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Abstract

This addendum concerns the paper of the above title found in EJQTDE No.
57 (2011). The example in Section 4 was not correct. The following example is
a correction given by the authors. We regret any inconvenience which this may
have caused any reader.

1 Correction

The example in Section 4 of the original text, i.e. problem (13), is not written
correctly. The following example is a correction given by the authors.

Consider the second order impulsive integro-differential equation














u′′(t) = f(t, u(t), u′(t), (Tu)(t), (Su)(t)), ∀t ∈ J, t 6= 2k (k = 0, 1, 2, · · · );
∆u|t=2k = 2−k[u(2k)]2(15 + [u(2k) + u′(2k)]2)−1, (k = 0, 1, 2, · · · ),
∆u′|t=2k = 4−k[u′(2k)]3/2(5 + (u(2k) + u′(2k))3/2)−1, (k = 0, 1, 2, · · · ),
u(0) = 0, u′(∞) = 2u′(0).

(1)

Here Tu and Su are given by

(Tu)(t) =

∫ t

0

e−(t+1)su(s)ds =

∫ t

0

K(t, s)u(s)ds;

(Su)(t) =

∫

∞

0

e−2s sin2(t − s)u(s)ds =

∫ t

0

H(t, s)u(s)ds

with K(t, s) = e−(t+1)s, H(t, s) = e−2s sin2(t − s), and, with U = (u0, u1, u2, u3), f is
the function

f(t, U) =

{

18e−2te−2(10−u0)(10−u1)g(U), U ∈ [0, 10) × [0, 10) × [0,∞) × [0,∞),

18e−2tg(U), otherwise.
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with g(U) = g(u0, u1, u2, u3) :=
(

1+3u0+4u1+5u2+6u3

2+u0+u1+u2+u3

)2

, ∀t ∈ J = [0,∞), ui ≥ 0 (i =

0, 1, 2, 3). It is clear that g is a continuous positive function and

g(t, u(t), u′(t), (Tu)(t), (Su)(t)) =

(

1 + 3u(t) + 4u′(t) + 5(Tu)(t) + 6(Su)(t)

2 + u(t) + u′(t) + (Tu)(t) + (Su)(t)

)2

.

Conclusion. The problem (1) has at least three positive solutions x1(t), x2(t), x3(t)
such that

‖xj‖D ≤ 2160 for j = 1, 2, 3;

10 < min

{

min
t∈[ 1

2
,∞)

x
(i)
1 (t) : i = 0, 1

}

;

8 < max

{

sup
t∈[0,1]

x
(i)
2 (t) : i = 0, 1

}

with min

{

min
t∈[ 1

2
,∞)

x
(i)
2 (t) : i = 0, 1

}

< 10;

max

{

sup
t∈[0,1]

x
(i)
3 (t) : i = 0, 1

}

< 8.

Proof. Let E = DPCn−1[J, R], P = DPCn−1[J, R+]. Thus, (1) can be regarded
as BVP of the form (1) of the original text in E. In this case, tk+1 = 2k (k =
0, 1, 2, · · · ), ρ = 2, in which

I0k(u0, u1) = 2−ku2
0(15 + (u0 + u1)

2)−1,

I1k(u0, u1) = 4−ku
3/2
1 (5 + (u0 + u1)

3/2)−1, ∀u0 ≥ 0, u1 ≥ 0, (k = 0, 1, 2, · · · ).

Obviously, I0k, I1k ∈ C[J, R+×R+, R+] f ∈ C[J ×R+×R+×R+ ×R+, R+]. Moreover,

∫ t

0

e−(t+1)sds = −
e−(t+1)t

t + 1
+

1

t + 1
< 1,

∫

∞

0

e−2s sin2(t − s)ds ≤
1

2
.

Since e−t
∫ t

0
e−(t+1)sesds ≤ te−t, e−t

∫ t

0
e−2s sin2(t − s)esds ≤ e−t, ∀t ∈ J , we have

k∗ = sup
t∈J

(

e−t

∫ t

0

e−(t+1)sesds

)

≤ sup
t∈J

(te−t) =
e−1

2
,

h∗ =

(

e−t

∫

∞

0

e−2s sin2(t − s)esds

)

≤ sup
t∈J

(e−t) = 1.

Hence, condition (H1) is satisfied. From the definitions of f , I0k and I1k we have

0 ≤ f(t, u0, u1, u2, u3) ≤ 648e−2t

(

1 + u0 + u1 + u2 + u3

2 + u0 + u1 + u2 + u3

)2

< 648e−2t
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for any t ∈ J , ui ≥ 0 (i = 0, 1, 2, 3).

0 ≤ I0k(u0, u1) ≤ 2−k (u0 + u1)
2

15 + (u0 + u1)2
≤ 2−k,

0 ≤ I1k(u0, u1) ≤ 4−k (u0 + u1)
3/2

5 + (u0 + u1)3/2
≤ 4−k

for any u0 ≥ 0, u1 ≥ 0 (k = 0, 1, 2, · · · ).
We now take ρ = 2, λ(t) = c(t) = e−2t, η0k = µ0k = 2−k, η1k = µ1k = 4−k, then

λ∗ = c∗ = 1
2
, η∗

0 = µ∗

0 = 1, η∗

1 = µ∗

1 = 1
3
, L = 10

3
. Take a = 8, b = 10, d = 648, then the

condition (H2) holds.
Take l = 1

2
, then k1 = 1, k2 = 1

2
. Take m = 3. Since t1 = 1, λ0 = e−2. For 0 ≤ t ≤ 1

2

and u0 ≥ 10, u1 ≥ 10, u2 ≥ 0, u3 ≥ 0, since the function α(t) = 3−1+t
2+t

for t ≥ 0 is
increasing, we have

f(t, u0, u1, u2, u3) ≥ 18e−2t × 9

(

3−1 + u0 + u1 + u2 + u3

2 + u0 + u2 + u2 + u3

)2

≥ 162e−1

(

20 + 3−1

22

)2

> 20 =
k1b

l
.

This implies that the condition (H3) is true.
Take q0 = 1, then δ = 3

10e
. if 0 ≤ u0 ≤ 8, 0 ≤ u1 ≤ 8, then 0 ≤ u2 ≤ 8, 0 ≤ u3 ≤ 4.

From this and the fact that the function t
t+1

is increasing it follows that

1 + 3u0 + 4u1 + 5u2 + 6u3

2 + u0 + u1 + u2 + u3

≤
6(1 + u0 + u1 + u2 + u3)

2 + u0 + u1 + u2 + u3

≤
29

5
= 5.8.

Thus, we get

f(t, u0, u1, u2, u3) = 18e−2te−2(10−u0)(10−u1)

(

1 + 3u0 + 4u1 + 5u2 + 6u3

2 + u0 + u1 + u2 + u3

)2

≤ 18e−2t−8 (5.8)2 <
24

10e
e−2t = aδc(t).

I0k(u0, u1) = 2−k u2
0

15 + (u0 + u1)2
≤

64

79
× 2−k < aδµ0k,

I1k(u0, u1) = 4−k u
3/2
1

5 + (u0 + u1)3/2
≤

83/2

5 + 83/2
× 4−k < aδµ1k.

So, condition (H4) is satisfied. Consequently, our conclusion follows from Theorem 1
since f is a positive function so x3 is not the zero solution.
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