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Abstract: In this paper, we consider the oscillation criteria for even order nonlinear neutral
differential equations of the form

“

r(t)z(n−1)(t)
”

′

+ q(t)f(x(σ(t))) = 0,

where z(t) = x(t) + p(t)x(τ (t)), n ≥ 2 is a even integer. The results are obtained both for

the case
R

∞

r−1(t)dt = ∞, and in case
R

∞

r−1(t)dt < ∞. These criteria here derived extend

and improve some known results in literatures. Some examples are given to illustrate our

main results.
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1 Introduction

Over the last several years, there has been an increasing interest in the study of the oscillation
theory and asymptotic behavior of solutions of differential equations. Recently, the applications of
differential equations have been and still are receiving intensive attention and several monographs.
There has been much research activity concerning the oscillatory behavior of the solutions of second
order differential equations and second order neutral differential equations; see, for example, [1–
18]. Up to now, many studies have been done on the oscillation problem of even order differential
equations, and we refer the reader to the papers [19–29] and the references cited therein.

In this paper, we concerned with the oscillation theorems for the following even order half-linear
neutral delay differential equation

(

r(t)z(n−1)(t)
)

′

+ q(t)f(x(σ(t))) = 0, t ≥ t0, (1.1)
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where z(t) = x(t) + p(t)x(τ(t)), n ≥ 2 is a even integer. Throughout this paper, we assume that:

(C1) r ∈ C([t0,∞), R), r(t) > 0, r′(t) ≥ 0;

(C2) p, q ∈ C([t0,∞), R), 0 ≤ p(t) ≤ p0 < ∞, q(t) > 0, where p0 is a constant;

(C3) τ ∈ C1([t0,∞), R), σ ∈ C([t0,∞), R), τ ′(t) ≥ τ0 > 0, σ(t) ≤ t, τ ◦σ = σ◦τ, limt→∞ τ(t) =

limt→∞ σ(t) = ∞, where τ0 is a constant;

(C4) f ∈ C(R, R) and f(y)/y ≥ L > 0, for y 6= 0, L is a constant.

We shall also consider the two cases
∫

∞

t0

1

r(t)
dt = ∞, (1.2)

∫

∞

t0

1

r(t)
dt < ∞. (1.3)

By a solution x of (1.1) we mean a function z ∈ Cn−1([tx,∞), R) for some tx ≥ t0, where
z(t) = x(t) + a(t)x(τ(t)), which has the property that rz(n−1) ∈ C1([tx,∞), R) and satisfies (1.1)
on [tx,∞). We consider only those solutions of (1.1) which satisfy sup{|x(t)| : t ≥ T } > 0 for all
T ≥ tx. We assume that (1.1) possess such solutions. A nontrivial solution of (1.1) is said to be
oscillatory if it is neither eventually positive nor eventually negative, otherwise it is nonoscillatory.
(1.1) is said to be oscillatory if all its solutions are oscillatory.

For the particular case when n = 2, (1.1) reduces to the following equations

(r(t)(x(t) + p(t)x(τ(t)))′)′ + q(t)f(x(σ(t))) = 0, t ≥ t0. (1.4)

Han et al. [9] studied the oscillation criteria for the solutions of (1.4), where
∫

∞

t0
r−1(t)dt = ∞,

τ(t) ≤ t, σ(t) ≤ t, 0 ≤ p(t) ≤ p0 < ∞.

In 2011, Bacuĺıková and Dz̆urina [13] studied the oscillatory behavior of the solutions of the
second order neutral differential equations

(r(t)(x(t) + p(t)x(τ(t)))′)′ + q(t)x(σ(t)) = 0, t ≥ t0, (1.5)

where
∫

∞

t0
r−1(s)ds = ∞, 0 ≤ p(t) ≤ p0 < ∞. Basing on the new comparison principles, the authors

obtained some sufficient conditions for the oscillation of (1.5), which reduce the problem of the
oscillation of the second order differential equations to the oscillation of a first order differential
inequality. In this paper, Theorem 1 is quite general, since usual restrictions on the coefficients of
(1.5), like τ(t) ≤ t, σ(t) ≤ τ(t), σ(t) ≤ t, 0 ≤ p(t) < 1, etc. are not assumed. Further, τ could be
a delay or advanced argument, and σ could be a delay argument, hence the results obtained here
improved and extended some known results in literature, such as [1, 5, 7].

Zhang et al. [26] studied the even-order nonlinear neutral functional differential equations
(

x(t) + p(t)x(τ(t))
)(n)

+ q(t)f
(

x(σ(t))
)

= 0, t ≥ t0, (1.6)

where n is even, 0 ≤ p(t) < 1 and τ(t) ≤ t. The authors established a comparison theorem for
(1.6) and the obtained results improved and generalized some known results. Using the Riccati
transformation technique, Li et al. [25] obtained some new oscillation criteria for (1.6), when
0 ≤ p(t) ≤ p0 < ∞. These oscillation criteria, at least in some sense, complemented and improved
those of Zafer [20] and Zhang et al. [26].

In 2011, Zhang et al. [28] studied the oscillatory behavior of the following higher-order half-
linear delay differential equation

(

r(t)(x(n−1)(t))α
)

′

+ q(t)xβ(τ(t)) = 0, t ≥ t0, (1.7)

under the condition
∫

∞

t0

1

r
1

α (t)
dt < ∞.

The authors obtained some sufficient conditions, which guarantee that every solution of (1.7) is
oscillatory or tends to zero.

Clearly, the above equations are special cases of (1.1). To the best of our knowledge, there are
few results regarding the oscillation criteria for (1.1) under the condition (1.3). The purpose of
this paper is to derive some oscillation theorems of (1.1). Our results obtained here improve and
extend the main results of [9–11, 13, 20, 23, 25, 26].
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2 Some preliminary lemmas

In this section, we present some useful lemmas, which will be used in the proofs of our main results.

Lemma 2.1 [29] Let u ∈ Cn([t0,∞), R+). If u(n)(t) is eventually of one sign for all large t,
then there exist a tx > t1, for some t1 > t0, and an integer l, 0 ≤ l ≤ n, with n + l even for
u(n)(t) ≥ 0 or n + l odd for u(n)(t) ≤ 0 such that l > 0 implies that u(k)(t) > 0 for t > tx,
k = 0, 1, ..., l− 1, and l ≤ n− 1, implies that (−1)l+ku(k)(t) > 0 for t > tx, k = l, l +1, ..., n− 1.

Lemma 2.2 [19] Let u be as in Lemma 2.1. Assume that u(n)(t) is not identically zero on
any interval [t0,∞), and there exists a t1 ≥ t0 such that u(n−1)(t)u(n)(t) ≤ 0 for all t ≥ t1. If
limt→∞ u(t) 6= 0, then for every λ, 0 < λ < 1, there exists T ≥ t1, such that for all t ≥ T,

u(t) ≥
λ

(n − 1)!
tn−1u(n−1)(t).

Lemma 2.3 Assume that (1.2) holds. Furthermore, assume that x is an eventually positive
solution of (1.1). Then there exists t1 ≥ t0, such that

z(t) > 0, z′(t) > 0, z(n−1)(t) > 0 and z(n)(t) ≤ 0, for all t ≥ t1.

The proof is similar to that of Meng and Xu [24, Lemma 2.3], so is omitted.

Lemma 2.4 [18, Theorem 2.1.1] Consider the oscillatory behavior of solutions of the following
linear differential inequality

y′(t) + p(t)y(τ(t)) ≤ 0, (2.1)

where p, τ ∈ C([t0,∞), (0,∞)), τ(t) ≤ t, limt→∞ τ(t) = ∞. If

lim inf
t→∞

∫ t

τ(t)

p(s)ds >
1

e
,

then (2.1) has no eventually positive solutions.

3 Main results

In this section, we state the main results which guarantee that every solution of (1.1) is oscillatory.

Theorem 3.1 Assume that (1.2) holds. If

∫

∞

t0

P (t)dt = ∞, (3.1)

where P (t) = min{q(t), q(τ(t))}, then every solution of (1.1) is oscillatory.

Proof. Suppose, on the contrary, x is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that there exists a constant t1 ≥ t0, such that x(t) > 0, x(τ(t)) > 0 and
x(σ(t)) > 0 for all t ≥ t1. Using the definition of z and Lemma 2.3, we have z(t) > 0, z′(t) > 0,
z(n−1)(t) > 0 and z(n)(t) ≤ 0, t ≥ t1. Hence, limt→∞ z(t) 6= 0. Applying (C4) and (1.1), we get

(

r(t)z(n−1)(t)
)

′

≤ −Lq(t)x(σ(t)) < 0, t ≥ t1.

Therefore, r(t)z(n−1)(t) is a decreasing function. Furthermore, from the above inequality and the
definition of z, we obtain

(

r(t)z(n−1)(t)
)

′

+ Lq(t)x(σ(t)) +
p0

τ ′(t)

(

r(τ(t))z(n−1)(τ(t))
)

′

+ Lp0q(τ(t))x(σ(τ(t))) ≤ 0,

EJQTDE, 2012 No. 30, p. 3



thus
(

r(t)z(n−1)(t)
)

′

+ LP (t)z(σ(t)) +
p0

τ0

(

r(τ(t))z(n−1)(τ(t))
)

′

≤ 0, (3.2)

where P is defined as in Theorem 3.1. Integrating (3.2) from t1 to t, we have

∫ t

t1

(

r(s)z(n−1)(s)
)

′

ds + L

∫ t

t1

P (s)z(σ(s))ds +
p0

τ0

∫ t

t1

(

r(τ(s))z(n−1)(τ(s))
)

′

ds ≤ 0.

Noticing that τ ′(t) ≥ τ0 > 0, we get

L

∫ t

t1

P (s)z(σ(s))ds ≤ −

∫ t

t1

(

r(s)z(n−1)(s)
)

′

ds −
p0

τ0

∫ t

t1

1

τ ′(s)

(

r(τ(s))z(n−1)(τ(s))
)

′

d(τ(s))

≤ r(t1)z
(n−1)(t1) − r(t)z(n−1)(t)

+
p0

τ2
0

(

r(τ(t1))z
(n−1)(τ(t1) − r(τ(t))z(n−1)(τ(t))

)

. (3.3)

Since z′(t) > 0 for t ≥ t1, we can find a constant c > 0 such that z(σ(t)) ≥ c, t ≥ t1. Then from
(3.3) and the fact that r(t)z(n−1)(t) is decreasing, we obtain

∫

∞

t1

P (t)dt < ∞,

which is in contradiction with (3.1). This completes the proof.

Remark 3.1 Recently, when studying the properties of the neutral differential equations, there
are many further restrictions on the coefficients, such as τ(t) ≤ t, σ(t) ≤ τ(t), 0 ≤ p(t) < 1, etc.
In Theorem 3.1 no such constraints are assumed, and therefore our results are of high generality.

Theorem 3.2 Assume that (1.2) holds and τ(t) ≥ t. If either

lim inf
t→∞

∫ t

σ(t)

σn−1(s)Q(s)

r(σ(s))
ds >

(p0 + τ0)(n − 1)!

τ0e
, (3.4)

or when σ is nondecreasing,

lim sup
t→∞

∫ t

σ(t)

σn−1(s)Q(s)

r(σ(s))
ds >

(p0 + τ0)(n − 1)!

τ0
, (3.5)

where Q(t) = min{Lq(t), Lq(τ(t))}, then every solution of (1.1) is oscillatory.

Proof. Suppose, on the contrary, x is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that there exists a constant t1 ≥ t0, such that x(t) > 0, x(τ(t)) > 0 and
x(σ(t)) > 0 for all t ≥ t1. Proceeding as in the proof of Theorem 3.1, we have (3.2). By Lemma
2.2 and (3.2), for every λ, 0 < λ < 1, we obtain

(

r(t)z(n−1)(t)
)

′

+
p0

τ0

(

r(τ(t))z(n−1)(τ(t))
)

′

+
λ

(n − 1)!
σn−1(t)Q(t)z(n−1)(σ(t)) ≤ 0,

for every t sufficiently large. Let u(t) = r(t)z(n−1)(t) > 0. Then for all t large enough, we have

(

u(t) +
p0

τ0
u(τ(t))

)

′

+
λ

(n − 1)!

σn−1(t)Q(t)

r(σ(t))
u(σ(t)) ≤ 0. (3.6)

Next, let us denote ω(t) = u(t) + p0

τ0

u(τ(t)). Since u is decreasing, it follows from τ(t) ≥ t that

ω(t) ≤

(

1 +
p0

τ0

)

u(t). (3.7)
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Combining (3.6) and (3.7), we get

ω′(t) +
τ0

p0 + τ0

λ

(n − 1)!

σn−1(t)Q(t)

r(σ(t))
ω(σ(t)) ≤ 0. (3.8)

Therefore, ω is a positive solution of (3.8). Now, we consider the following two cases, depending
on whether (3.4) or (3.5) holds.

Case (I): It is easy to see that if (3.4) holds, then we can choose a constant 0 < λ0 < 1, such
that

lim inf
t→∞

∫ t

σ(t)

τ0

p0 + τ0

λ0

(n − 1)!

σn−1(t)Q(s)

r(σ(s))
ds >

1

e
. (3.9)

But according to Lemma 2.4, (3.9) guarantees that (3.8) has no positive solution, which is a
contradiction.

Case (II): Using the definition of ω and (3.2), we obtain

ω′(t) = u′(t) +
p0

τ0
(u(τ(t)))′ ≤ −Q(t)z(σ(t)) < 0. (3.10)

Noting that σ(t) ≤ t, there exists t2 ≥ t1, such that

ω(σ(t)) ≥ ω(t), t ≥ t2. (3.11)

Integrating (3.8) from σ(t) to t and applying σ is nondecreasing, we have

ω(t) − ω(σ(t)) +
τ0

p0 + τ0

λ

(n − 1)!

∫ t

σ(t)

σn−1(s)Q(s)

r(σ(s))
ω(σ(s))ds ≤ 0, t ≥ t2.

Thus

ω(t) − ω(σ(t)) +
τ0

p0 + τ0

λ

(n − 1)!
ω(σ(t))

∫ t

σ(t)

σn−1(s)Q(s)

r(σ(s))
ds ≤ 0, t ≥ t2.

From the above inequality, we obtain

ω(t)

ω(σ(t))
− 1 +

τ0

p0 + τ0

λ

(n − 1)!

∫ t

σ(t)

σn−1(s)Q(s)

r(σ(s))
ds ≤ 0.

Hence from (3.11), we have

τ0

p0 + τ0

λ

(n − 1)!

∫ t

σ(t)

σn−1(s)Q(s)

r(σ(s))
ds ≤ 1, t ≥ t2. (3.12)

Taking the upper limit as t → ∞ in (3.12), we get

lim sup
t→∞

∫ t

σ(t)

σn−1(s)Q(s)

r(σ(s))
ds ≤

(p0 + τ0)(n − 1)!

λτ0
. (3.13)

If (3.5) holds, we can choose a constant 0 < λ0 < 1, such that

lim sup
t→∞

∫ t

σ(t)

σn−1(s)Q(s)

r(σ(s))
ds >

(p0 + τ0)(n − 1)!

λ0τ0
,

which is in contradiction with (3.13). This completes the proof.

Theorem 3.3 Assume that (1.2) holds and σ(t) ≤ τ(t) ≤ t. If either

lim inf
t→∞

∫ t

τ−1(σ(t))

σn−1(s)Q(s)

r(σ(s))
ds >

(p0 + τ0)(n − 1)!

τ0e
, (3.14)

or when τ−1 ◦ σ is nondecreasing,

lim sup
t→∞

∫ t

τ−1(σ(t))

σn−1(s)Q(s)

r(σ(s))
ds >

(p0 + τ0)(n − 1)!

τ0
, (3.15)

where Q is defined as in Theorem 3.2, then every solution of (1.1) is oscillatory.
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Proof. Suppose, on the contrary, x is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that there exists a constant t1 ≥ t0, such that x(t) > 0, x(τ(t)) > 0
and x(σ(t)) > 0 for all t ≥ t1. Proceeding as in the proof of Theorem 3.2, we have (3.6). Let
ω(t) = u(t) + p0

τ0

u(τ(t)) again. Since u is decreasing, it follows from τ(t) ≤ t that

ω(t) ≤

(

1 +
p0

τ0

)

u(τ(t)). (3.16)

Combining (3.6) and (3.16), we get

ω′(t) +
τ0

p0 + τ0

λ

(n − 1)!

σn−1(t)Q(t)

r(σ(t))
ω(τ−1(σ(t))) ≤ 0. (3.17)

Therefore, ω is a positive solution of (3.17). Now, we consider the following two cases, depending
on whether (3.14) or (3.15) holds.

Case (I): The proof is similar to the proof of Case (I) in Theorem 3.2, so it can be omitted.

Case (II): From (3.10) and the condition σ(t) ≤ τ(t), there exists t2 ≥ t1, such that

ω(τ−1(σ(t))) ≥ ω(t), t ≥ t2. (3.18)

Integrating (3.17) from τ−1(σ(t)) to t and applying τ−1 ◦ σ is nondecreasing, we get

ω(t) − ω(τ−1(σ(t))) +
τ0

p0 + τ0

λ

(n − 1)!

∫ t

τ−1(σ(t))

σn−1(s)Q(s)

r(σ(s))
ω(τ−1(σ(s)))ds ≤ 0, t ≥ t2.

Thus

ω(t) − ω(τ−1(σ(t))) +
τ0

p0 + τ0

λ

(n − 1)!
ω(τ−1(σ(t)))

∫ t

τ−1(σ(t))

σn−1(s)Q(s)

r(σ(s))
ds ≤ 0, t ≥ t2.

The rest of the proof is similar to that of Theorem 3.2, leading to a contradiction to (3.15), so it
can be omitted. This completes the proof.

Theorem 3.4 Assume that (1.3) holds and σ(t) ≤ τ(t) ≤ t. If either (3.14) holds or when
τ−1 ◦ σ is nondecreasing, (3.15) holds and for sufficiently large t1 ≥ t0,

lim sup
t→∞

∫ t

t1

[

λ0

(n − 2)!
δ(s)Q(s)σn−2(s) −

1 + p0/τ0

4

1

r(s)δ(s)

]

ds = ∞, (3.19)

where Q is defined as in Theorem 3.2, 0 < λ0 < 1 is a constant and δ(t) =
∫

∞

t
r−1(s)ds, then

every solution of (1.1) is oscillatory.

Proof. Suppose, on the contrary, x is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that there exists a constant t1 ≥ t0, such that x(t) > 0, x(τ(t)) > 0 and
x(σ(t)) > 0 for all t ≥ t1. Proceeding as in the proof of Theorem 3.1, we can see that r(t)z(n−1)(t)
is a decreasing function. Consequently it is easy to conclude that there exist two possible cases
of the sign of z(n−1)(t), that is, z(n−1)(t) is either eventually positive or eventually negative for
t ≥ t2 ≥ t1.

Case (I): z(n−1)(t) > 0, t ≥ t2. The proof of this case is similar to that of Theorem 3.3, so we
omit the details.

Case (II): z(n−1)(t) < 0, t ≥ t2. Applying Lemma 2.1, we get z(n−2)(t) > 0 and z′(t) > 0, then
limt→∞ z(t) 6= 0. Define the function ω by

ω(t) =
r(t)z(n−1)(t)

z(n−2)(t)
, t ≥ t2. (3.20)

Clearly, ω(t) < 0 for t ≥ t2. Noting that r(t)z(n−1)(t) is decreasing, we obtain

r(s)z(n−1)(s) ≤ r(t)z(n−1)(t), s ≥ t ≥ t2. (3.21)
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Dividing (3.21) by r(s) and integrating it from t to l (l ≥ t), we have

z(n−2)(l) ≤ z(n−2)(t) + r(t)z(n−1)(t)

∫ l

t

1

r(s)
ds.

Letting l → ∞, we get
0 ≤ z(n−2)(t) + r(t)z(n−1)(t)δ(t),

that is

−1 ≤
r(t)z(n−1)(t)

z(n−2)(t)
δ(t),

where δ(t) =
∫

∞

t
r−1(s)ds. Therefore, from (3.20), we obtain

−1 ≤ ω(t)δ(t) ≤ 0, t ≥ t2. (3.22)

Similarly, we introduce a Riccati transformation

ν(t) =
r(τ(t))z(n−1)(τ(t))

z(n−2)(t)
, t ≥ t2. (3.23)

Clearly, ν(t) < 0 for t ≥ t2. Noting that r(t)z(n−1)(t) is decreasing and τ(t) ≤ t, we have
r(τ(t))z(n−1)(τ(t)) ≥ r(t)z(n−1)(t), then ν(t) ≥ ω(t). Thus, by (3.22), we get

−1 ≤ ν(t)δ(t) ≤ 0, t ≥ t2. (3.24)

Differentiating (3.20), we obtain

ω′(t) =
(r(t)z(n−1)(t))′

z(n−2)(t)
−

r(t)(z(n−1)(t))2

(z(n−2)(t))2

=
(r(t)z(n−1)(t))′

z(n−2)(t)
−

ω2(t)

r(t)
. (3.25)

Differentiating (3.23) and from (3.21), we have

ν′(t) =
(r(τ(t))z(n−1)(τ(t)))′

z(n−2)(t)
−

r(τ(t))z(n−1)(τ(t))z(n−1)(t)

(z(n−2)(t))2

≤
(r(τ(t))z(n−1)(τ(t)))′

z(n−2)(t)
−

ν2(t)

r(t)
. (3.26)

Combining (3.25) and (3.26), we get

ω′(t) +
p0

τ0
ν′(t) ≤

(r(t)z(n−1)(t))′

z(n−2)(t)
+

p0

τ0

(r(τ(t))z(n−1)(τ(t)))′

z(n−2)(t)
−

ω2(t)

r(t)
−

p0

τ0

ν2(t)

r(t)
. (3.27)

Therefore, by (3.2) and (3.27), we obtain

ω′(t) +
p0

τ0
ν′(t) ≤ −Q(t)

z(σ(t))

z(n−2)(t)
−

ω2(t)

r(t)
−

p0

τ0

ν2(t)

r(t)
. (3.28)

On the other hand, from Lemma 2.2, for every 0 < λ < 1, we have

z(t) ≥
λ

(n − 2)!
tn−2z(n−2)(t). (3.29)

Since z(n−1)(t) < 0 and σ(t) ≤ t, then

z(n−2)(t) ≤ z(n−2)(σ(t)). (3.30)
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Thus, combining (3.28)–(3.30), we get

ω′(t) +
p0

τ0
ν′(t) ≤ −

λ

(n − 2)!
Q(t)σn−2(t) −

ω2(t)

r(t)
−

p0

τ0

ν2(t)

r(t)
. (3.31)

Multiplying (3.31) by δ(t) and integrating from t2 to t, we obtain

δ(t)ω(t) − δ(t2)ω(t2) +

∫ t

t2

ω(s)

r(s)
ds +

∫ t

t2

ω2(s)δ(s)

r(s)
ds +

p0

τ0
δ(t)ν(t) −

p0

τ0
δ(t2)ν(t2)

+
p0

τ0

∫ t

t2

ν(s)

r(s)
ds +

p0

τ0

∫ t

t2

ν2(s)δ(s)

r(s)
ds +

λ

(n − 2)!

∫ t

t2

δ(s)Q(s)σn−2(s)ds ≤ 0. (3.32)

It follows from (3.32), taking into account that −1 ≤ ω(t)δ(t) ≤ 0, −1 ≤ ν(t)δ(t) ≤ 0,

δ(t)ω(t) − δ(t2)ω(t2) +
p0

τ0
δ(t)ν(t) −

p0

τ0
δ(t2)ν(t2)

+
λ

(n − 2)!

∫ t

t2

δ(s)Q(s)σn−2(s)ds −
1 + p0/τ0

4

∫ t

t2

1

r(s)δ(s)
ds ≤ 0.

Therefore,

δ(t)ω(t) +
p0

τ0
δ(t)ν(t) +

∫ t

t2

[

λ

(n − 2)!
δ(s)Q(s)σn−2(s) −

1 + p0/τ0

4

1

r(s)δ(s)

]

ds

≤ δ(t2)ω(t2) +
p0

τ0
δ(t2)ν(t2).

From (3.19) and the above inequality, we get a contradiction to (3.22) and (3.24). This completes
the proof.

Remark 3.2 If n = 2, the condition (3.19) of Theorem 3.4 becomes (3.2) of Theorem 3.1 in
[9].

Theorem 3.5 Assume that (1.3) holds and τ(t) ≥ t. If either (3.4) holds or when σ is non-
decreasing, (3.5) holds and for sufficiently large t1 ≥ t0,

lim sup
t→∞

∫ t

t1

[

λ0

(n − 2)!
δ(τ(s))Q(s)σn−2(s) −

1 + p0/τ0

4

(τ ′(s))2

r(s)δ(τ(s))

]

ds = ∞, (3.33)

where Q is defined as in Theorem 3.2, 0 < λ0 < 1 is a constant and δ is defined as in Theorem
3.4, then every solution of (1.1) is oscillatory.

Proof. Suppose, on the contrary, x is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that there exists a constant t1 ≥ t0, such that x(t) > 0, x(τ(t)) > 0 and
x(σ(t)) > 0 for all t ≥ t1. Proceeding as in the proof of Theorem 3.1, we can see that r(t)z(n−1)(t)
is a decreasing function. Consequently it is easy to conclude that there exist two possible cases
of the sign of z(n−1)(t), that is, z(n−1)(t) is either eventually positive or eventually negative for
t ≥ t2 ≥ t1.

Case (I): z(n−1)(t) > 0, t ≥ t2. The proof of this case is similar to that of Theorem 3.2, so we
omit the details.

Case (II): z(n−1)(t) < 0, t ≥ t2. Applying Lemma 2.1, we get z(n−2)(t) > 0 and z′(t) > 0, then
limt→∞ z(t) 6= 0. Define the function ν as (3.23). Since r(t)z(n−1)(t) is decreasing, we have

r(τ(s))z(n−1)(τ(s)) ≤ r(τ(t))z(n−1)(τ(t)), s ≥ t ≥ t2. (3.34)

Dividing (3.34) by r(τ(s)) and integrating it from t to l (l ≥ t), we get

z(n−2)(τ(l)) ≤ z(n−2)(τ(t)) + r(τ(t))z(n−1)(τ(t))

∫ τ(l)

τ(t)

1

r(s)
ds.
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Letting l → ∞ in the above inequality, we obtain

0 ≤ z(n−2)(τ(t)) + r(τ(t))z(n−1)(τ(t))δ(τ(t)).

Noting that z(n−1)(t) < 0 and τ(t) ≥ t, we have

z(n−2)(τ(t)) ≤ z(n−2)(t), t ≥ t2.

Therefore,

−1 ≤
r(τ(t))z(n−1)(τ(t))

z(n−2)(t)
δ(τ(t)),

that is,
−1 ≤ ν(t)δ(τ(t)) ≤ 0, t ≥ t2, (3.35)

where δ is defined as in Theorem 3.4. Next, define the function ω as (3.20). Noting that
r(t)z(n−1)(t) is decreasing and τ(t) ≥ t, we get r(τ(t))z(n−1)(τ(t)) ≤ r(t)z(n−1)(t), ω(t) ≥ ν(t).
Thus, by (3.35), we obtain

−1 ≤ ω(t)δ(τ(t)) ≤ 0, t ≥ t2. (3.36)

We proceed as in the proof of Theorem 3.4 to get (3.31). Multiplying (3.31) by δ(τ(t)) and
integrating from t2 to t, we have

δ(τ(t))ω(t)−δ(τ(t2))ω(t2)+

∫ t

t2

ω(s)τ ′(s)

r(s)
ds+

∫ t

t2

ω2(s)δ(τ(s))

r(s)
ds+

p0

τ0
δ(τ(t))ν(t)−

p0

τ0
δ(τ(t2))ν(t2)

+
p0

τ0

∫ t

t2

ν(s)τ ′(s)

r(s)
ds +

p0

τ0

∫ t

t2

ν2(s)δ(τ(s))

r(s)
ds +

λ

(n − 2)!

∫ t

t2

δ(τ(s))Q(s)σn−2(s)ds ≤ 0. (3.37)

It follows from (3.37) that

δ(τ(t))ω(t) − δ(τ(t2))ω(t2) +
p0

τ0
δ(τ(t))ν(t) −

p0

τ0
δ(τ(t2))ν(t2)

+
λ

(n − 2)!

∫ t

t2

δ(τ(s))Q(s)σn−2(s)ds −
1 + p0/τ0

4

∫ t

t2

(τ ′(s))2

r(s)δ(τ(s))
ds ≤ 0.

Therefore,

δ(τ(t))ω(t) +
p0

τ0
δ(τ(t))ν(t) +

∫ t

t2

[

λ

(n − 2)!
δ(τ(s))Q(s)σn−2(s) −

1 + p0/τ0

4

(τ ′(s))2

r(s)δ(τ(s))

]

ds

≤ δ(τ(t2))ω(t2) +
p0

τ0
δ(τ(t2))ν(t2).

From (3.33) and the above inequality, we get a contradiction to (3.35) and (3.36). This completes
the proof.

Remark 3.3 The oscillation criteria from [9–11, 25] require condition τ(t) ≤ t, so they fail
when τ(t) ≥ t. On the other hand, the oscillation criteria from [14, 20, 26] need 0 ≤ p(t) < 1, so
they cannot be applied when p(t) > 1. Therefore, our results obtained here improve and complement
those results.

4 Examples

In this section, we will show the application of our main results.

Example 4.1 Consider the even order nonlinear neutral differential equations

(

t
1

2 (x(t) + p0x(αt))(n−1)
)

′

+
a

tn−
1

2

x(βt) = 0, t ≥ t0. (4.1)
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Here r(t) = t1/2, τ(t) = αt, q(t) = a/tn−
1

2 , σ(t) = βt, p(t) = p0, 0 < p0 < ∞, f(x) = x, 0 < α < ∞,
0 < β < 1 and a > 0.

If α ≥ 1, then Q(t) = q(τ(t)) = a/(αt)n− 1

2 and conditions (3.4) or (3.5) of Theorem 3.2 reduces
to

a

(

β

α

)n− 3

2

ln
1

β
>

(α + p0)(n − 1)!

e
(4.2)

or

a

(

β

α

)n− 3

2

ln
1

β
> (α + p0)(n − 1)!,

respectively, which guarantees that every solution of (4.1) is oscillatory.

On the other hand, if 0 < β ≤ α ≤ 1, then Q(t) = q(t) = a/tn−
1

2 and conditions (3.14) or
(3.15) of Theorem 3.3 reduces to

aβn− 3

2 ln
α

β
>

(α + p0)(n − 1)!

αe
(4.3)

or

aβn− 3

2 ln
α

β
>

(α + p0)(n − 1)!

α
,

respectively, which guarantees that every solution of (4.1) is oscillatory. Consequently, for all α > 0,
we cover the oscillation criteria for (4.1) whether τ(t) = αt is delay or advanced argument. When
n = 2, (4.1) becomes (E5) in [13], and the conditions (4.2) and (4.3) reduce to the inequalities in
Example 1 in [13]. So our results contain the main results in [13].

Example 4.2 Consider the even order nonlinear neutral differential equations
(

tθ(x(t) + p0x(αt))(n−1)
)

′

+ (n − 1)!tθ−nx(βt) = 0, t ≥ t0 = 1. (4.4)

Let r(t) = tθ, τ(t) = αt, q(t) = (n − 1)!tθ−n, σ(t) = βt, θ ≥ n, p(t) = p0, 0 < p0 < ∞, f(x) = x,
0 < α < ∞ and 0 < β < 1.

If α ≥ 1, then Q(t) = q(t) = (n − 1)!tθ−n. When

βn−θ ln
1

β
> p0 + α,

it follows that (3.4) or (3.5) holds, respectively. Furthermore, from Theorem 3.5, we have
∫ t

1

[

λ0

(n − 2)!
δ(τ(s))Q(s)σn−2(s) −

1 + p0/τ0

4

(τ ′(s))2

r(s)δ(τ(s))

]

ds

=

∫ t

1

[

n − 1

θ − 1
λ0α

1−θβn−2s−1 −
(p0 + α)(θ − 1)

4
αθs−1

]

ds → ∞, as t → ∞,

when (n − 1)λ0α
1−2θβn−2 > (p0 + α)(θ − 1)2/4. This guarantees that every solution of (4.4) is

oscillatory.

On the other hand, if 0 < β ≤ α ≤ 1, then Q(t) = q(τ(t)) = (n − 1)!(αt)θ−n. When

ln
α

β
> p0 + α,

it follows that (3.14) or (3.15) holds, respectively. Furthermore, from Theorem 3.4, we get
∫ t

1

[

λ0

(n − 2)!
δ(s)Q(s)σn−2(s) −

1 + p0/τ0

4

1

r(s)δ(s)

]

ds

=

∫ t

1

[

n − 1

θ − 1
λ0α

θ−nβn−2s−1 −
(p0 + α)(θ − 1)

4α
s−1

]

ds

≥

∫ t

1

[

n − 1

θ − 1
λ0β

θ−2 −
(p0 + α)(θ − 1)

4β

]

s−1ds → ∞, as t → ∞,

when (n − 1)λ0β
θ−1 > (p0 + α)(θ − 1)2/4. Hence, every solution of (4.4) is oscillatory.
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