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Abstract

We investigate the coexistence of positive steady-state solutions to a parabolic system,
which models a single species on two growth-limiting, non-reproducing resources in an
un-stirred chemostat with diffusion. We establish the existence of a positive steady-state
solution for a range of the parameter (m, n), the bifurcation solutions and the stability of
bifurcation solutions. The proof depends on the maximum principle, bifurcation theorem
and perturbation theorem.
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1 Introduction

Consider the following parabolic system

Sy = d1.Spe — muf(S, R), 0<z<1,t>0,
R, = dyR,, — nug(S, R), (1.1)
Uy = d3umm + u(mf(S, R) + Cng(Sa R))7

with the boundary conditions

S.(0,t) = -1, R.(0,t)=—1, u,(0,t)=0,
=0,

Se(1,t) +S(L,1) =0, R.(1,t) +~R(1,1) (1.2)

uz(1,t) +~yu(l,t) =0,
and initial conditions
S(x,0) = So(x) >0, R(z,0) = Ro(z) >0, u(x,0)=ue(z)>0,%#0, (1.3)

where f(S,R) = S/(1 +aS +bR), g(S,R) = R/(1+ aS + bR), m > 0 is the maximal
growth rate of species u on resource S in the absence of resource R, the constant n is
defined similarly, constant ¢ denotes the ratio of the growth yield constant of S and R.
The constant @ > 0 and b > 0 are the Michaelis-Menten constants, v > 0.

Since we are only concerned with the nonnegative solutions (S, R,u) of (1.1), we
can redefine the response functions f, g for S < 0, R < 0 without affecting our results.
The un-stirred chemostat with one resource has been considered by many authors in the
past decade(see [1][2][3]). Just as pointed out in [4], the un-stirred chemostat with two
resources is more realistic and thus of interest, and the system (1.1) with equal diffusion
rates is investigated in paper [5]. Without the assumption of equal diffusion rates, we
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obtain some estimates on the size of the coexistence region near a bifurcation point in
the parameter space. The existence of positive steady-state solution of the system (1.1)
is established by the maximum principle and the theorem of bifurcation, which appears
in [6] to study the local solutions. The stability of bifurcation solutions is also studied via
the perturbation theorem.

2 Extinction

In this section we use the maximum principle to establish conditions under which the
species become extinct.

Lemma 2.1. The region (S > 0, R > 0,u > 0) is invariant.
Proof. Consider the nutrient equation

Sy = d1Sze — muf(S, R), 0<z<1,t>0,

For the fixed u, S(x,t) = 0 is a solution of the differential equation above, S(z,0) >
S(z,0), and —S,(0,t) = 1 > 0 = S,(0). By the comparison theorem for the parabolic
equation (for example see [7]), we can show that S(z,t) > 0 for all (z,¢). Moreover, the
boundary condition S # 0 implies that S(x,t) > 0 for ¢ > 0. Similarly, we can prove that
R(z,t) > 0 and u(z,t) > 0 for all £ > 0, and thus the proof is completed.

Let )\g) > 0(i = 1,2,3) be the principle eigenvalue of the following problem

diPzz + AP = 0, 0<z<l,
¢:(0) =0,  ¢.(1) +v¢(1) = 0.

with the eigenfunction ¢’ > 0(i = 1,2,3) on [0, 1].
Let S(z) be the unique positive solution of the following problem

SJ:J: = 07 D<o < 1,
S(0) = —1,  Su(1) +~S(1) = 0.

The existence and uniqueness of S(z) is standard, and by the maximum principle it is
easy to show that S > 0 on [0, 1].

~ Lemma 2.2. There are positive constants o; and K;(i = 1,2) such that S(z,t) <
S(x) + Kie™®, R(x,t) < S(x) + Kae™ ', for all x € [0,1],¢ > 0.
Proof. Let w(x,t) = S(z,t) — S(x), then w satisfies
wi < diwgy, O<x<l1,t>0,
we(0,t) =0,  wy(l,t) +yw(l,t) =0, t>0.

Then, by the comparison theorem, we have w(z,t) < W(x,t), where W (x,t) is the unique
solution of the linear problem

Wi = diWs, 0<z<1,t>0,
W.(0,1) =0,  Wi(1,t) +yW(1,t) =0,
W(z,0) = S(x,0) — S(x).
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In order to estimate W, let 0 < ay < AS”, W(x,t) = qb(()l)(x)h(a:, t)e~**. Then we have

2d
m_dmm+¢1 Dhy + (a1 = AR, 0<z<1,t>0,

ha(0.8) =0,  hy(1,1) =0,
h@ﬁﬁzﬂLQ@j@»

The maximum principle ([7]) implies that

|S(2,0) — S(x)]
[h(z, t)] < max ()

and this leads to -
S(z,t) < S(x) + Kie™™, z€0,1], t>0,

for some constants K; > 0. Similarly result holds for R.

Lemma 2.3. Let (S, R,u) be a solution of system (1.1)-(1.3), and suppose that
M < A\?. Then there are positive constants K, such that u(z,t) < Ke ™.
min(a,b)

Proof. Straightforward computation leads to

m—+cn

up = dztg, +u(mf(S, R) + cng(S, R)) < d3uy, + WU, 0<z<1,t>0.

Let V(z,t) be the unique solution of the following problem

Vi= dg%ﬁmv, 0<z<1,t>0,
min(a,b)
Ve(0,t) =0, V.(1,t)+~V(1,t) =0,

V(z,0) = u(x,0).

By the comparison principle, we have u(z,t) < V(z,t). Let V(z,t) = (3) (x)h(z,t)e ",

where o > 0 is small enough so that a + M — )\83 < 0. then
min(a,b)
m+cn 3)

h; = dsh G, — 2\ 1,t
h.(0,t) =0, hx(l,t) =0,

u(zx,0)
h(z,0) = EIRe

by ()

As in the previous lemma, it follows that |h(x,t)| < max —=—— [u(z, 0) and the lemma follows.

01 ¢ (x)

3 Coexistence.
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In this section we consider the coexistence of the positive steady-state solutions of the
system (1.1). So we consider the elliptic system

dy Sy —muf(S,R) =0, 0<x<l,
dyRy — nug(S, R) =0, (3.1)
d3uz, +u(mf(S, R) + cng(S, R)) = 0,

with the boundary conditions

S.(0)=—1, R,(0)=—1, (0)

S201) 7 2S(1) = 8y FalD) L) = 0, (1) +7ul) = 0. (3:2)
Let z = (d1.S + cda R + d3u)/(dy + cds), then z satisfies
Zez = 0, 0<x<l, (3.3)

%(0) = =1, 2(1) +72(1) = 0,

and we have z = (1 +7)/y — .

First we give some estimates about the nonnegative solution of (3.1)-(3.2). The similar
proof can be found in [4,8]. We omit the detail here.

Lemma 3.1. Suppose that (S, R,u) is a nonnegative solution of (3.1)-(3.2), then
S >0, R >0, and either 0 < S < 2, 0 < R < zor S = R = 2z Furthermore,
dlS + Cd2R + dgu = (dl + CdQ)Z.

Let s=2— 5, r =2z — R, then by lemma 3.1, either 0 < s, r < z or s =r =0, and

dyd3sse +m(dis+cdar)f(z —s,z—1) =0, 0<x <1,

dodsryy +n(dis+cdar)g(z — s,z —1) =0, 0<zx <], (3-4)
with the boundary conditions
s:(0) =0, r,(0)=0, (3.5)

s:(1) +7s(1) =0, 7.(1) +97(1) =0.
3.1. The special case of dym = din

In this subsection, we consider the case of dym = din and discuss the existence of a
positive solution of (3.4).
Let w = s — r, then w satisfies

Wee — C(2)w=0,0<z<1, w,(0)=0, wy(1)+~yw(l)=0,

where C'(z) = m(dys+ cdar)/(dids(1+a(z —s) +b(z —7))). It follows from the maximum
principle that w = 0, which leads to s = r on [0, 1]. Substituting s = r into (3.4), we have

dyds3Sy. +m(dy + cdy)sf(z—s,2—5)=0, 0<zx <],

$:(0) = 0, s,(1) +vs(1) = 0. (3.6)
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Let A\; > 0 and ¢; > 0 be the principle eigenvalue and eigenfunction of the following
problem, with ¢ normalized so that fol f(z,2)p*dx =1

Gz + MS(2,2)0 =0, ¢:(0) =0, (1) +70(1) = 0. (3.7)

By the result in [8,9], we have

Theorem 3.1. There exists a unique positive solution § of (3.6), if and only if
m > dyds\/(d; + cdy), moreover 0 < § < z, § is continuous with respect to m €
[didsA1/(dy+cdp),00], and  lim ~ § =0 uniformly in (0,1), lim 5=z a.e.x € (0,1).

did3)g )+

m*)(dl Feds

Clearly, if m > dydsA1/(dy + cdy), then (S, R, 1) = (z — 5,2 — 5, (d1 + cdy)5/d3) is the
unique positive steady-state solution of (3.1)-(3.2) in the case dom = din.

3.2. The case of dym # din

In this subsection, we discuss the existence and nonexistence of a positive solution of
(3.4)(3.5). First we give a basic estimate for (s,r).

Lemma 3.2. If dym > dyn, then the solution (s,r) of (3.4)(3.5) satisfies r < s <
d2m

leL )
Proof. Let w= s —r, then

Wee — C(2)w < 0,0 < 2 < 1, w,(0) =0, w,(1) + yw(1) =0,

where C(x) = n(dys + cdor)/(dads(1 + a(z — s) + b(z — r))) > 0. It follows from the
maximum principle that w > 0, and thus r < s.
Again, let w = dyns — dymr, then

e = TBS T EDT) ) fa— 52— 7))

ds
mn(dys + cdor)

- d3(1+a(2—5)—|—b(2—7*))(8_r)
>0

wa(0) =0, wy(1) +yw(1) =0,

dom din
it follows that w < 0,i.e. s < =20 Similarly, if dom < dyn, then we have s < r < dLs.
1n om

The following theorem shows that a positive solution of (3.4)(3.5) cannot exist if both
m and n are too small.

Theorem 3.2. Suppose m < didsA\/(dy + cdy) and n < dadsAi/(dy + cds), then
(s,7) = (0,0) is the unique nonnegative solution of (3.4)(3.5).

Proof. If m < dydsA1/(dy + cdy) and n < dadsA;/(dy + cds), and (s,7) is a nontrivial
nonnegative solution of (3.4)(3.5). Then it follows from the maximum principle that
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dln dldg)\l
> 0,r > 0. If — < m <
T A =" ey
integrating over (0, 1) and using Green formula, we find

multiplying the first equation in (3.4) by s,

dds( [y s2da 4 vs*(1)) =m [y (dis + cdyr)sf(z — 5,2 — r)dx
< m(dy + cdy) fy $2f(z, 2)dx.

By the variational property of the principle eigenvalue, we have

1 1
/ s2dx +ys*(1) > )\1/ s2f(z, z)dx.
0 0

Hence (dydsAy —m(dy + cdy)) fy s2f (2, 2)dz < 0, which leads to s = 0, a contradiction. A
similar result holds if m < dyn/d,. This completes the proof.

Thus if m < dydsA/(dy + cds) and n < dodsA;/(dy + cds), then the washout solution
(z,2,0) is the unique nontrivial nonnegative solution of (3.1)(3.2).

Theorem 3.3 Suppose m > dyds\1/(dy + cds) and n > dads A1 /(dy + cds). Then there
exists a positive solution of (3.4)(3.5).

Proof. 1t is easy to check that (3.4)(3.5) is a quasi-monotone increasing system. Let
(5,7) = (2,2) and (s,1) = (d¢, 0¢), where ¢ is the principle eigenfunction defined by (3.7)
and ¢ > 0 is small enough. Obviously (5,7) = (2, 2) is the upper solution of (3.4)(3.5).
Again

dis + cdor

d1§$$ + m( 5 )f(Z — 5,2 = E)
= oo gn e, - I ) — - 66, - 50))
m(d1 + Cdg) 1 m(d1 + cdg)égb
> 5¢((T - dl)\l)7+a+b T B+ (a0 — 96¢))2> (0<f<1)

as long as 0 is sufficiently small, we have

dys + cdor

dlﬁxa: + m( d
3

Vf(z—s8,2z—1) > 0.

Similarly we have
dis + cdor

d3
Thus, for sufficiently small 6 > 0, the pair (5,7) and (s,r) are the ordered upper and
lower solutions of (3.4)(3.5). From [7], there exists a solution (s,r) satisfies (d¢,d¢p) <
(s,r) < (z, 2).

Theorem 3.4. Suppose that either m > d3A;, n < dods\/(dy + cdy) or m <
didz\i/(dy + cda), n > d3zA1/c. Then there exists a positive solution of (3.4)(3.5).

dQKxx + TL( )g(z — 8,2 = f) > 0.
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Proof. We consider the former case, the other case can be done similarly. Let (s,7) =

(z,2) and (s,1) = (¢, 0), then

dlﬁmm + m(%)f(z — 5,2 —= E)
3
= 0l — i) f(212) = T 2) = S = 00,2)
3 3

For sufficiently small 6 > 0, we note that (5,7) and (s,r) are the ordered upper and
lower solution of (3.4)(3.5). Hence there exists solution (s,r) of (3.4)(3.5) such that
(00,0) < (s,7) < (z,2). So s > 0. It follows that » > 0 from lemma 3.2. This completes
the proof.

3.3. Bifurcation Theorem

Now, for fixed n < dadsA1/(dy + cds), we treat m as a bifurcation parameter to obtain
the local bifurcation which corresponds to the positive solution of (3.4)(3.5).
At first, we rewrite (3.4)(3.5) as

d d
Sz +m(w)f(z,z) + Fi(s,7) =0, 0<x<l,
s+l (38)
s + cdar
Tyz + n(%)g(z, 2)+ Fy(s,r) =0, 0<z<l,
203

with the same boundary conditions, where

Fi(s,r) = m( P (7 = 5,2 = 1) = f(z.2),
Fy(s,r) = n(wxg(z s,z 1) — g(z2)).

dads

Let K be the inverse operator of — d =, then

dys + cd
.- mK((%)ﬂz,z)) CKFR(s,r) =0, 0<z<1,
143
dys 4 o
r— nK((%)g(z,z)) CKFy(s,r)=0, 0<z<l,
203
dis + cd dis + cd
Let T(m s,7) = (mK (7= 012, 2D HE Py (s, 1), nE (S92, 2) +K Fafs. 1),

and G(m,s,r) = (s,r) — T(m,s,r). Then the zeros of G(m,s,r) are the solutions of
(3.4)(3.5).

Let CL[0,1] = {u € C1[0,1] : u,(0) = 0,u,(1) + yu(1) = 0}, endowed with the usual
norm || - ||, and X = C}[0, 1] x C}[0, 1]. Then we have the following theorem

dyds\
Theorem 3.5. Suppose n < d12—|—3cc;2'

G(m,s,r) = 0, and in the neighborhood of (myg,0,0), part of the bifurcation branch
corresponds to the positive solution of (3.4)(3.5), where mo = dsA\; — cn.

Then (mg,0,0) is a bifurcation point of
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Proof. Let L(m,0,0) = DG, (m,0,0) is the Frechet derivative of G(m,s,r) with
respect to (s,7) at (0,0). Straightforward computation gives

diw ~+ cdax diw ~+ cdax

L(mo, 0,0)(w, x) = (w = mo K (=37 (2, 2)), x = nK((—77—=")9(2,2))).

Then L(my,0,0)(w,x) = 0 leads to

dlw + CdQX

Wez + Mo(—————=) f(2,2) =0, O<z<l,
dyw —|C—llcd
Xez +n(— 2X)g(z, z) =0, 0<z<l, (3.9)
dads

Wx(o) =0, Xx(o) =0,
(1) + (1) = 0, xo(1) + (1) = 0.

Noting that mg = dsA\; — cn and f(z, z) = g(z, z), we have
(diw + cdoX)zx + M (diw + cdax) f(z,2) = 0,

so djw + cdyx = ¢, and putting this into (3.9), we find

Lg(z7 Z)qb = 0.

myo
Weg + —f(Z Z)gb Oa Xzz + d2d3

dyds
It is easy to show that there exists a unique positive solution (ws, x1) of the above prob-
lem. Moreover w; > x; and djw; + cdax; = ¢. Hence the null space of L(my,0,0),
N(L(mp,0,0)) = spans{(wi,x1)}. This, dimN(L(mg,0,0)) = 1. Let R(L(my,0,0))
be the range of the operator L(myg,0,0). If (hy,he) € R(L(mg,0,0)), then there exists
(¢, V) € X satisfies

d D do U
D, + mo(ﬁ#)f(z, 2) = Rige, 0<x<l,
dy® cf\p
U, + n( ! d+dc )9(2, 2) = hogs, 0<a<l,

0,(0)=0, W,(0)=0,
O,(1) +7B(1) =0, W,(1)+~P(1)=0.

Thus, we find
(dlq) + Cdglll)xx + Al(dlq) + CdQ\II)f(Z, Z) = (d1h1 + Cdghg)mx,
multiplying the above equation by ¢, and integrating over (0, 1), shows

1
—/ Mo(dih + edshs)dz = 0,
0

which implies R(L(mq,0,0)) = {(h1,hs) € X : [y ¢(d1hy + cdyhy)dx = 0} and codimR(L
(m,0,0)) = 1.
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Now Let Li(myg, 0,0) = D*G (s, (Mo, 0,0), then

d1w1 + Cd2X1

Ll(m07070)(m07070)(w17X1) = (_K( d.d
143

)f(2,2),0).

It is easy to see that Ly (my,0,0)(mg,0,0)(w, x1) € R(L(mo,0,0)). According to Theo-
rem1.7 in [10], there exists a § > 0 and a C* function (m(7),w(7), x(7)) : (=7,7) — Rx X,
such that m(0) = mp, w(0) = 0, x(0) = 0 and (m(7r),s(r),r(7)) = ( (1), 7(w1 +
w(m), T(x1 + x(M))(|7| < §) satisfies G(m(7),s(r),r(7)) = 0. Point on the curve
{(m(7),z2 — (w1 + w(7)),2 — 7(xa + x(7))) : |7| < 6} with 7 > 0 corresponds to the
positive solutions of (3.1)(3.2).

3.4. Stability of the Bifurcation Solution

In this section we shall determine the stability of the bifurcation solutions.

Lemma 3.3. 0is a i — simple eigenvalue of L(my,0,0).

Proof. Suppose L(mg,0,0) = 0. From the proof of Theorem 3.5, we have N (L(m,,0,0))=
spans{ (w1, x1)}, codimR(L(mg,0,0)) = dimN(L(my,0,0)) = 1. We say i(wi,x1) &
R(L(my,0,0)), otherwise

/01 [z, 2)p(diwy + cdaxy)dx = 0,

which is impossible. Thus we complete the proof of the lemma.

Let L(m(7),s(7),7(7)) be the linearized operator of (5.1) at (m(7), s(7),r(7)). Then
the corollary 1.13 and Theorem 1.16 in[11] can be applied and we have the following
lemma.

Lemma 3.4. There exist C! function m — (£(m),U(m)), 7 — (n(7), V(7)) defined
on the neighborhoods of my and 0, respectively, into R x X, such that ({(mg), U(mg)) =
(0, (w1, x1)) = (1n(0),V(0)) and on these neighborhoods

L(m,0,0)U(m) = f(m)U_(m), |m —mg| << 1,

L(m(7),s(7), r(n))V(7) = n(r)v(r), |7| <<1 (3.10)

where U(m) = (u1(m), us(m)), V() = (v1(7),v2(7)), and £ (my) # 0, n(7) and —rm/ ()¢ (my)
have the same sign if (1) # 0.

Theorem 3.6 The differential &' (mg) > 0.
Proof. By (3.10) we have

d1u1 + Cd2u2

Unze +m( iid; )f(2,2) =&§(m)ur, 0<z <1,
dyuy + cd
e+ (T g (2, 2) = Em)us, (3.11)

u1(0) =0, w9 (0) =0,
U1 (1) +yur (1) =0, uge(1) +yua(l) =0.
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Clearly,u; # 0, us # 0. Since U(m) is continuous and U(mg) = (w1, x1), u1(m) > 0,
us(m) > 0 for |m —mgy| << 1. By (3.11) we have

(dyuy + cdaug) vy + m :];cn(chm + cdaus) f(2, 2) = £(m)(dyuy + cdaus).
2
Since dju; + cdaug > 0, it follows that £(m) is the principle eigenvalue of Ly = o +
m ;;C”f(z, z), and increases in m for [m—mg| << 1. Again 5/(m0) £ 0, 50 we must have
¢'(mo) > 0.

Theorem 3.7. The differential of m(7) at 7 = 0 satisfies

o Mmowr + cnxy + (bmg — acn)(wy — x)z

T+ (@t D)2y b

W O) [ = [ o

Proof. Substitute (m(7), s(7), (7)) into the equation of (3.4), divide by 7, differential
with respect to 7, and set 7 = 0, this gives

dlw/ (O) + Cdgxl (0)
d3

01 (0) + 11 (O) (L XL )

3
d1w1 + Cd2X1 ) —w1 + b(Xl — wl)z _
d3 (15 (a+ )2

O 4 (DL e 2)

)f(2,2)

"‘TTL()(

diwy + Cd2X1)—X1 +afw — x1)2 _
dy (1+(a+10)2)?

Now, multiplying the first equation by ¢, adding to the second equation which is multiplied
by c¢, integrating over (0,1) to get

/ ld d
m'(0) [ S G (2 )i

B /1 dywy + cnxl¢m0w1 + cenxy + (bmg — acn)(wy — x)z
0

- ds (11 (a+b)2)? d

le.
o Mowy + cnx1 + (bmo — acn)(wy — x)2

(1+ (a+0b)2)?

) 1 1
m (O)/ O*f(z,2)dx = / ¢ dx.
0 0
Now, we have
dad3z M
d1 + Cdz
defined by Theorem 3.5 are stable for 7 > 0.
Proof. From Theorem 3.5 and 3.7, m'(0) > 0, m'(7) > 0 for || << 1. By Lemma 3.4
and Theorem 3.6, we have n(7) < 0 for 7 > 0, which completes the proof of Theorem.

Theorem 3.8. Suppose n < and bmg > acn. Then the bifurcation solutions
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