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Abstract

In this paper, we investigate nonlinear fractional differential equations of
arbitrary order with advanced arguments





Dα
0+u(t) + a(t)f(u(θ(t))) = 0, 0 < t < 1, n − 1 < α ≤ n,

u(i)(0) = 0, i = 0, 1, 2, · · · , n − 2,

[Dβ

0+u(t)]t=1 = 0, 1 ≤ β ≤ n − 2,

where n > 3 (n ∈ N), Dα
0+ is the standard Riemann-Liouville fractional deriva-

tive of order α, f : [0,∞) → [0,∞), a : [0, 1] → (0,∞) and θ : (0, 1) → (0, 1] are
continuous functions. By applying fixed point index theory and Leggett-Williams
fixed point theorem, sufficient conditions for the existence of multiple positive
solutions to the above boundary value problem are established.

Keywords: Positive solution; advanced arguments; fractional differential equations;
fixed point index theory; Leggett-Williams fixed point theorem.
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1 Introduction

Fractional order differential equations have proved to be better for the description of
hereditary properties of various materials and processes than integer order differential
equations. As a matter of fact, fractional differential equations arise in many engineer-
ing and scientific disciplines as the mathematical modeling of systems and processes
in the fields of physics, chemistry, aerodynamics, electrodynamics of complex medium,
polymer rheology, etc.[22, 23, 31, 32]. Recently, there are some papers dealing with the
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existence and multiplicity of solutions (or positive solutions) of boundary value prob-
lems for nonlinear fractional differential equations [3, 11, 12, 15, 16, 24]. The interest
in the study of fractional differential equations lies in the fact that fractional order
models are more accurate than integer order models, that is, there are more degrees of
freedom in the fractional order models. For some new development on the topic, see
[1, 4, 7, 8, 10, 13, 18, 25, 27, 28, 29].

Differential equations with deviated arguments are found to be important mathe-
matical tools for the better understanding of several real world problems in physics,
mechanics, engineering, economics, etc. [2, 14]. As a matter of fact, the theory of
integer order differential equations with deviated arguments has found its extensive
applications in realistic mathematical modelling of a wide variety of practical situa-
tions and has emerged as an important area of investigation. For the general theory
and applications of integer order differential equations with deviated arguments, we
refer the reader to the references [6, 20, 21, 33, 36, 37, 38]. However, fractional order
differential equations with deviated arguments have not been much studied and many
aspects of these equations are yet to be explored. For some recent work on equations of
fractional order with deviated arguments, see [9, 30, 34, 35] and the references therein.

Motivated by some recent work on advanced arguments and boundary value prob-
lems of fractional order, in this paper, we investigate the following nonlinear fractional-
order differential equation with advanced arguments





Dα
0+u(t) + a(t)f(u(θ(t))) = 0, 0 < t < 1, n − 1 < α ≤ n,

u(i)(0) = 0, i = 0, 1, 2, · · · , n − 2,

[Dβ

0+u(t)]t=1 = 0, 1 ≤ β ≤ n − 2.

(1.1)

where n > 3 (n ∈ N), Dα
0+ is the standard Riemann-Liouville fractional derivative of

order α, f : [0,∞) → [0,∞), a : [0, 1] → (0,∞) and θ : (0, 1) → (0, 1] are continuous
functions.

By a positive solution of (1.1), one means a function u(t) ∈ C[0, 1] that is positive
on 0 < t < 1 and satisfies (1.1).

Throughout this paper we assume that:

(H1) a ∈ C([0, 1], [0,∞)) and a does not vanish identically on any subinterval.

(H2) The advanced argument θ satisfies t ≤ θ(t) ≤ 1, ∀t ∈ (0, 1).

By applying the well-known Banach contraction principle and Guo-Krasnoselskii
fixed point theorem, Ntouyas, Wang and Zhang [30] have successfully investigated the
existence of at least one positive solutions to the nonlinear fractional boundary value
problem (1.1). Here, we show that under certain sufficient conditions, the nonlinear
advanced fractional boundary value problem (1.1) has at least two and at least three
positive solutions. The main tools employed are the fixed point index theory (Theorem
2.8) and the well-known Leggett-Williams fixed point theorem (Theorem 2.9).
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2 Preliminaries

For the reader’s convenience, we present some necessary definitions and preliminary
results from fractional differential equations and fixed point theory.

Definition 2.1 The Riemann-Liouville fractional integral of order q is defined as

Iqy(t) =
1

Γ(q)

∫ t

0

(t − s)q−1y(s)ds, q > 0,

provided that the right side is pointwise defined on (0,∞).

Definition 2.2 The Riemann-Liouville fractional derivative of order q for a function
y is defined by

Dqy(t) =
1

Γ(n − q)

(
d

dt

)n ∫ t

0

(t − s)n−q−1y(s)ds, n = [q] + 1,

where [q] denotes the integer part of the real number q, provided the right hand side is
pointwise defined on (0,∞).

Lemma 2.3 [18] Assume y(t) ∈ C[0, 1], then the following problem




Dα
0+u(t) + y(t) = 0, 0 < t < 1, n − 1 < α ≤ n,

u(i)(0) = 0, i = 0, 1, 2, · · · , n − 2,

[Dβ

0+u(t)]t=1 = 0, 1 ≤ β ≤ n − 2.

(2.1)

has the unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds

where

G(t, s) =





tα−1(1 − s)α−β−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−β−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(2.2)

Lemma 2.4 [18] There exists a constant γ ∈ (0, 1) such that

min
t∈[ 1

2
,1]

G(t, s) ≥ γ max
t∈[0,1]

G(t, s) = γG(1, s),

where G(t, s) is given by (2.2).

Remark 2.5 [18] γ has the expression

γ = min

{(
1
2

)α−β−1

2β − 1
,

(
1

2

)α−1
}

. (2.3)
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Remark 2.6 Since u(t) =
∫ 1

0
G(t, s)y(s)ds, by Lemma 2.4, we can get

inf
t∈[ 1

2
,1]

u(t) =

∫ 1

0

inf
t∈[ 1

2
,1]

G(t, s)y(s)ds ≥ γ sup
t∈[0,1]

∫ 1

0

G(t, s)y(s)ds = γ‖u‖.

Now we present some results from fixed point theory. Firstly we list some properties
about the fixed point index of compact maps (Lemma 2.7) and the fixed point index
theory (Theorem 2.8) which is needed to prove the existence of at least two solutions
of (1.1).

Lemma 2.7 [5, 19] Let S be a closed convex set in a Banach space and let D be a
bounded open set such that DS = D

⋂
S 6= ∅. Let T : DS → S be a compact map.

Suppose that x 6= Tx for all x ∈ ∂DS .

(i) (Existence) If i(T, DS, S) 6= 0, then T has a fixed point in DS.

(ii) (Normalization) If u ∈ DS, then i(ũ, DS, S) = 1, where ũ(x) = u for x ∈ DS.

(iii) (Homotopy) Let ζ : J×DS → S, J = [0, 1], be a compact map such that x 6= ζ(t, x)
for x ∈ ∂DS and t ∈ J . Then i(ζ(0, ·), DS, S) = i(ζ(1, ·), DS, S)

(iv) (Additivity) If U1, U2 are disjoint open subsets of DS such that x 6= Tx for x ∈
DS \ (U1

⋃
U2), then i(T, DS, S) = i(T, U1, S) + i(T, U2, S),

where i(T, Uj , S) = i(T |Uj
, Uj, S), j = 1, 2.

Theorem 2.8 [5, 17] Let P be a cone in a Banach space E. For ρ > 0, define Ωρ =
{x ∈ P | ‖x‖ < ρ}. Assume that T : Ωρ → P is a compact map such that x 6= Tx for
x ∈ ∂Ωρ.

(i) If ‖x‖ < ‖Tx‖ for x ∈ ∂Ωρ, then i(T, Ωρ, P ) = 0.

(ii) If ‖x‖ > ‖Tx‖ for x ∈ ∂Ωρ, then i(T, Ωρ, P ) = 1.

Next, we state a known result due to Leggett and Williams [26] which is needed to
prove the existence of at least three solutions of (1.1).

Theorem 2.9 [26] Suppose T : P c → P c is completely continuous and suppose there
exists a nonnegative continuous concave functional q on P such that q(u) ≤ ‖u‖ for
u ∈ P c. Suppose there exist constants 0 < a < b < d ≤ c such that

(B1) {u ∈ P (q, b, d) : q(u) > b} 6= ∅ and q(Tu) > b if u ∈ P (q, b, d);

(B2) ‖Tu‖ < a if u ∈ Pa;

(B3) q(Tu) > b for u ∈ P (q, b, c) with ‖Tu‖ > d.
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Then T has at least three fixed points u1, u2 and u3 such that ‖u1‖ < a, b < q(u2) and
‖u3‖ > a with q(u3) < b.

Here, Pc = {u ∈ P : ‖u‖ < c}, P (q, b, d) = {u ∈ P : b ≤ q(u), ‖u‖ ≤ d} and the
map q is a nonnegative continuous concave functional on a cone P of a real Banach
space, that is to say, q : P → [0, +∞) is continuous and

q(tu + (1 − t)v) ≤ tq(u) + (1 − t)q(v)

for all u, v ∈ P and 0 ≤ t ≤ 1.

3 Main results

Let E = C[0, 1] be the Banach space endowed with the sup-norm. Let us introduce
the cone P = {u|u ∈ C[0, 1], u ≥ 0, inf

t∈[ 1
2
,1]

u(θ(t)) ≥ γ‖u‖}, where γ ∈ (0, 1). Define

the operator T : C[0, 1] → C[0, 1] as follows,

Tu(t) =

∫ 1

0

G(t, s)a(s)f(u(θ(s)))ds. (3.1)

By applying Lemma 2.3 with y(t) = a(t)f(u(θ(t))), the problem (1.1) has a solution if
and only if the operator T has a fixed point, where T is given by (3.1).

Since t ≤ θ(t) ≤ 1, t ∈ (0, 1), we have

inf
t∈[ 1

2
,1]

u(θ(t)) ≥ inf
t∈[ 1

2
,1]

u(t) ≥ γ‖u‖ (3.2)

by Remark 2.6, which plays an important role in proving our main theorems. This also
show that TP ⊂ P, i.e. T : P → P. By using Ascoli-Arzelá theorem, it is easy to prove
that T : P → P is completely continuous.

For convenience, we introduce the following notations:

f0 = lim
u→0+

f(u)

u
, f∞ = lim

u→∞

f(u)

u
.

Theorem 3.1 Let f0 = f∞ = ∞. Suppose that (H1), (H2) and the following condition
holds:

(H3) There exists a constant r > 0 such that

f(u) <
r

m1

, for u ∈ [0, r], where m1 =

∫ 1

0

G(1, s)a(s)ds.
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Then problem (1.1) has at least two positive solutions u1 and u2 with 0 < ‖u1‖ < r <

‖u2‖.

Proof. Since f0 = ∞, we can choose a constant r1 ∈ (0, r) such that for 0 < u < r1

it holds f(u) ≥ τ1u, where τ1 > 0 satisfies

γ2τ1

∫ 1

1

2

G(1, s)a(s)ds ≥ 1.

Let Ωr1
= {u ∈ P | ‖u‖ < r1}. Take u ∈ P , such that ‖u‖ = r1, so u ∈ ∂Ωr1

. Then, we
have

‖Tu‖ = sup
t∈[0,1]

∫ 1

0

G(t, s)a(s)f(u(θ(s)))ds

≥

∫ 1

2

0

G(t, s)a(s)f(u(θ(s)))ds +

∫ 1

1

2

G(t, s)a(s)f(u(θ(s)))ds

>

∫ 1

1

2

G(t, s)a(s)f(u(θ(s)))ds

≥

∫ 1

1

2

min
t∈[ 1

2
,1]

G(t, s)a(s)f(u(θ(s)))ds

≥

∫ 1

1

2

γG(1, s)a(s)f(u(θ(s)))ds

≥

∫ 1

1

2

γG(1, s)a(s)τ1u(θ(s))ds

≥ γ2τ1

∫ 1

1

2

G(1, s)a(s)ds‖u‖

≥ ‖u‖,

which implies ‖Tu‖ > ‖u‖ for u ∈ ∂Ωr1
. Thus, i(T, Ωr1

, P ) = 0 by Theorem 2.8.
Next, we consider the condition f∞ = ∞. It implies that there exists a constant

R0 > r such that f(u) ≥ τ2u for u ≥ R0, where τ2 > 0 satisfies

γ2τ2

∫ 1

1

2

G(1, s)a(s)ds ≥ 1.

Let Ωr2
= {u ∈ P | ‖u‖ < r2}, where r2 > max

{
R0

γ
, r

}
. Then for u ∈ ∂Ωr2

, we

have

inf
t∈[ 1

2
,1]

u(θ(t)) ≥ γ‖u‖ > R0.
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By the same method as above, we have

‖Tu‖ > γ2τ2

∫ 1

1

2

G(1, s)a(s)ds‖u‖ ≥ ‖u‖.

This implies for u ∈ ∂Ωr2
, we have ‖Tu‖ > ‖u‖. Thus, i(T, Ωρ2

, P ) = 0.
Finally, let Ωr = {u ∈ P | ‖u‖ < r}. Then for u ∈ ∂Ωr , by (H3), we have

‖Tu‖ = sup
t∈[0,1]

∫ 1

0

G(t, s)a(s)f(u(θ(s)))ds

<

∫ 1

0

G(1, s)a(s)
r

m1

ds

= r = ‖u‖.

Theorem 2.8 implies that i(T, Ωr, P ) = 1.
Since r1 < r < r2, it holds that i(T, Ωr \ Ωr1

, P ) = i(T, Ωr, P ) − i(T, Ωr1
, P ) = 1

and i(T, Ωr2
\ Ωr, P ) = i(T, Ωr2

, P ) − i(T, Ωr, P ) = −1, which imply that the operator
T has at least two positive fixed points u1 ∈ Ωr \ Ωr1

, u2 ∈ Ωr2
\ Ωr such that

0 < ‖u1‖ < r < ‖u2‖. 2

Theorem 3.2 Let f0 = f∞ = 0. Suppose that (H1), (H2) and the following condition
holds:

(H4) There exists a constant ρ > 0 such that

f(u) >
ρ

m2
, for u ∈ [γρ, ρ], where m2 =

∫ 1

2

0

γG(1, s)a(s)ds.

Then problem (1.1) has at least two positive solutions u1 and u2 with 0 < ‖u1‖ < ρ <

‖u2‖.

Proof. Firstly, since f0 = 0, there exists a constant ρ1 ∈ (0, ρ) such that for 0 < u ≤ ρ1

it holds f(u) ≤ δ1u, where δ1 > 0 satisfies

δ1

∫ 1

1

G(1, s)a(s)ds ≤ 1.

Let Ωρ1
= {u ∈ P | ‖u‖ < ρ1}. For u ∈ ∂Ωρ1

, we have

‖Tu‖ = sup
t∈[0,1]

∫ 1

0

G(t, s)a(s)f(u(θ(s)))ds

<

∫ 1

0

G(1, s)a(s)δ1u(θ(s))ds

EJQTDE, 2012 No. 15, p. 7



≤ δ1

∫ 1

0

G(1, s)a(s)ds‖u‖

≤ ‖u‖.

Theorem 2.8 implies i(T, Ωρ1
, P ) = 1.

Next, since f∞ = 0, there exists a constant R
′

0 > ρ such that f(u) ≤ δ2u for u ≥ R
′

0,

where δ2 > 0 satisfies

δ2

∫ 1

0

G(1, s)a(s)ds < 1.

We consider the following two cases:
Case I: f is bounded. Then there exists M1 > 0 such that f(u) < M1 for u ∈ [0,∞).

Let µ =
∫ 1

0
G(1, s)a(s)dsM1. Choose ρ2 > max{µ, R

′

0} and define Ωρ2
= {u ∈

P | ‖u‖ < ρ2}. Then for u ∈ ∂Ωρ2
, we have

‖Tu‖ = sup
t∈[0,1]

∫ 1

0

G(t, s)a(s)f(u(θ(s)))ds

<

∫ 1

0

G(1, s)a(s)dsM1

= µ < ρ2 = ‖u‖.

Case II: f is unbounded. Since f is continuous, there exists ρ2 > max

{
R

′

0

γ
, ρ

}
such

that f(u) < f(ρ2) for 0 < u ≤ ρ2. Let Ωρ2
= {u ∈ P | ‖u‖ < ρ2}. Then for u ∈ ∂Ωρ2

,

we have

‖Tu‖ = sup
t∈[0,1]

∫ 1

0

G(t, s)a(s)f(u(θ(s)))ds

<

∫ 1

0

G(1, s)a(s)f(ρ2)ds

≤

∫ 1

0

G(1, s)a(s)δ2ρ2ds

≤ δ2

∫ 1

0

G(1, s)a(s)dsρ2

< ρ2 = ‖u‖.

Combine Case I and Case II, we can get for u ∈ ∂Ωρ2
, we have ‖Tu‖ < ‖u‖.

Therefore, i(T, Ωρ2
, P ) = 1.

Finally, let Ωρ = {u ∈ P | ‖u‖ < ρ}. Since ∂Ωρ ⊂ P, it follows

inf
t∈[ 1

2
,1]

u(θ(t)) ≥ γ‖u‖ = γρ
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for any u ∈ ∂Ωρ. Then by (H4), we have

‖Tu‖ = sup
t∈[0,1]

∫ 1

0

G(t, s)a(s)f(u(θ(s)))ds

>

∫ 1

2

0

γG(1, s)a(s)
ρ

m2
ds

= ρ = ‖u‖.

Theorem 2.8 shows that i(T, Ωρ, P ) = 0.
Since ρ1 < ρ < ρ2, it holds that i(T, Ωρ \ Ωρ1

, P ) = i(T, Ωρ, P ) − i(T, Ωρ1
, P ) = 1

and i(T, Ωρ2
\ Ωρ, P ) = i(T, Ωρ2

, P )− i(T, Ωρ, P ) = −1, which imply that the operator
T has at least two positive fixed points u1 ∈ Ωρ \ Ωρ1

, u2 ∈ Ωρ2
\ Ωρ such that

0 < ‖u1‖ < ρ < ‖u2‖. 2

Theorem 3.3 Let a, b and c be constants such that 0 < a < b < c. In addition we
suppose that (H1), (H2) hold and there exist constants A and B such that

0 < A ≤
1

∫ 1

0
G(1, s)a(s)ds

and B >
1

∫ 1
1

2

γG(1, s)a(s)ds
.

Assume that the following conditions are satisfied.

(H5) f(u) < Aa for all u ∈ [0, a];

(H6) f(u) > Bb for all u ∈ [b, c];

(H7) f(u) ≤ Ac for all u ∈ [0, c].

Then the problem (1.1) has at least three positive solutions u1, u2, u3 ∈ P satisfying

‖u1‖ < a, b < q(u2), a < u3 with q(u3) < b.

Proof. Under assumptions (H1), (H2) operator T is completely continuous.
Let q(u) = min

1

2
≤t≤1

|u(t)|, it is obvious that q(u) is a nonnegative continuous concave

functional. Note that q(u) ≤ ‖u‖ for u ∈ Pc. We will show that the conditions of
Theorem 2.9 are satisfied.

Put u ∈ Pc. Then ‖u‖ ≤ c, and

‖Tu‖ = sup
t∈[0,1]

∫ 1

0

G(t, s)a(s)f(u(θ(s)))ds

<

∫ 1

0

G(1, s)a(s)dsAc

< c.
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This implies T : Pc → Pc.

By the same method, if u ∈ Pa, then we can get ‖Tu‖ < a, and therefore (B2) is
satisfied.

Let d be a fixed constant such that b < d ≤ c. Then q(d) ≥ d > b and ‖d‖ = d, it
means P (q, b, d) 6= ∅.

For any u ∈ P (q, b, d), it holds that ‖u‖ ≤ d and q(u) = min
1

2
≤t≤1

u(t) ≥ b. Then we

have

q(Tu) = min
1

2
≤t≤1

∫ 1

0

G(t, s)a(s)f(u(θ(s)))ds

>

∫ 1

1

2

γG(1, s)a(s)dsBb

> b.

Thus (B1) is satisfied.
Finally, for any u ∈ P (q, b, c) with ‖Tu‖ > d, then ‖u‖ ≤ c and min

1

2
≤t≤1

u(t) ≥ b,

by the same method, we can also show that q(Tu) > b easily, which means that (B3)
holds.

Therefore, by the conclusion of Theorem 2.9, the operator T has at least three fixed
points. This implies that (1.1) has at least three solutions. 2

4 Example

Example 4.1 Consider the fractional differential equation with advanced arguments




Dα
0+u(t) + Γ(α)(1 − t)f(u(θ(t))) = 0, 0 < t < 1, n − 1 < α ≤ n,

u(i)(0) = 0, i = 0, 1, 2, · · · , n − 2,

[Dβ

0+u(t)]t=1 = 0, 1 ≤ β ≤ n − 2.

(4.1)

where θ(t) = tν , 0 < ν < 1 and

f(u) =

{
1

2
(u

1

3 + u2), 0 ≤ u ≤ 1,

eu−1, u > 1.

Obviously, it’s not difficult to verify conditions (H1) and (H2) of Theorem 3.1 hold.
Through a simple calculation we can get f0 = f∞ = ∞.

Note that if a(t) = Γ(α)(1 − t), then

m1 =

∫ 1

0

G(1, s)a(s)ds =

∫ 1

0

[(1 − s)α−β − (1 − s)α]ds < 1.

Take r = 1, then it holds f(u) =
1

2
(u

1

3 + u2) <
1

m1
, for u ∈ [0, 1], then condition

(H3) of Theorem 3.1 holds. Thus, by Theorem 3.1, we can get that the above problem
(4.1) has at least two positive solutions u1 and u2 with 0 < ‖u1‖ < 1 < ‖u2‖.
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