
ON THE SIGN DEFINITENESS OF
LIAPUNOV FUNCTIONALS AND STABILITY

OF A LINEAR DELAY EQUATION

L.B.Knyazhishche and V.A.Shcheglov

Institute of Mathematics
National Academy of Sciences of Belarus
Surganov str. 11, Minsk, 220072, Belarus

e-mail: imanb@imanb.belpak.minsk.by

Abstract. In this paper we give a new definition of the positive-definiteness
of the Liapunov functional involved in the stability and asymptotic stability
investigation. Using this notion we prove Liapunov type theorems and apply these
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1. Introduction
This paper deals with stability of delay equations in terms of Liapunov functionals.

We consider the system

ẋ(t) = f(t, xt), f(t, 0) ≡ 0, (1.1)

where x ∈ Rn, t ∈ R, f : R+ × C([−r(t), 0], Rn) → Rn, xt(τ) = x(t + τ), τ ∈
[−r(t), 0], C([−r(t), 0], Rn) is the space of continuous functions on the interval
[−r(t), 0] at any point t (see, for example, [6,17])

It is supposed that there exists a solution x(t, t0, ϕ) of (1.1) with initial data
(t0, ϕ), t0 ∈ R, ϕ ∈ Bt(0, H) and it depends continuously on initial data. (Bt(0, H) =
{ϕ ∈ C([−r(t), 0], Rn), ||ϕ|| < H}, ||ϕ|| = max

τ∈[−r(t),0]
|ϕ(τ)|).

Definition 1.1: The zero solution of (1.1) is called stable if for each ε > 0 and
each t0 ≥ 0 there exists δ = δ(ε, t0) > 0 such that ||ϕ|| < δ implies |x(t, t0, ϕ)| < ε for
all t ≥ t0.

The zero solution is called uniformly stable if δ in Definition 1.1 does not depend
on t0.

Definition 1.2: The zero solution of (1.1) is called attractive if for each t0 ≥ 0
there exists ε1 = ε1(t0) such that ||ϕ|| < ε1 implies x(t, t0, ϕ) → 0 as t → ∞.

The zero solution is called asymptotically stable if it is stable and attractive.
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Let V : R+ × C → R (V (t, 0) ≡ 0) be a continuous, Lipschitzian with respect
to the second argument functional. V̇ (t, ϕ) denotes the derivative of V (t, ϕ) with
respect to (1.1).

Stability and asymptotic stability conditions have been studied in numerous
papers [1]-[20]. It is well-known [6,17] that conditions

u(|ϕ(0)|) ≤ V (t, ϕ), (1.2)

V̇ (t, ϕ) ≤ 0, (1.3)

guarantee stability of the zero solution of (1.1), where u : R+ → R+ is continuous
and u(α) > 0 for all α > 0, u(0) = 0 (functions with these properties are called Hahn
functions).

To study asymptotic stability the following requirements were proposed in [8]

u(|ϕ(0)|) ≤ V (t, ϕ) ≤ v(||ϕ||), (1.4)

V̇ (t, ϕ) ≤ −p(t)w(|ϕ(0)|), (1.5)

where v, w are Hahn functions, p(t) is an integrally positive function, i.e.,

∞
∑

i=1

∫ di

ci

p(t)dt = ∞ (1.6)

holds for any set of intervals (ci, di), i ∈ Z+ if di − ci > σ > 0, ci+1 > di.
In fact, there are numerous papers and books (see,[1-4],[6],[8-10],[13-17]) dealing

with improvements of requirements for V and V̇ . The purpose of this paper is to
weaken condition (1.2) and to study asymptotic stability for (1.1) with unbounded
right hand side allowing that p(t) in (1.5) is vanishing at infinity and the second
inequality in (1.4) is not fulfilled.

2. Stability

To investigate stability we need the following condition: for any t0 ≥ 0 there exists
T > 0 such that t0 − r(t0) ≤ t − r(t) for t > t0 + T .

Theorem 2.1: Suppose that for equation (1.1) there exist a Liapunov functional
V (t, ϕ), a number H > 0 and Hahn functions u, v such that

(i) u(|ϕ(0)|) ≤ V (t, ϕ), provided that t ∈ R+ and ϕ satisfies |ϕ(0)| =
max

τ∈[−r(t),0]
|ϕ(τ)|, ||ϕ|| < H;

(ii) V̇ (t, ϕ) ≤ 0, provided that t ∈ R+ and V (t, ϕ) > 0, ||ϕ|| < H;
Then the zero solution of (1.1) is stable. If, in addition, r′(t) ≤ 1 and

(iii) V (t, ϕ) ≤ v(||ϕ||) for t ∈ R+, ||ϕ|| < H;
then the zero solution of (1.1) is uniformly stable.

Proof: Let us suppose that the equilibrium is not stable at some initial time
t0. Without loss of generality we can assume t0 = 0. Then there is ε > 0 such
that there exists sequences {tn}∞n=1, {ϕn}∞n=1, ||ϕn|| → 0 (n → ∞) such that
|x(tn, 0, ϕn)| = ε. It is easy to see that the sequences {tn}∞n=1, {ϕn}∞n=1 can be chosen
so that |x(tn, 0, ϕn)| < ε for all t ∈ [−r(0), tn). Note that continuous dependence
of the solutions on the initial data guarantees that tn → ∞ if n → ∞. So we can
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choose n0 such that −r(0) < t − r(t) for t ≥ tn0. It is obvious that |x(tn, 0, ϕn)| ≤
maxθ∈[−r(tn),0] |x(tn + θ, 0, ϕn)| = ε for n > n0. Hence, condition (i) guarantees that
V (tn, xtn(ϕn)) ≥ u(ε) > 0. Since ||ϕn|| → 0 if n → ∞ and the functional V is
continuous we can indicate a sequence {αn}∞n=1 such that αn > 0 V (0, ϕn) ≤ αn and
αn → 0 if n → ∞. On the other hand, according to (ii), the functional V does
not increase along the solution x(t, 0, ϕn) at any point t if V (t, xt(ϕn)) > 0. If there
exist a point 0 < t′n < tn such that V (t′n, xt′n

(ϕn)) ≤ 0 then V (t, xt(ϕn)) ≤ 0 for all
t ∈ [t′n, tn] by (ii). So we can conclude that V (tn, xtn(ϕn)) ≤ αn → 0 if n → ∞.
Obtained contradiction proves the stability.

Uniform stability can be proved in a similar way.
Remark 2.1: Condition (i) extends the class of functionals which are admissible

for stability investigation because functionals with sign changes can be used (see also
[5]).

3. Asymptotic stability

Let q : R+ → R+ be a continuous function and let I be a set of the form

I =
∞
⋃

i=1

(ci, di), ci > di, di → ∞, if i → ∞

and there is σ > 0 such that
∫ di

ci
q(t)dt > σ for any i ∈ Z+

Definition 3.1: A function p : R+ → R+ is said to be I — integrally

positive with respect to q(t) if for any σ′ > 0, k whenever I ′ =
∞
⋃

i=k

(c′, d′) with

ci < c′i, d′
i < di,

∫ d′
i

c′
i

q(t)dt > σ′, then
∫

I′ p(t)dt = ∞.

A function p(t) is called I-integrally positive if q(t) in Definition 3.1 is a constant
function (see [12] for ordinary differential equations).

Definition 3.2: A delay function r(t) is said to be embedded into I if there are
points ti ∈ (ci, di) such that ti − r(ti) ∈ (ci, di) for all i ∈ Z+.

Note that the class of the functions I-integrally positive with respect to q(t) is
wider then that of integrally positive functions, and includes, for example, functions
which decrease like 1/t on some appropriate sequence of intervals and have arbitrary
behavior outside of these intervals.

In what follows the condition r′(t) ≤ δ < 1 is assumed. Let β be an increasing
Hahn function and β(s) > s.

Theorem 3.1: If for equation (1.1) there are a Liapunov functional V (t, ϕ), a
number H > 0, Hahn functions u, v, w and a set I such that:

(i) ||f(t, ϕ)|| ≤ F (t) for t ∈ I, ||ϕ|| ≤ H;
(ii) V (t, ϕ) ≤ v(||ϕ||) for t ∈ I, ||ϕ|| ≤ H;
(iii) u(|ϕ(0)|) ≤ V (t, ϕ), provided that t ∈ R+ and ϕ satisfies max

τ∈[−r(t),0]
|ϕ(τ)| ≤

β|ϕ(0)|), ||ϕ|| ≤ H;
(iv) V̇ (t, ϕ) ≤ −p(t)w(|ϕ(0)|) provided that t ∈ R+, V (t, ϕ) > 0, ||ϕ|| ≤ H;
(v) p(t) is I—integrally positive with respect to F (t);
(vi) r(t) is embedded into I;

then the zero solution of (1.1) is asymptotically stable.
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Proof: It remains to prove the attractivity. Without loss of generality we can
consider the initial time t0 = 0. Let us take ε ∈ (0, H) and σ > 0 such that
for every ϕ, ||ϕ|| < σ the inequality |x(t, ϕ)| ≤ ε is satisfied. Let S(t) = {ϕ :
V (t, ϕ) ≤ 0, ||ϕ|| < ε}. First we investigate asymptotic behavior of the solutions
x(t, ϕ), ||ϕ|| < σ which enter into S(t′) at some t′ and remain (by condition (iv))
in S(t) if t > t′. Assume that there is a solution x(t, ϕ) such that V (t′, xt′) ≤ 0
for some t′, but x(t, ϕ) does not tend to zero when t → ∞. Then there are a
sequence {tn}, tn → ∞ and 0 < ε1 < ε, for which |x(tn, ϕ)| > ε1. Take ∆ > 0
such that β(s) − s > ∆ for s > ε1. Since (iii) holds and V (tn, xtn) ≤ 0 we have
that for every point tn there is t1n such that tn − r(tn) ≤ t1n ≤ tn and, besides,
|x(t1n, ϕ)| > |x(tn, ϕ)| + ∆. Also, for every t under sufficiently large n (namely, such
that tn − r(tn) is sufficiently large) there is t2n such that t1n − r(t1n) ≤ t2n ≤ t1n and
|x(t2n, ϕ)| > |x(tn, ϕ)| + 2∆. Thus, we have |x(tin, ϕ)| > i∆ > ε for sufficiently large
n and i, which is a contradiction showing that if |ϕ| < σ and x(t, ϕ) enters into S(t′)
at some t′ then |x(t, ϕ)| → 0 if t → ∞.

Consider now the solutions of (1.1) which remain in the set S+(t) = {ϕ : V (t, ϕ) >
0, ||ϕ|| < ε}. It follows from condition (iv) of the theorem that the functional V (t, xt)
is not increasing for any such solution x(t, ϕ) because V (t, xt) > 0 if t ≥ 0.

We prove that V (t, xt) → 0 if t → ∞. Choose ti ∈ (ci, di) such that
ti − r(ti) ∈ (ci, di). First we show that there exist intervals (tik − r(tik), tik) such

that |x(t, ϕ)| → 0 if t ∈
∞
⋃

k=1
(tik − r(tik), tik). Suppose the contrary. Then there

exists ε > 0 such that for every n ∈ Z+ there is a point t̂n such that |x(t̂n, ϕ)| > ε
and t̂n ∈ (tn − r(tn), tn). Let (c′n, d′

n) be the maximal connected interval such that
|x(t, ϕ)| > ε/2 for t ∈ (c′n, d

′
n) and cn ≤ c′n, d′

n ≤ dn. From (i) and requirements for I

it follows that
∫ d′n
c′n

F (t)dt > min{ε/2, σ}, where σ is taken from the description of I.
Since (iv) holds and p(t) is I-integrally positive with respect to F (t) we have

∞
∑

n=1

∫ d′n

c′n

V̇ (t, xt)dt = −∞.

This contradicts the assumption that V (t, xt) > 0 if t > 0.
Thus it is proved that ||xti

k

|| → 0 when k → ∞ at least for some subsequence {tik}
of the sequence {ti}. From condition (ii) of the theorem it follows that V (tik , xti

k

) → 0

if k → ∞. Hence, V (t, xt) → 0 when t → ∞.
Suppose that |x(t, ϕ)| does not tend to zero if t → ∞. Then, taking into account

that ||xtik
|| → 0 when k → ∞, it is easy to see that there are ε1 > 0 and points

tn → ∞, n → ∞ such that |x(tn, ϕ)| = ε1 and |x(t, ϕ)| < ε1 for t ∈ [tn − r(tn), tn].
By (iii), V (tn, xtn) does not tend to zero.

This contradiction shows that x(t, ϕ) → 0 if t → ∞. So asymptotic stability is
proved.

In the sequel we construct Liapunov functionals meeting conditions in Theorem
3.1.

4. The equation ẋ(t) = ax(t) + bx(t − r).

We shall consider the scalar linear equation

ẋ(t) = a(t)x(t) + b(t)x(t − r(t)), t > 0. (4.1)
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For the sake of simplicity, at first we are dealing with the case when a(t) ≡
a, b(t) ≡ b, r(t) ≡ r. So (4.1) looks like

ẋ(t) = ax(t) + bx(t − r), t > 0. (4.2)

The region of asymptotic stability for (4.2) is well-known [6]. This result was obtained
by the method of the characteristic equation. On the other hand, the way for
obtaining a near result with a Liapunov functional was given in [6]. However, in
the process of constructing one must find a solution of a similar delay equation. This
does not allow to generate the scheme for more complicated equations. We show that
the use of condition (i) of Theorem 2.1 overcomes this difficulty.

Usually, V has the form

V (t, xt) = x2(t) +
∫ t

t−r
K(u)x2(u)du, K(u) ≥ 0,

which immediately provides (1.2) and condition (i) of Theorem 2.1 but the stability
conditions are far from the best. There is also considered (see, for example, [1]-[3])
functional V (t, xt) in the form

V (t, xt) = V1(t, xt) + V2(t, xt),

where

V1(t, xt) =
1

2
(x(t) +

∫ t

t−r
K(u)x(u)du)2

Since

(
∫ t

t−r
K(u)x(u)du)2 ≤

∫ t

t−r
|K(u)|du

∫ t

t−r
|K(u)|x2(u)du

where the function K(u) is not necessarily of a constant sign, V1(t, xt) does not satisfy
(1.2), in general. So the additional term

V2(t, xt) =
∫ 0

−r

∫ t

t+s
D(s, u, xu)duds, D(s, u, xu) ≥ 0,

is used to satisfy (1.2). To this end strict relations between D and K have to be
required.

Now we suggest the condition

sup
t≥0

∫ t

t−r
|K(t, u)|du < 1, (4.3)

guaranteeing that V1(t, xt) ≥ u(|x(t)|) for any x(t) such that |x(t)| = max
t−r≤u≤t

|x(u)|,
i.e. condition (i) of Theorem 2.1, is fulfilled without any relation between K and D.

We have

V̇1(t, xt) = (x(t) +
∫ t

t−r
K(t, u)x(u)du)

(
∫ t

t−r

∂K(t, u)

∂t
x(u)du + (a + K(t, t))x(t) + (b − K(t, t − r))x(t − r))
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Let K(t, t− r) = b. To have V̇ (t, xt) as a quadratic of x(t) and
∫ t
t−r K(t, u)x(u)du

we require that the function K(t, u) is a solution of the equation

∂K(t, u)

∂t
= φ(t)K(t, u),

where φ(t) is still undefined function.
For the case of constant coefficients a, b, consider a constant function φ(t). Then

K(t, u) = beα(u−t+r), α − const.

Now (4.3) (i.e. condition (i) of Theorem 2.1) is guaranteed by the inequality
|b|α−1(eαr − 1) < 1. This is satisfied if α < 0 and

|b| <
|α|

1 − e−|α|r
(4.4)

Now we try to choose the best α. Denote

x1(t) = x1(t, xt) = b
∫ t

t−r
eα(u−t+r)x(u)du, a1 = a + beαr.

Then
V̇1(t, xt) = a1x

2(t) + (a1 − α)x(t)x1(t) − αx2
1(t).

To ensure the condition V̇ (t, xt) < 0 let us take

D(s, u, xu) = peαsx2(u),

where p > 0 is constant. Then

V̇2(t, xt) = px2(t)
∫ 0

−r
eαsds − peαt

∫ t

t−r
eαux2(u)du

By the Cauchy - Schwarz integral inequality we have

∫ t

t−r
eαux2(u)du ≥ (

∫ t
t−r eαux(u)du)2

∫ t
t−r eαudu

=
eαt−2αr

b2
∫ 0
−r eαsds

x2
1(t),

whence

V̇2(t, xt) ≤
p(1 − e−αr)

α
x2(t) − pαe−2αr

b2(1 − e−αr)
x2

1(t),

V̇ (t, xt) ≤ (a1 +
p(1 − e−αr)

α
)x2(t) + (a1 − α)x(t)x1(t) − α(1 +

pe−2αr

b2(1 − e−αr)
)x2

1(t)

Clearly, V̇ (t, xt) ≤ 0 if there exists p such that

b2(eαr − e2αr) ≤ p ≤ αa1

e−αr − 1
, (4.5)

and
b2(eαr − 1) +

αa1

eαr − 1
− |b|(a1 + α) ≤ 0, (4.6)
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By virtue of (4.5) and (4.6), such a p exists if

a1 ≤ 0, b2(eαr − e2αr) ≤ αa1

e−αr − 1
, (4.7)

and
b2(eαr − 1) +

αa1

eαr − 1
− |b|(a1 + α) ≤ 0, (4.8)

Inequality (4.8) may be reduced to

(b + a)(−b +
α

eαr − 1
) ≤ 0 for b > 0

and
(b(2eαr − 1) + a)(b +

α

eαr − 1
) ≤ 0 for b ≤ 0.

Analyzing above inequalities one can see that conditions (4.4),(4.7), (4.8) hold
everywhere on the domain −a ≥ |b| if |α| is taken sufficiently large. In case when
−b ≥ |a|, requirements (4.7),(4.8) are satisfied if α = 1

2
(a + b) and (4.4) holds for the

pair (a, b).
Remark 4.1: It should be noted that the functional V (t, xt) satisfies (1.2). In

fact, we have in the above example

V (t, xt) = (x(t) + b
∫ t

t−r
eα(u−t+r)x(u)du)2 +

∫ 0

−r

∫ t

t+s
keαsx2(u)duds

We will show that V (t, xt) → 0 implies x(t) → 0. If

∫ 0

−r

∫ t

t+s
D(s, u, xu)dsdu =

∫ 0

−r

∫ t

t+s
keαsx2(u)duds → 0 (4.9)

then

x1(t) = b
∫ t

t+s
eα(u−t+r)x(u)du → 0 (4.10)

In fact, since k, eα(s), xn(u) are bounded, (4.9) implies

∫ t

t−r
ke−αr(xn(u))2du → 0 (4.11)

Using (4.11) and the Cauchy-Schwarz inequality it is easy to see that (4.10) is valid.
Note that the main step here is that (4.9) implies (4.11). If coefficients of the

delay equation are not constant (unbounded, in general) we have to choose k as an
unbounded, in general, function. In such a case (4.9) does not imply (4.11) and (1.2)
is not true. This situation is realized, for example, if a ≡ 0, b depends on t and
lim sup

t→∞
b(t) = ∞.

5. The equation ẋ(t) = b(t)x(t − r)

Let us consider the equation

ẋ(t) = b(t)x(t − r) (5.1)
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and modify the form of V1 and V2. We set V1(t, xt) = 1
2
(x(t) + x1(t))

2, where

x1(t) = e−α(t−r)
∫ t

t−r
b(u + r)eα(u)x(u)du,

and the function α(t) is defined by

α(t) = c
∫ t+r

0
b(u + r)du, b(t) ≤ 0, c > 0 (5.2)

Denote B(t) =
∫ t+r
t b(u + r)du. We have

V̇1(t, xt) = b(t + r)(ecB(t)x2(t) + (ecB(t) − c)x(t)x1(t) − cx2(t)).

Let

V2(t, xt) = p
∫ 0

−r

∫ t

t+s
b(|s − u| + r)e−α(|s−u|−r)b(u + r)e2α(u)−α(u−r)x2(u)duds

Then

V̇2(t, xt) = p(x2(t)b(t + r)eα(t)+cB(t)
∫ 0

−r
b(|s − t| + r)e−α(|s−t|−r)−

b(t + r)e−α(t−r)
∫ t

t−r
b(u + r)eα(u)+cB(u)x2(u)du) ≤

pb(t + r)(x2(t)eα(t)+cB(t)
∫ t+r

t
b(u + r)e−α(u−r)du+

eα(t−r)

∫ t
t−r |b(u + r)|eα(u−r)du

(
∫ t

t−r
b(u + r)eα(u)x(u)du)2) =

pb(t + r)(
1

c
ecB(t)(ecB(t) − 1)x2(t) +

c

e−cB(t−r) − 1
x2

1(t)).

Suppose that function B(t) satisfies the inequality

bs = sup
t≥−r

|B(t)| = sup
t≥−r

∫ t+r

t
|b(u + r)|du < ∞ (5.3)

Then
V̇ (t, xt) ≤ b(t + r)((e−cbs +

p

c
e−cbs(e−cbs − 1))x2(t)+

(e−cbs − c)x(t)x1(t) + c(
pe−cbs

1 − e−cbs

− 1)x2
1(t)). (5.4)

Evidently, V̇ (t, xt) ≤ 0 if there exists p such that

ecbs − 1 ≤ p ≤ c

1 − e−cbs

(5.5)

and
4e−2cbsp2 − 4pe−cbs(

c

ecbs − 1
+ 1 − e−cbs) + (c + e−cbs)2 ≤ 0 (5.6)

Inequalities (5.5), (5.6) hold with some p if the estimate bs ≤ ln 4 is true and c = 1
2
.

Everywhere below (see (5.2)) we set c = 1
2
.
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Theorem 5.1: Suppose that b(t) ≤ 0,

sup
t≥0

∫ t

t−r
|b(u + r)|du ≤ ln 4.

and

sup
t≥0

∫ t

t−r
|b(u + r)|eα(u)−α(t−r)du < 1, (5.7)

Then the zero solution of (5.1) is uniformly stable.
Remark 5.1: Condition (5.7) is sufficient for condition (i) of Theorem 2.1 (see

(4.3)).
Let us find sufficient conditions for the asymptotic stability using Theorem 3.1.

Show, at first, that the functional V satisfies condition (ii) of Theorem 3.1. In fact,

V1(t, xt) ≤
1

2
||xt||2(1 +

∫ t

t−r
|b(u + r)|eα(u)−α(t−r)du)2 ≤

1

2
||xt||2(1 +

∫ t

t−r
|b(u + r)|du)2 ≤ (1 + bs)

2

2
||xt||2,

V2(t, xt) ≤ pb2
se

bs

2 ||xt||2.
Furthermore, it is easy to see that (5.7) implies condition (iii) with β(s) = s(1 +
δ1)/(2δ1), where δ1 is chosen from the inequality

sup
t≥0

∫ t

t−r
|b(u + r)|eα(u)−α(t−r)du < δ1 < 1

Besides, from (5.3)-(5.6) we can conclude that bs < ln 4 implies the existence of a
constant c1 > 0 such that

V̇ (t, xt) ≤ c1b(t + r)x2(t).

Thus we have proved the following
Theorem 5.2: Suppose that all requirements of Theorem 5.1 are satisfied and

there is a set I such that r is embedded into I and |b(t + r)| is I-integrally positive
with respect to |b(t)|. Then the zero solution of (5.1) is asymptotically stable.

Note here that the estimate bs ≤ ln 4 is not the best one [19] and requirement
(5.7) is not needed [2] if b(t) is bounded.

6. The equation ẋ(t) = b(t)x(t − r(t)).

The results can be extended to the case r = r(t). Consider the equation

ẋ(t) = b(t)x(t − r(t)), (6.1)

where r′(t) ≤ δ < 1. Take again V1(t, xt) = (x(t) + x1(t))
2, where

x1(t) = e−α(t−r(t))
∫ t

t−r(t)
β(u)eα(u)x(u)du,
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β(t − r(t)) =
b(t)

1 − r′(t)
, α(t) =

1

2

∫ t

0
ξ(s)ds, ξ(t − r(t)) =

β(t)

1 − r′(t)
.

By the assumption on r′(t), the functions β, ξ are well defined and negative, provided
b(t) < 0.

We have

V̇1(t, xt) = β(t)(e
1
2

∫

t

t−r(t)
ξ(τ)dτ

x2(t) + (e
1
2

∫

t

t−r(t)
ξ(τ)dτ − 1

2
)x(t)x1(t) −

1

2
x2

1(t)),

∫ t−r(t)

−r(0)
ξ(τ)dτ =

∫ t

0
β(τ)dτ (6.2)

Let

V2(t, xt) = p
∫ t

t−r(t)
F1(s)

∫ t

s
F2(u)x2(u)duds,

where F1(s) = ξ(s)e−α(s), F2(u) = β(u)e2α(u)−α(u−r(u)). Using (6.2) and previous
integral estimates we have

V̇2(t, xt) ≤ pβ(t)(2x2(t)e
1
2

∫

t

t−r(t)
ξ(τ)dτ

(e
1
2

∫

t

t−r(t)
ξ(τ)dτ − 1) +

x2
1(t)

2(e
− 1

2

∫

t

t−r(t)
β(τ)dτ − 1)

).

Since

sup
t≥0

∫ t

t−r(t)
|β(s)|ds = sup

t≥0

∫ t

t−r(t)
|ξ(s − r(s))|(1 − r′(s))ds =

sup
t≥0

∫ t−r(t)

t−r(t)−r(t−r(t))
|ξ(s)|ds ≥ sup

t≥0

∫ t

t−r(t)
|ξ(s)|ds

and

sup
t≥t1

∫ t

t−r(t)
|b(s)|ds = sup

t≥t1

∫ t−r(t)

t−r(t)−r(t−r(t))
|β(s)|ds ≥ sup

t≥0

∫ t

t−r(t)
|β(s)|ds,

we have

bs = sup
t≥t1

∫ t

t−r(t)
|b(s)|ds

where the point t1 is defined from the equation t1 − r(t1) = 0.
Now we want to apply Theorem 3.1. According to condition (v), function |β(t)|

is to be I-integrally positive with respect to |b(t)| for some I. But β in not known
explicitly, so consider the set

Ir =
∞
⋃

i=1

(ci − r(ci), di − r(di)).

Since
∫ di

ci
|b(s)|ds =

∫ di−r(di)
ci−r(ci)

|β(s)|ds, one can state that, for given I =
∞
⋃

i=1
(ci, di), the

function |β(t)| is Ir-integrally positive with respect to |b(t)| if and only if |b(t)| is
I-integrally positive with respect to |b(t − r(t))|(1 − r′(t)).

Thus, if we demand that r(t) is embedded into Ir and |b(t)| is I-integrally positive
with respect to |b(t− r(t))|(1− r′(t)) then conditions (v) and (vi) of Theorem 3.1 will
be satisfied.
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A possible way to satisfy condition (i) of Theorem 2.1 is to require

sup
t≥t2

∫ t

t−r(t)
|b(u − r(u))|(1− r′(u))eα1(u,t−r(t))du < 1, (6.3)

where α1(u, t−r(t)) = 1
2

∫ u
t−r(t) b(s)ds and the point t2 satisfies t2−r(t2)−r(t2−r(t2)) =

0.
If we follow the scheme of section 5 we can obtain the next conclusion:
Theorem 6.1: If b(t) ≤ 0, bs ≤ ln 4 and (6.3) holds, then x ≡ 0 is uniformly

stable. If, in addition, bs 6= ln 4, and there is I such that r(t) is embedded into Ir

and |b(t)| is I-integrally positive with respect to |b(t − r(t))|(1− r′(t)); then x ≡ 0 is
asymptotically stable.

Remark 6.1: The best estimate for bs by using Liapunov-Krasovskii functionals
is bs < 1 (see [1]-[3],[16]). On the other hand, in [7] it was proved by Liapunov-
Razumikhin method that for bounded r(t) the zero solution of (6.1) is stable if
bs ≤ 3/2. Here, we guarantee stability in a more general situation but only under
bs ≤ ln 4.

Let us give an example which illustrates the conditions of Theorem 6.1.
Example 6.1: Consider equation (6.1) with r(t) = λ1t, 0 ≤ λ1 < 1, b(t) =

−( 1
t+1

+ c(t)), where

c(t) =

{

γt sin t2, t ∈ T,
0, t 6∈ T,

γ ≥ 0, T =
⋃

n≥n1
(
√

2πk,
√

π(2k + 1)), k = [λ1−4n

2π
], λ = 1 − λ1, n1 is such that

λ2−4n

2π
< [

λ1−4n

2π
] <

λ−4n

2π
− 1

2
, n ≥ n1

Clearly, c(t) is a continuous, unbounded, nonnegative function with one ”peak”
on every interval (λ1−2n, λ−2n), n ≥ n1 and the area of each ”peak” is equal to γ.

Let us check conditions of theorem 6.1. We have t1 = t2 = 0 and

bs ≤ γ + sup
t≥0

∫ t

λt

1

u + 1
du = γ + sup

t≥0
ln

t + 1

λt + 1
= γ − ln λ.

Hence bs ≤ ln 4 if γ − ln λ ≤ ln 4. Condition (6.3) is also fulfilled if

sup
t≥t2

∫ t

t−r(t)
|b(u − r(u))|(1 − r′(u))e

∫

u

t−r(t)
b(s)ds

du ≤ γ+

sup
t≥0

∫ t

λt

1

u + 1/λ
e−

∫

u

λt

1
s+1

dsdu < γ + 1 − λ < 1.

Finally, |b(t)| is I-integrally positive with respect to |b(t − r(t))|(1 − r′(t)) for
I =

⋃

n≥n1

(λ1−2n, λ−2n).

Thus the zero solution is asymptotically stable if 1 > λ > 1/4 and γ <
min{λ, ln(4λ)}.

Remark 6.2: Note that Example 6.1 was considered in [7],[18] under γ = 0,
where the asymptotic stability was proved for 1 > λ > 1/e.
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