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ON SINGULAR SOLUTIONS FOR SECOND ORDER DELAYED
DIFFERENTIAL EQUATIONS

MIROSLAV BARTUSEK

ABSTRACT. Asymptotic properties and estimate of singular solutions (either
defined on a finite interval only or trivial in a neighbourhood of o) of the
second order delay differential equation with p-Laplacian are investigated.

1. INTRODUCTION

In this paper, we consider the second order nonlinear delay differential equation

(1) (al)ly' P~ 1y") +r(®)|y(e()] seny (1)) =0

where p > 0, A > 0, a € CO(Ry), r € C°(Ry), p € C°(Ry), a(t) > 0, r(t) > 0,
o(t) <ton Ry and tlggo o(t) = oo.

If p = A, it is known as the half-linear equation, while if A\ > p, we say that
equation (1) is of the super-half-linear type, and if A\ < p, we will say that it is of
the sub-half-linear type.

We begin by defining what is mean by a solution of equation (1) as well as some
basic properties of solutions.

Definition 1. Let T € (0, 0], wo = til]g o(t), ¢ € C°po,0], and yj, € R. We say
ER4

that a function y is a solution of (1) on [0,T") (with the initial conditions (¢, y;)) if
y € COpo,T), y € CH0,T), aly'|P~"y € C'[0,T), (1) holds on [0,T), y(t) = &(t)
on (o, 0], and ¢/, (0) = yp.

We assume that solutions are defined on their maximal interval of existence to

the right.
Equation (1) can be written as the equivalent system

1
Yy =a 7 (t)|y2|” sgnya,

vy = —r()|y(p()] seny(o(t)) -

The relationship between a solution y of (1) and a solution (y1,y2) of the system
(2) is

(3) yi(t) = y(t) and ya(t) = a()]y' )"y (1),

and when discussing a solution y of (1), we will often use (3) without mention.

(2)
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Definition 2. Let y be a solution of (1) defined on [0,7T), T < oco. It is called
singular of the 1st kind if 7' = oo, 7 € (0, 00) exists such that y = 0 on |7, 00) and
y is nontrivial in any left neighbourhood of 7. Solution y is called singular of the
2nd kind if T' < oo and put 7 = T'. It is called proper if T = co and it is nontrivial
in any neighbourhood of co. Singular solutions of either 1st or 2nd kind are called
singular.

Note, that a solution of (1) is either proper, or singular or trivial on (pg, 00).
Singular solutions of the second kind are sometimes called noncontinuable. When
discussing singular solutions, 7 will be the number in Definition 2 in all the paper
without mention.

Remark 1. If y is a singular solution of (1) of the 2nd kind, then it is defined on
[0,7), T < oo and it cannot be defined at t = 7; so, lim sup(|y1 ()| + |y2(t)]) = oc.

t—T1

From this and from (2)
(4) lirgl sup ‘yg (t)’ =00.

Definition 3. Let y be a singular solution of (1) of the 1st kind (of the 2nd kind).
Then it is called oscillatory if there exists a sequence of its zeros tending to 7 and
it is called nonoscillatory otherwise.

Singular solutions of (1) without delay, i.e. of

(5) (a(®)ly'IP~"y') + r()]y|* sgny = 0,

have been studied by many authors, see e.g. [1, 5], [9]-[16] and the references therein.
Note, that the first existence results are obtained in [12] forp=1,a=1and r <0.
In the monography of Kiguradze and Chanturia [13] it is a good overview of results
forp=1and a=1.

Eq. (5) may have singular solutions. Heidel [11] (Coffman, Ulrych [9]) proved
the existence of an equation of type (5), a = 1, p = 1 with singular solutions of the
1st kind (of the 2nd kind) in case A < p (A > p); in this case r is continuous but not
of locally bounded variation. If a and r are smooth enough, then singular solutions
of (5) do not exist (see Theorem A below). As concerns to Eq. (1), the existence
of singular solutions of the second kind are investigated in [4] in case r < 0. The
existence and properties of singular solutions of either the first kind or of the second
kind in case r > 0 seem not to be studied at all.

The following theorem sums up results concerning to Eq. (5).

Theorem A. Letr € C°(Ry) and r(t) >0 on R,.

1 > p, then there exists no singular solution o of the 1st kind.
i) If A hen th 2 ngul luti f (5) of the 1st kind
(ii) If A < p, then there exists no singular solution of (5) of the 2nd kind.

(iii) If arr e Ct (Ry), then all solutions of (5) are proper.

Proof. (i), (ii): See Theorems 1.1 and 1.2 in [15]. (iii): It follows from Theorem 2
in [5]. O

Note that estimates of such kind of solutions are proved by Kvinikadze, see
references in [13]. In [1] (for p =1, a = 1, r < 0) precise asymptotic formulas of all
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solutions are obtained for differential equations of the third and fourth orders, see
also [3]. About uniform estimates of solutions of quasi-linear ordinary differential
equations see [2]. In [16] estimates of singular solutions of the second kind of a
system of second order differential equations (of the form (5)) are derived.

Theorem B ([16], Theorem 2). Let r € CO(Ry) and r(t) > 0 on Ry. Let A > p,
y be a singular solution of (5) of the second kind, T € [0,7), T —T < 1, ry =
uax r(s), Co = 222 in case p > 1 and Cy = 2° ! in case p < 1. Then a
p(;sizwe constant C = C(p, \, 7,79) exists such that

|y2(t)| + Coro‘y(t)‘/\ >C(r — t)_p&Ajpl) , te[T,T).

It is important to study the existence of proper/singular solutions. When study-
ing solutions of (1) and (5), some authors sometimes investigate properties of solu-
tions that are defined on R only without proving the existence of them. Moreover,
sometimes, proper solutions have crucial role in a definition of some problems, see
e.g. the limit-point/limit-circle problem in [6], [8]. Furthermore, noncontinuable so-
lutions appear e.g. in water flow problems (flood waves, a flow in sewerage systems),
see e.g. [4].

Our goal is to study properties of singular solutions and to extend Theorems A

and B to (1).
For convenience, we define the constants and the function
p+1 p+1 1
§=——, y=———" RMt)=av(t)r(t), teR,.
== BO=dor. tem,
If y is a solution of (1), then we set on its interval of existence
- s A1
(6) F(t) = R ()|y=0)]" + [y
Notice that F(t) > 0 for every solution of (1) and
R'(t) s
7) F(0) = =yl + o/ @) e(t)
with
def A A

(8) e(t) = y(t)|" sgny(t) — y(e()] " sgny(p(1)) -
From (6)
(9) Ol < (TE@) T, @] < [RO) FE]TT

2. SINGULAR SOLUTIONS OF THE 2ND KIND
The following theorem shows that such solutions do not exist in case A < p.
Theorem 1. If A < p, then all solutions of (1) are defined on Ry

Proof. Tt is proved in Lemma 7 in [6] for » < 0, for arbitrary r the proof is the
same, it is necessary to replace r by |r|. O
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The following theorem gives us basic properties.

Theorem 2. Let y be a singular solution of (1) of the second kind. Then it is
oscillatory and (1) = 7. If, moreover, R € CY(Ry), then o(t) # t in any left
neighbourhood of T.

Proof. Suppose, contrarily, that ¢(7) < 7. Then an interval I = [r1,7) exists
such that 71 < 7 and supp(t) < 7. From this and from (1) we have |y5(t)] =
tel

r(t)|y(e®))|* < supr(t)|y(e(t))|* < co. Hence, yo is bounded on I that contradicts
tel

(4). Hence, o(1) = 7.
Let y be nonoscillatory. Suppose, for the simplicity, that y is positive in a left
neighbourhood of 7. Then, with respect to o(7) =7, 71 < T exists such that

(10) y(ap(t)) >0 on I [11,7).
As according to (2) and (10), y2 is decreasing on I and (4) implies
(11) lim yo(t) = —o0.

t—71—

From this 5 € I exists such that
(12) y'(t) <0 on [r2,7)
and the integration of (1) and (11)

00 0) it = ()~ Jim ga0) = .

T2

Hence, limsup y(t) = oo that contradicts (12) and y is oscillatory.
t

Let y be a singular solution of (1) and ¢(t) = ¢ on a left neighbourhood J on
7. Then y is a singular solution of (5) on J. A contradiction with Theorem A(iii)
proves that ¢(t) # t in any left neighbourhood of 7. O

Remark 2. According to Theorem 1 there exists no singular solution of (1) of the
second kind in case p(t) < t on Ry; all solutions are defined on Ry. This fact was
used by many authors for special types of (1), see e.g. [10], [4] (r < 0).

The following two lemmas serve us for estimate of solutions.

Lemma 1. Letw > 1, tg € Ry, K > 0, Q be a continuous nonnegative function
on [to,00) and u be continuous and nonnegative on [tg,0) satisfying

(13) u(t) §K+/t:Q(S)u“’(s)ds on [to,T),T < cc.

If

(14) (w—1)K“! h Q(s)ds < 1

then ’

(15) u(t) < K[1— (w— 1)K /tt Q(s)ds] " tefto, T).
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Proof. Tt is proved in Lemma 2.1 in [14] for m = w and p = 1. O

Lemma 2. Let A > p, [ r(s)( [, a_%(a) do))\ds < 00, y be a solution of (1)

defined on [0,T), T < oo and let to € [0,T). Ify« = max |y(s)| and
¢(to)<s<to

A_q

(16) |{|y2(to)| + 2* y;\ /OO r(s) ds} ! /OO T(s)(/s a_%(a) do)A ds < 2”%

to to to -p
Then T = oo and y is defined on Ry.

Proof. Suppose, contrarily, that y is singular of the 2nd kind. Then 7" = 7 < o0

and denote by

o(t) = sup |yo(s)| for tel [k, T).
to<s<t

It follows from (2) that

206)] < o) + [ 7(5) ly(o(o) s

and

()] < |y<to>|+/ 0B )ya(s)Fds,  tel.

to
Hence, for tg < s <t < T we have

) < (e + [ 1) pe+ 03 ) [

z

L A
a”r (o) da} dz

t() t()
00 t z . PN
< |y20t)| + 2)‘y;\/ r(o)do + 2/\/ T(Z)(/ a” 7 (o) do) vr(2)dz.
to to to
From this
o0 t z A
(17) w(t) < |y2(to)|+2ky;\/ (o) d0+2’\/ r(z)(/ aii(a)da) v%(z) dz.
to to to
Put w= % >1, u=wv, K=lyato)| +2*y2 [r(s)ds
to

¢ A
and  Q(t) = 2’\r(t)(fa75(0) da) :

to
Then (16) and (17) imply (13) and (14), and according to Lemma 1, (15) is valid.
As T < 00, yo is bounded on J. A contradiction with (4) proves the statement. O

Remark 3. Note that Lemma 2 is valid even if we suppose r > 0 instead of r > 0
on R+.

Remark 4. The idea of the proof is due to Medved and Pekérkova [14] (with
o(t) =1t); it is used also in [7] for (1) with ¢ — ¢(t) < const. on Ry.

The next theorem derives an estimate from below of a singular solution of the
second kind.
EJQTDE, 2012 No. 3, p. 5



Theorem 3. Let A > p and let y be a singular solution of (1) of the 2nd kind. Let
T c[0,7), ax = Trélsngl‘ra(s), Ty = Trgg;(TT(s) and y.(t) = w(rr)lax ly(s)| on [T, 7).

Then
(18) ly2 ()] + 22 2 () ru (7 — £) > K (7 — 1)

7p(>\+1)

A
on [T,7) with K = (272}~ 1(’\/\“)’7 alry 1)*_*". Especially, a left neighbourhood I
of T exists such that

(19) a(m)ly' (O + 22Ty () r(T) (7 — 1) = Ka(r — 1)

on T with Ky = [2727575 G 3 () (7)) 7.

p(>\+1)

Proof. Let y be a singular solution of (1) of the 2nd kind defined on [0,7). Let
t € [T, 1) be fixed. Define

F(t) = r(t) a(t) = a(t) for tel0,7],

r(7) a(r)

T(t) =0, a(t)=0 for t>27—t;

—(—t+27—1t) for te(r,2r—1]

=

note that 7 and a are continuous on R4 and are linear on [r, 27 — ¢]. Furthermore,
we have
27—t

oo s . A A
/ f(s)(/ "7 (o )do) dsgr*a*p/ (s —1)*ds
t t t
2 22+ ~3 A+1
< «Qy P (T —1
(20 <2 et
and

o 27—t
(21) / r(s)ds < / reds =2r. (1t —1).
t t
Consider an auxilliary equation
(22) (@®)2"P=2") + 7 (t)]=(¢)]* sgnz(w) = 0.

Then z = y is the singular solution of (22) of the second kind defined on [0, 7).
Suppose that (18) is not valid for ¢t = ¢, i.e.

A A+1 A
(23)  [l(@) +2M 2 (O r(r —D)] 7 <27 1A+ Dp )\+ p) al r;N(r =8t
holds. We apply Lemma 2 and Remark 3 with T'= 7 and ¢, = t. Then it follows
from (20), (21) and (23) that all assumptions of Lemma 2 are valid. Hence, z is

defined on Ry and the contradiction with z to be singular proves that (18) is valid.
Furthermore, a left neighbourhood I of t = 7 exists such that

re < 2r(7) and @ < ay < 2a(r)

and (20) follows from this and from (18). O
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Remark 5. The used method of the proof of Theorem 2 is due to Pekdrkova [16]
(for p(t) = t).

Corollary 1. Every singular solution of (1) of the second kind is unbounded.

Remark 6. In case ¢(t) = t, Theorem 3 gives us similar estimate than Theorem B
but it can be used also for 7 — ¢ > 1.

Corollary 2. Let y be a singular solution of (1) of the second kind. Then a
sequence {t;}72, of local extremes and constant M > 0 exist such that lim t, =7

k—o0
and
—p(A+1)
ly(tr)| = M(r —tp) 3071, k=1,2,...
Proof. Let y be a singular solution of the 2nd kind. Then according to Lemma 2
and Corollary 2 it is oscillatory and unbounded. Hence, an increasing sequence
{tr}72, exists such that tlim tr = 7, y has the local extreme at ¢; and
— 00

ly(tr)| = ly(t)| for t€[po,tr], k=1,2,...

Then y'(tx) =0, max |y(s)| = |y(tx)|, and the statement follows from (19). O
P(tr)<s<ty

3. SINGULAR SOLUTION OF THE 1ST KIND
This paragraph begins with some basic properties

Theorem 4. Let y be a singular solution of (1) of the first kind. Then it is
oscillatory and o(1) = 7. Moreover,

(i) if R € CY(Ry), then ¢(t) £t in any left neighbourhood of T;

(ii) if R € CY(Ry), A > p and ¢ is nondecreasing in a left neighbourhood J of
7, then a left neighbourhood Jy of T exists such that o(t) <t on Ji.

Proof. Let y be a singular solution of (1) of the first kind. Then

(24) y(t)=0 for t>r
and
(25) y(t) 20 in any left neighbourhood of 7.

Suppose, contrarily, that ¢(7) < 7. Then tlim ©(t) = oo implies the existence of 7
such that 7 > 7 and ¢(t) > 7 for t > 7. Denote I = [r,71]. Then according to (1)
and (24)

_1 _
(26)  y(e(t) = —r X @) (a®ly' ()P ()
fort € I. As p(m1) > 7 we have

[p(7), 7] C lo(7), o(m1)] C {p(t): t € I}.

From this and from (26), y(¢) = 0 on [p(7), 7] that contradicts (25). Hence, ¢(71) =
T.

Y sgn (al)ly' (8)P 1y (1) =0
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We prove that y is oscillatory. Suppose, contrarily, that y(¢) > 0 in a left
neighbourhood of 7; case y(t) < 0 can be studied similarly. From this and from
o(1) = 7 an interval I; = [ra,T), T2 < T exists such

(27) y(p(t)) >0 for tel.

As, according to (2), ya is decreasing on I; and (24) implies y2(7) = 0 we have
y2 > 0 on Ip; hence, ¥’ > 0 on I;. The contradiction with (27) and (24) proves that
y is oscillatory.

Case (i). The proof follows from Theorem A(iii) by the same way as in the proof
of Theorem 1.

Case (ii). Let A > p and R € C'(R;). Then (i) implies ¢ is nontrivial in any
left neighbourhood of 7. Suppose that an increasing sequence {74}72 exists such
that klingo T, = 7 and ¢(7%) = Tk As ¢ is nondecreasing in J, {7} may be choosen

such that

(28) o(t) € [tg, 7] for t € [mg,7].
It follows from (24) and (25) that ya(1) = 0 and F(7) = 0. Denote Fj =
max F(s). Then (28), (7) and (9) imply

TE<s<T

F(s) :—/TF’(U)d(Tng/T |];/((Z))| do

k

+2577AF,:’/ a_%(o)Rﬁ(o)do

Tk

for s € [7x, 7] where w = m + A+1 > 1 due to A > p. Hence,
L [IR) g [T
(29) F, < F}, do + 26y FY a”r(o)Rv1 (o) do
Tk R( ) Tk
k=1,2,.... As hka, F(r) =0 and
R/ T 1 1
lim / BN 4o —0, tim [ o=} (0)RT (0)do =0
k—o0 Th R(O’) k—o0 T
we obtain the contradiction in (29) for large k. Hence, {7} does not exists and the
statement holds in this case. (]

The following result is a consequence of Theorem 2 and Theorem 4.
Theorem 5. If o(t) <t on Ry, then all solutions of (1) are proper.
Lemma 3. Let y be a singular solution of the 1st kind, let T € [0,7) be such that

T 1
(30) JRESCLOTESS
T 2
I=[T,7], K>0,w>0and |e(t)]| < K(r —t)* on I. Then
F(t) < Ky(r —t)°@+)  per

where K1 = [20(w + 1)~ 1K Jmax a P(J)RP+1( )]6.
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Proof. Let y be a singular solution of the 1st kind. Then (9) implies
ROl < Ft), |50 < CFF ()

on [ with C' = max a_%(t)Rﬁ(t) > 0. Define F(t) = sIél[%,)i] F(s) for t € I. From

this and from (7), (8) and (30)

F(s) = 7/7 F'(0)do <

t t

’ R™Y0)|R'(0)|F(0)ds +§ /tT [y (0)e(o)|ds

T

< F(t) /TT R™Y(0)|R (0)|ds + Cl/t Fo (o) (1 — 0)¥ds

F(t) Ci - 1
<y L P () (r — t)et!
St -
fort €I and t < s < 7 where C; = 0KC. Hence,
_ F(t) C1 - 1
F(t) < —= Fort(t)(r — t)t!
(< T2+ L FR -1

or

O

The following theorem gives us an estimate from above of singular solutions of
the 1st kind.

Theorem 6. Let y be a singular solution of (1) of the 1st kind and M > 0 be such
that ©'(t) < M in a left neighbourhood S of 7.
(i) Let A > p and m > 0. Then a positive constant K and a left neighbourhood
J of T exist such that
YOI SK@E=0", @] S K@E -0 on .
(ii) Let A < p and € > 0. Then a positive constant K and a left neighbourhood
J of T exist such that

p(A+1)
p—x ¢

()| < K(r =55, |p(t)] < K(r—t) on J.

Proof. Let y be a singular solution of the 1st kind. According to Theorem 4 (1) =
7. Moreover, tlim y(t) = tlim y2(t) =0and aninterval I = [T, 7] C S,0< Ty < T

exists such that (30) and

1 1
O < 5. eIt <5 for tel.

Hence, (8) implies |e(t)| < 1 on I and it follows from Lemma 3 (with [ = I, K =1,
w=0)
(31) F(t)<K(T—t)°, tel
with

1 1,98
(32) K =[26 max_a"?(0)R71(0)]".
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Let {I,}22, be such that I; = I, I, = [Ty, 7], T, < Th1 < 7 and ¢(t) € I, for

t € I,41,n=1,2,...; this sequence exists due to ¢(t) <t and ¢(7) = 7.
We prove the estimate

(33) F(t) < Knp(tr —t)“* on I,

by the mathematical induction, where

(34) w1 =94, wn+1=5[%ﬂwn+1}, n=1,2,...

and

A A -1 A 219
K =K, KnH:K[fm(HA—Hwn) (1+M“"W1)Kn”l] L n=1,2,...

For n =1 (33) follows from (31) and (32). Suppose the validity of (33) for n. Then
(6) and (33) imply
2 N

() < (YTUE@) YT <4 TR (r— )3 e tel,

and

0<7—9(t) =p(1) =) =" () —t) < M(r —1), {€t,7].
From this and from (8)

;N A

()] < 47T L4 MAT9] (7 — ) 7390 = Ly (r — )",

where
w :Lw and L :’y*%ﬂKﬁ[lJer"]
n A—’— 1 n n n .
Now, we use Lemma 3 with I = I,4;, K = L, and w = w, and we obtain
F(t) < Kypq1(m —t)¥m+1. Hence, (33) holds for all n =1,2,... Denote by
A 1
(35) ,_Apt+1)
A+ 1Dp
We prove that
1-—2"
wp <6 , n=1,2... for z#1
(36) =1 7
Wp, = 0N for z=1.
If v, = %=, then (34) implies v1 = 1, v41 = 2v, +1, n = 1,... Hence, v, =

1+z+422+...2"1 = L=2 in case z # 1 and v, = n in case z = 1. Now, (36)
follows from this.
We have from (35) that

z>1eA>p, z=1A=p, z2<1&A<p.

Furthermore, from this and from (36) lim w, = oo in case A > p and lim w, =

£ = % in case A < p. Hence, the statement follows from (33) and (6). O

1—=2
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