(35) z =
λ(p + 1)

(λ + 1)p
.

We prove that

(36)
ωn ≤ δ

1 − zn

1 − z
, n = 1, 2 . . . for z 6= 1

ωn = δn for z = 1 .

If vn = ωn

δ , then (34) implies v1 = 1, vn+1 = zvn + 1, n = 1, . . . Hence, vn =

1 + z + z2 + . . . zn−1 = 1−zn

1−z in case z 6= 1 and vn = n in case z = 1. Now, (36)
follows from this.

We have from (35) that

z > 1 ⇔ λ > p , z = 1 ⇔ λ = p , z < 1 ⇔ λ < p .

Furthermore, from this and from (36) lim
n→∞

ωn = ∞ in case λ ≥ p and lim
n→∞

ωn =

δ
1−z = (p+1)(λ+1)

p−λ in case λ < p. Hence, the statement follows from (33) and (6). �
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