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1 Introduction

The Ulam stability (Ulam-Hyers, Ulam-Hyers-Rassias, Ulam-Hyers-

Bourgin,...) of various functional equations has been investigated by

many authors (see [14], [15], [6], [8], [3], [9], [13], [25], [30], [31]). There are
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some results for differential equations ([16], [18], [19], [23], [36]), integral

equations ([5], [17], [35]), for difference equations [4], [28], [29], [44]), etc.

([10], [11], [32]). For other results in the case of fixed point problems and

coincidence point problems see [2], [26], [34], [37], [39].

The aim of this paper is to present existence and Ulam-Hyers stability

results for some problems associated with integral inclusions and partial dif-

ferential inclusions.

2 Ulam-Hyers stability via weakly Picard op-

erators

Let (X, d) be a metric space and consider the following families of subsets of

X:

P (X) := {Y ∈ P(X)| Y 6= ∅}, Pb(X) := {Y ∈ P (X)| Y is bounded},

Pcl(X) := {Y ∈ P (X)| Y is closed}, Pcp(X) := {Y ∈ P (X)| Y is compact}.

We will denote by B̄(x0, r) the closure of B(x0, r) in (X, d), where

B(x0, r) := {x ∈ X|d(x0, x) < r} is the open ball centered at x0 ∈ X with

radius r > 0 and by B̃(x0, r) the closed ball centered at x0 ∈ X with radius

r > 0, i.e., B̃(x0, r) := {x ∈ X|d(x0, x) ≤ r}.
If (X, d) is a metric space, then the gap functional in P (X) is defined as

Dd : P (X) × P (X) → R+, Dd(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}.

In particular, if x0 ∈ X then Dd(x0, B) := Dd({x0}, B).

We will denote by H the generalized Pompeiu-Hausdorff functional on

P (X), defined as

Hd : P (X)×P (X) → R+∪{+∞}, Hd(A,B) = max{sup
a∈A

Dd(a,B), sup
b∈B

Dd(b, A)}.

Let (X, d) be a metric space. If F : X → P (X) is a multivalued opera-

tor, then x ∈ X is called a fixed point for F if and only if x ∈ F (x). The
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set Fix(F ) := {x ∈ X| x ∈ F (x)} is called the fixed point set of F , while

SFix(F ) = {x ∈ X| {x} = F (x)} is called the strict fixed point set of F .

For a multivalued operator F : X → P (Y ) the graph of F will be denoted

by

Graph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}.

Notice that f : X → Y is a selection for F : X → P (Y ) if f(x) ∈ F (x), for

each x ∈ X.

In particular, when F is a singlevalued operator, we obtain the similar

well-known concepts in fixed point theory.

For the following notions see I.A. Rus [33] and [37], I.A. Rus, A. Petruşel,

A. Ŝıntămărian [40] and A. Petruşel [27].

Definition 2.1. Let (X, d) be a metric space and f : X → X be an operator.

By definition, f is a weakly Picard operator (briefly WPO) if the sequence

(fn(x))n∈N of successive approximations for f starting from x ∈ X converges,

for all x ∈ X and its limit is a fixed point of f .

If f is a WPO, then we consider the operator

f∞ : X → X defined by f∞(x) := lim
n→∞

fn(x).

Notice that f∞(X) = Fix(f).

Definition 2.2. Let (X, d) be a metric space, f : X → X be a WPO and c > 0

be a real number. By definition, the operator f is a c-weakly Picard operator

(briefly c-WPO) if and only if

d(x, f∞(x)) ≤ c d(x, f(x)), for all x ∈ X.

In the multivalued case we have the following concepts.

Definition 2.3. Let (X, d) be a metric space, and F : X → Pcl(X) be a

multivalued operator. By definition, F is a multivalued weakly Picard (briefly

MWP) operator if for each x ∈ X and each y ∈ F (x) there exists a sequence
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(xn)n∈N such that:

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ F (xn), for each n ∈ N;

(iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of F .

Remark 2.1. A sequence (xn)n∈N satisfying condition (i) and (ii) in the Def-

inition 2.3 is called a sequence of successive approximations of F starting from

(x, y) ∈ Graph(F ).

If F : X → P (X) is a MWP operator, then we define F∞ : Graph(F ) →
P (FixF ) by the formula F∞(x, y) := { z ∈ Fix(F ) | there exists a sequence

of successive approximations of F starting from (x, y) that converges to z }.

Definition 2.4. Let (X, d) be a metric space and let ψ : R+ → R+ be an

increasing function which is continuous at 0 and ψ(0) = 0. Then F : X →
P (X) is said to be a multivalued ψ-weakly Picard operator if it is a multivalued

weakly Picard operator and there exists a selection f∞ : Graph(F ) → Fix(F )

of F∞ such that

d(x, f∞(x, y)) ≤ ψ(d(x, y)), for all (x, y) ∈ Graph(F ).

If there exists c > 0 such that ψ(t) = ct, for each t ∈ R+, then F is called a

multivalued c-weakly Picard operator.

Recall that, if (X, d) is a metric space, then F : X → Pcl(X) is said to be

a multivalued α-contraction if α ∈ [0, 1) and

Hd(F (x), F (y)) ≤ αd(x, y), for all x, y ∈ X,

Example 2.1. Let (X, d) be a complete metric space and F : X → Pcl(X) be a

multivalued α-contraction. Then F is a c-MWP operator, where c = (1−α)−1.

For the theory of weakly Picard operators, see [33] for the singlevalued case

and [40] and [27] for the multivalued one.

We present now some Ulam-Hyers stability concepts for the fixed point

problem associated with a multivalued operator.
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Definition 2.5. Let (X, d) be a metric space and F : X → P (X) be a

multivalued operator. The fixed point inclusion

(2.1) x ∈ F (x), x ∈ X

is called generalized Ulam-Hyers stable if and only if there exists ψ : R+ → R+

increasing, continuous at 0 and ψ(0) = 0 such that for each ε > 0 and for each

solution y∗ ∈ X of the inequation

(2.2) Dd(y, F (y)) ≤ ε

there exists a solution x∗ of the fixed point inclusion (2.1) such that

d(y∗, x∗) ≤ ψ(ε).

If there exists c > 0 such that ψ(t) := ct, for each t ∈ R+, then the fixed point

inclusion (2.1) is said to be Ulam-Hyers stable.

The following theorem is an abstract result concerning the Ulam-Hyers sta-

bility of the fixed point inclusion (2.1) for multivalued operators with compact

values.

Theorem 2.1. (I.A. Rus [37]) Let (X, d) be a metric space and F : X →
Pcp(X) be a multivalued ψ-weakly Picard operator. Then, the fixed point inclu-

sion (2.1) is generalized Ulam-Hyers stable.

3 Existence and Ulam-Hyers stability for in-

tegral inclusions

We consider here some integral inclusion of Fredholm and Volterra type.

Throughout this section we will denote by ‖·‖ the supremum norm in

C([a, b],Rn) and by | · | a norm in R
n.

Recall that ϕ : R+ → R+ is said to be a comparison function (see [38]) if

it is increasing and ϕk(t) → 0, as k → +∞. As a consequence, we also have

ϕ(t) < t, for each t > 0, ϕ(0) = 0 and ϕ is continuous at 0.
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Recall also the notion of strict comparison function. A function ϕ : R+ →
R+ is said to be a strict comparison function (see [38]) if it is strictly increasing

and
∞

∑

n=1

ϕn(t) < +∞, for each t > 0.

The mappings ϕ : R+ → R+ given by ϕ(t) = at (where a ∈ [0, 1[) and

respectively ϕ(t) = t
1+t

, for each t ∈ R+ are examples of strict comparison

functions.

The following result, a generalization of Covitz-Nadler fixed point principle

(see [24], [7]) is known in the literature as Wȩgrzyk’s fixed point theorem.

Theorem 3.2. Let (X, d) be a complete metric space and F : X → Pcl(X) be

a multivalued ϕ-contraction, i.e., ϕ : R+ → R+ is a strict comparison function

and

H(F (x1), F (x2)) ≤ ϕ(d(x1, x2)), for all x1, x2 ∈ X.

Then Fix(F ) is nonempty and for any x0 ∈ X there exists a sequence of

successive approximations of F starting from x0 which converges to a fixed

point of F .

Remark 3.2. It is worth noting that, in the conditions of above result, if

additionally SFix(F ) 6= ∅, then Fix(F ) = SFix(F ) = {x∗}, see Ŝıntămărian

[42]. Moreover, in this case, if the function β : R+ → R+, β(t) := t − ϕ(t) is

strictly increasing and onto, then, since

d(x, x∗) ≤ D(x, F (x))+H(F (x), F (x∗)) ≤ D(x, F (x))+ϕ(d(x, x∗)), for all x ∈ X,

we get that

d(x, x∗) ≤ β−1(D(x, F (x)), for all x ∈ X,

This immediately implies that the fixed point problem x ∈ F (x), x ∈ X is

generalized Ulam-Hyers stable with function β−1.

Another Ulam-Hyers stability result, more efficient for applications, was

proved in [21].
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Theorem 3.3. Let (X, d) be a complete metric space and F : X → Pcl(X) be

a multivalued ϕ-contraction. Then:

(i) (existence of the fixed point) F is a MWP operator;

(ii) (Ulam-Hyers stability for the fixed point inclusion) If additonally

ϕ(qt) ≤ qϕ(t) for every t ∈ R+ (where q > 1) and t = 0 is a point of uniform

convergence for the series

∞
∑

n=1

ϕn(t), then F is a ψ-MWP operator, with ψ(t) :=

t+ s(t), for each t ∈ R+ (where s(t) :=

∞
∑

n=1

ϕn(t));

(iii) (data dependence of the fixed point set) Let S : X → Pcl(X) be

a multivalued ϕ-contraction and η > 0 be such that H(S(x), F (x)) ≤ η, for

each x ∈ X. Suppose that ϕ(qt) ≤ qϕ(t) for every t ∈ R+ (where q > 1)

and t = 0 is a point of uniform convergence for the series

∞
∑

n=1

ϕn(t). Then

H(Fix(S), F ix(F )) ≤ ψ(η).

We will present now, using the above mentioned results, some existence

and Ulam-Hyers stability theorems for multivalued operatorial inclusions.

Consider first the following Fredholm type integral inclusion.

(3.3) x(t) ∈
b

∫

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b].

The main result concerning the stability of the Fredholm integral inclusion

(3.3) is the following.

Theorem 3.4. Let K : [a, b]× [a, b]×R
n → Pcl,cv(R

n) and g : [a, b] → R
n such

that:

(a) there exists an integrable function M : [a, b] → R+ such that for each

t ∈ [a, b] and u ∈ R
n we have K(t, s, u) ⊂ M(s)B(0; 1), a.e. s ∈ [a, b];

(b) for each u ∈ R
n K(·, ·, u) : [a, b] × [a, b] → Pcl,cv(R

n) is jointly mea-

surable;

(c) for each (s, u) ∈ [a, b] × R
n K(·, s, u) : [a, b] → Pcl,cv(R

n) is lower

semi-continuous;
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(d) there exists a continuous function p : [a, b] × [a, b] → R+ with

sup
t∈[a,b]

b
∫

a

p(t, s)ds ≤ 1 and a strict comparison function ϕ : R+ → R+ such

that for each (t, s) ∈ [a, b] × [a, b] and each u, v ∈ R
n we have that

(3.4) H(K(t, s, u), K(t, s, v)) ≤ p(t, s) · ϕ(|u− v|);

(e) g is continuous.

Then the following conclusions hold:

(a) the integral inclusion (3.3) has least one solution, i.e., there exists

x∗ ∈ C([a, b],Rn) which satisfies (3.3), for each t ∈ [a, b].

(b) If additionally ϕ(qt) ≤ qϕ(t) for every t ∈ R+ (where q > 1) and

t = 0 is a point of uniform convergence for the series

∞
∑

n=1

ϕn(t), then the

integral inclusion (3.3) is generalized Ulam-Hyers stable with function ψ (where

ψ(t) := t + s(t), for each t ∈ R+ and s(t) :=

∞
∑

n=1

ϕn(t)), i.e., for each ε > 0

and for any ε-solution y of (3.3), that is any y ∈ C([a, b],Rn) for which there

exists u ∈ C([a, b],Rn) such that

u(t) ∈
b

∫

a

K(t, s, y(s))ds+ g(t), t ∈ [a, b]

and

|u(t) − y(t)| ≤ ε, for each t ∈ [a, b]),

there exists a solution x∗ of the integral inclusion (3.3) such that

|y(t) − x∗(t)| ≤ ψ(ε), for each t ∈ [a, b].

Moreover, in this case the continuous data dependence of the solution set of

the integral inclusion (3.4) holds.

Proof. (a) Define the multivalued operator T : C([a, b],Rn) → P(C([a, b],Rn))

by

T (x) :=







v ∈ C([a, b],Rn)| v(t) ∈
b

∫

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b]







.
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Then, (3.3) is equivalent to the fixed point inclusion

(3.5) x ∈ T (x), x ∈ C([a, b],Rn).

The proof is organized in several steps. We successively prove:

1. T (x) ∈ Pcp(C([a, b],Rn)).

From (e) and Theorem 2 in Rybiński [41] we have that for each x ∈
C([a, b],Rn) there exists k(t, s) ∈ K(t, s, x(s)), for all (t, s) ∈ [a, b], such that

k(t, s) is integrable with respect to s and continuous with respect to t. Then

v(t) :=
∫ b

a
k(t, s)ds+ g(t), has the property v ∈ T (x). Moreover, from (a) and

(b), via Theorem 8.6.3. in Aubin and Frankowska [1], we get that T (x) is a

compact set, for each x ∈ C([a, b],Rn).

2. H(T (x1), T (x2)) ≤ ϕ(‖x1 − x2‖), for each x1, x2 ∈ C([a, b],Rn).

Notice first that one may suppose (without affecting the generality of the

Lipschitz condition) that the inequality (3.4) is strict. Let x1, x2 ∈ C([a, b],Rn)

and v1 ∈ T (x1). Then v1(t) ∈
b

∫

a

K(t, s, x1(s))ds + g(t), t ∈ [a, b]. It follows

that v1(t) =

b
∫

a

k1(t, s)ds + g(t), t ∈ [a, b], for some k1(t, s) ∈ K(t, s, x1(s)),

(t, s) ∈ [a, b] × [a, b].

From (d) we have H(K(t, s, x1(s)), K(t, s, x2(s)) < p(t, s)ϕ(|x1(s) −
x2(s)|) ≤ p(t, s)ϕ(‖x1 − x2‖). Thus, there exists w ∈ K(t, s, x2(s)) such that

|k1(t, s) − w| ≤ p(t, s)ϕ(‖x1 − x2‖), for t, s ∈ [a, b].

Let us define U : [a, b] × [a, b] → P (Rn), by U(t, s) = {w| |k1(t, s) − w| ≤
p(t, s)ϕ(‖x1 − x2‖)}. Since the multi-valued operator V (t, s) := U(t, s) ∩
K(t, s, x2(s)) is jointly measurable and lower semi-continuous in t there ex-

ists k2(t, s) a selection for V , jointly measurable (and, hence, integrable in s)

and continuous in t. Hence, k2(t, s) ∈ K(t, s, x2(s)) and |k1(t, s) − k2(t, s)| ≤
p(t, s)ϕ(‖x1 − x2‖), for each t, s ∈ [a, b].

Consider v2(t) =

b
∫

a

k2(t, s)ds+ g(t), t ∈ [a, b]. Then, we have:
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|v1(t)−v2(t)| ≤
∫ b

a
|k1(t, s)−k2(t, s)|ds ≤

∫ b

a
p(t, s)ϕ(‖x1−x2‖)ds ≤ ϕ(‖x1−

x2‖).
A similar relation can be obtained by interchanging the roles of x1 and x2.

Thus the second step follows.

The first conclusion follows by the above mentioned Wȩgrzyk’s fixed point

theorem, see Theorem 3.3 (i) (see also [43]).

(b) We will prove that the fixed point inclusion problem (3.5) is generalized

Ulam-Hyers stable. Indeed, let ε > 0 and y ∈ C([a, b],Rn) for which there exists

u ∈ C([a, b],Rn) such that

u(t) ∈
b

∫

a

K(t, s, y(s))ds+ g(t), t ∈ [a, b]

and ‖u− y‖ ≤ ε.

Then D‖·‖(y, T (y)) ≤ ε. Moreover, by the above proof we have that T is a

multivalued ϕ-contraction and using Theorem 3.3(i)-(ii), we obtain that T is

a multivalued ψ-weakly Picard operator. Then, by Theorem 2.1 we obtain

that the fixed point problem (3.5) is generalized Ulam-Hyers stable. Thus, the

integral inclusion (3.4) is generalized Ulam-Hyers stable.

Concerning the last conclusion of the theorem, we apply Theorem 3.3 (iii).

A second application concerns an integral inclusion of Volterra type.

(3.6) x(t) ∈
t

∫

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b].

By a similar method, we can prove the following.

Theorem 3.5. Let K : [a, b]× [a, b]×R
n → Pcl,cv(R

n) and g : [a, b] → R
n such

that:

(a) there exists an integrable function M : [a, b] → R+ such that for each

t ∈ [a, b] and u ∈ R
n we have K(t, s, u) ⊂ M(s)B(0; 1), a.e. s ∈ [a, b];
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(b) for each u ∈ R
n K(·, ·, u) : [a, b] × [a, b] → Pcl,cv(R

n) is jointly mea-

surable;

(c) for each (s, u) ∈ [a, b] × R
n K(·, s, u) : [a, b] → Pcl,cv(R

n) is lower

semi-continuous;

(d) there exists a continuous function p : [a, b] → R
∗
+ and a strict com-

parison function ϕ : R+ → R+ with ϕ(λt) ≤ λϕ(t), for each t ∈ R+ and each

λ ≥ 1, such that for each (t, s) ∈ [a, b]× [a, b] and each u, v ∈ R
n we have that

(3.7) H(K(t, s, u), K(t, s, v)) ≤ p(s) · ϕ(|u− v|);

(e) g is continuous.

Then the following conclusions hold:

(a) the integral inclusion (3.6) has at least one solution, i.e., there exists

x∗ ∈ C([a, b],Rn) which satisfies (3.6) for each t ∈ [a, b];

(b) If additionally ϕ(qt) ≤ qϕ(t) for every t ∈ R+ (where q > 1) and

t = 0 is a point of uniform convergence for the series

∞
∑

n=1

ϕn(t), then the

integral inclusion (3.3) is generalized Ulam-Hyers stable with function ψ (where

ψ(t) := t + s(t), for each t ∈ R+ and s(t) :=
∞

∑

n=1

ϕn(t)), i.e., for each ε > 0

and for any ε-solution y of (3.6), that is, any y ∈ C([a, b],Rn) for which there

exists u ∈ C([a, b],Rn) such that

u(t) ∈
t

∫

a

K(t, s, y(s))ds+ g(t), t ∈ [a, b]

and

|u(t) − y(t)| ≤ ε, for each t ∈ [a, b]),

there exists a solution x∗ of the integral inclusion (3.6) such that

|y(t) − x∗(t)| ≤ ψ(cε), for each t ∈ [a, b] and some c > 0.

Moreover, in this case the continuous data dependence of the solution set of

the integral inclusion (3.7) holds.
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Proof. We consider the multi-valued operator T : C([a, b],Rn) →
P(C([a, b],Rn))

T (x) :=







v ∈ C([a, b],Rn)| v(t) ∈
t

∫

a

K(t, s, x(s))ds+ g(t), t ∈ [a, b]







.

Then, (3.6) is equivalent to the fixed point inclusion

(3.8) x ∈ T (x), x ∈ C([a, b],Rn).

As in the proof of Theorem 3.4 we obtain T (x) ∈ Pcp(C([a, b],Rn)). Next, we

will prove that T is a multivalued ϕ-contraction on C([a, b],Rn).

Notice first that one may suppose (without affecting the generality of the

Lipschitz condition) that the inequality (3.7) is strict. Let x1, x2 ∈ C([a, b],Rn)

and v1 ∈ T (x1). Then v1(t) ∈
t

∫

a

K(t, s, x1(s))ds + g(t), t ∈ [a, b]. It follows

that v1(t) =

b
∫

a

k1(t, s)ds + g(t), t ∈ [a, b], for some k1(t, s) ∈ K(t, s, x1(s)),

(t, s) ∈ [a, b] × [a, b].

From (d) we have H(K(t, s, x1(s)), K(t, s, x2(s))) < p(s)ϕ(|x1(s)− x2(s)|).
Thus, there exists w ∈ K(t, s, x2(s)) such that |k1(t, s) − w| ≤ p(s)ϕ(|x1(s) −
x2(s)|), for t, s ∈ [a, b].

Let us define U : [a, b] × [a, b] → P (Rn), by U(t, s) = {w| |k1(t, s) −
w| ≤ p(t, s)ϕ(|x1(s) − x2(s)|)}. Since the multivalued operator V (t, s) :=

U(t, s) ∩ K(t, s, x2(s)) is jointly measurable and lower semi-continuous in t

there exists k2(t, s) a selection for V , jointly measurable (hence, integrable in

s) and continuous in t. Hence, k2(t, s) ∈ K(t, s, x2(s)) and |k1(t, s)−k2(t, s)| ≤
p(s)ϕ(|x1(s) − x2(s)|), for each t, s ∈ [a, b].

Consider v2(t) =

t
∫

a

k2(t, s)ds+g(t), t ∈ [a, b]. We denote by ‖·‖B a Bielecki-

type norm in C([a, b],Rn), given by ‖x‖B := sup
t∈[a,b]

(|x(t)|e−q(t))), where q(t) :=

∫ t

a
p(s)ds.

Then, for each t ∈ [a, b], we have:
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|v1(t) − v2(t)| ≤
∫ t

a
|k1(t, s) − k2(t, s)|ds ≤

∫ t

a
p(s)ϕ(|x1(s) − x2(s)|)ds =

∫ t

a
p(s)ϕ(eq(s)|x1(s) − x2(s)|eq(s))ds ≤

∫ t

a
p(s)eq(s)ϕ(‖x1 − x2‖B)ds =

ϕ(‖x1 − x2‖B)(eq(t) − eq(a)) ≤ ϕ(‖x1 − x2‖B)eq(t). Thus, we immediately get

‖v1 − v2‖B ≤ ϕ(‖x1 − x2‖B).

A similar relation can be obtained by interchanging the roles of x1 and x2.

Thus, we have that

H‖·‖B
(T (x1), T (x2)) ≤ ϕ(‖x1 − x2‖B), for each x1, x2 ∈ C([a, b],Rn),

which proves that T is a multivalued ϕ-contraction. The conclusion (a) follows

by the above mentioned Wȩgrzyk’s fixed point theorem, see Theorem 3.3 (i)

(see also [43]).

(b) We will prove that the fixed point inclusion problem (3.6) is generalized

Ulam-Hyers stable. For this purpose, it is enough to prove that the fixed point

inclusion problem (3.8) is generalized Ulam-Hyers stable. For this purpose, let

ε > 0 and y ∈ C([a, b],Rn) for which there exists u ∈ C([a, b],Rn) such that

u(t) ∈
t

∫

a

K(t, s, y(s))ds+ g(t), t ∈ [a, b]

and

|u(t) − y(t)| ≤ ε, for each t ∈ [a, b].

Notice that

‖·‖B ≤ ‖·‖ ≤ ‖·‖B e
τq(b).

Then, we obtain that ‖u − y‖B ≤ ‖u − y‖ ≤ ε. Thus, D‖·‖
B
(y, T (y)) ≤ ε.

Moreover, by the above proof, T is a multivalued ϕ-contraction with respect to

‖·‖B and, thus, T is a MWP operator. Using Theorem 3.3(i)-(ii), we obtain that

T is a multivalued ψ-MWP operator. Thus, conclusion (b) is a consequence of

Theorem 2.1. Hence, there exists a solution x∗ of the integral inclusion (3.6)

such that

‖y − x∗‖B ≤ ψ(ε).
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Hence,

|y(t) − x∗(t)| ≤ ψ(eτq(b)ε), for each t ∈ [a, b].

Concerning the last conclusion of the theorem, we apply Theorem 3.3 (iii).

4 Existence and Ulam-Hyers stability for par-

tial differential inclusions

Let us consider the following Darboux problem for a second order differential

inclusion

(4.9)











∂2u

∂x∂y
∈ F (x, y, u(x, y))

u(x, 0) = λ(x, 0), u(0, y) = λ(0, y),

where F : I1 × I2 × R
m → Pcl(R

m) (with Ii = [0, Ti], i ∈ {1, 2}) and

λ(x, y) = α(x)+β(y)−α(0) (with α, β continuous functions on I1 respectively

I2 and α(0) = β(0)).

Denote by Π = I1 × I2 and let a > 0. By L1 we will denote the Banach

space of all measurable Lebesgue functions η : Π → R
m, endowed with the

norm

‖η‖1 =

∫ ∫

Π

e−a(x+y)|η(x, y)|dxdy.

Let C be the Banach space of continuous functions u : Π → R
m, with the

norm ‖u‖C = sup
(x,y)∈Π

|u(x, y)| and let C̃ be the linear subspace of C consist-

ing of all λ ∈ C such that there exist continuous functions α ∈ C(I1,R
m)

and β ∈ C(I2,R
m) with α(0) = β(0) satisfying λ(x, y) = α(x) + β(y) −

α(0), for all x, y ∈ I1 × I2. Obviously, C̃ with the norm of C is a separable

Banach space.

By definition, the Darboux problem (4.9) is called Ulam-Hyers stable if for

each ε > 0 and for any ε-solution w of (4.9), there exists a solution u∗ of (4.9)

such that |w(x, y)− u∗(x, y)| ≤ cε, for each (x, y) ∈ Π and for some c > 0.
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We have the following existence and Ulam-Hyers stability result.

Theorem 4.6. Consider the Darboux Problem (4.9) and suppose that the above

mentioned conditions hold. Suppose also that the following assumptions hold:

i) for each u ∈ R
m, F (·, ·, u) is measurable;

ii) there exists k > 0 such that a.e. (x, y) ∈ I1 × I2 the multifunction

F (x, y, ·) is k-Lipschitz;

iii) a >
√
k.

Then, the Darboux Problem (4.9) has at least one solution and it is Ulam-

Hyers stable.

Proof. For λ ∈ C̃, η ∈ L1 define

Tλ(η) := {µ ∈ L1 : µ(x, y) ∈Mλ,η(x, y), a. e. on Π},

where

Mλ,η(x, y) = F (x, y, λ(x, y) +

x
∫

0

y
∫

0

η(s, t)dsdt), (s, t) ∈ Π.

Notice that FTλ
coincides with the solution set of the considered problem.

Moreover, we have that Tλ : L1 → Pcl(L
1) and it is a MWP operator. Indeed,

we have

H1(Tλ(η1), Tλ(η2)) ≤
k

a2
· ‖η1 − η2‖1, for all λ ∈ C̃ and η1, η2 ∈ L1.

Thus, Tλ is a k
a2 -multivalued contraction on L1 and hence is a MWP operator.

Thus, there exists u∗ ∈ L1 a fixed point for Tλ, which is also a solution for

the Darboux Problem (4.9). For the second part of our theorem it is enough

to prove that Tλ is a multivalued c-weakly Picard operator. Since Tλ is a k
a2 -

multivalued contraction on L1, we immediately get (see Example 2.1 ) that Tλ

is a multivalued c-weakly Picard operator with c := 1
1−ka−2 . Thus, the second

conclusion follows by Theorem 2.1.
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