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Abstract

This paper is concerned with the existence of monotone positive solution for the follow-

ing third-order nonlocal boundary value problem u′′′ (t)+f (t, u (t) , u′ (t)) = 0, 0 < t < 1;

u (0) = 0, au′ (0) − bu′′ (0) = α[u], cu′ (1) + du′′ (1) = β[u], where f ∈ C([0, 1] × R+ ×

R+, R+), α[u] =
∫ 1

0
u(t)dA(t) and β[u] =

∫ 1

0
u(t)dB(t) are linear functionals on C[0, 1]

given by Riemann-Stieltjes integrals. By applying monotone iterative techniques, we not

only obtain the existence of monotone positive solution but also establish an iterative

scheme for approximating the solution. An example is also included to illustrate the main

results.
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1 Introduction

Third-order differential equation arises in a variety of different areas of applied mathematics

and physics, e.g., in the deflection of a curved beam having a constant or varying cross section,

a three layer beam, electromagnetic waves or gravity driven flows and so on [1].

BVPs with Stieltjes integral boundary condition (BC for short) have been considered re-

cently as both multipoint and integral type BCs are treated in a single framework. For
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more comments on Stieltjes integral BC and its importance, we refer the reader to the pa-

pers by Webb and Infante [2, 3, 4] and their other related works. In recent years, third-

order nonlocal BVPs have received much attention from many authors, see, for example

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and the references therein. For fourth-

order or higher-order nonlocal BVPs, one can refer to [3, 4, 21, 22]. In particular, it should be

pointed out that Webb and Infante in [2], gave a unified approach for studying the existence of

multiple positive solutions of second-order BVPs subject to various nonlocal BCs. In [3], they

extended their method to cover equations of order N with any number up to N of nonlocal

BCs in a single theory.

Recently, iterative methods have been successfully employed to prove the existence of pos-

itive solutions of nonlinear BVPs for ordinary differential equations, see [23, 24, 25, 26, 27]

and the references therein. It is worth mentioning that, Sun et al. [24] obtained the existence

of monotone positive solutions for third-order three-point BVPs, the main tools used were

monotone iterative techniques. Inspired by the above mentioned excellent works, the aim of

this paper is to investigate the existence and iteration of monotone positive solution for the

following BVP


















u′′′ (t) + f (t, u (t) , u′ (t)) = 0, 0 < t < 1,

u (0) = 0,

au′ (0) − bu′′ (0) = α[u],

cu′ (1) + du′′ (1) = β[u],

(1.1)

where f ∈ C([0, 1] × R+ × R+, R+), α[u] =
∫ 1

0

u(t)dA(t) and β[u] =
∫ 1

0

u(t)dB(t) are linear

functionals on C[0, 1] given by Riemann-Stieltjes integrals and a, b, c, d are nonnegative

constants with ρ := ac + ad + bc > 0. By a positive solution of BVP (1.1), we understand a

solution u(t) which is positive on t ∈ (0, 1) and satisfies BVP (1.1). By applying monotone

iterative techniques, we construct a successive iterative scheme whose starting point is a zero

function, which is very useful and feasible for computational purpose. An example is also

included to illustrate the main results.

2 Preliminary lemmas

In this section, the ideas and the method we will adopt, which have been widely used, are

due to Webb and Infante in [2, 3].

In our case, the existence of positive solutions of nonlocal BVP (1.1) with two nonlocal

boundary terms α[u], β[u], can be studied, via a perturbed Hammerstein integral equation of

the type

u(t) = γ(t)α[u] + δ(t)β[u] +

∫ 1

0

G (t, s) f (s, u(s), u′(s)) ds =: Tu(t). (2.1)

Here γ(t), δ(t) are linearly independent and given by

−γ′′′ (t) = 0, γ (0) = 0, aγ′ (0) − bγ′′ (0) = 1, cγ′ (1) + dγ′′ (1) = 0,

−δ′′′ (t) = 0, δ (0) = 0, aδ′ (0) − bδ′′ (0) = 0, cδ′ (1) + dδ′′ (1) = 1,
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which imply γ(t) = 2ct+2dt−ct2

2ρ
and δ(t) = at2+2bt

2ρ
, t ∈ [0, 1]. A direct calculation shows that

for t ∈ [θ, 1], γ(t) ≥ c1‖γ‖∞ and δ(t) ≥ c2‖δ‖∞ (‖·‖∞ is the usual supremum norm in C[0, 1]),

where c1 = 2cθ+2dθ−cθ2

c+2d
and c2 = aθ2+2bθ

a+2b
; G(t, s) is the Green’s function for the corresponding

problem with local terms when α[u] and β[u] are identically 0.

We first make the following hypotheses on the Green’s function:

(H1) The kernel G is measurable, non-negative, and for every τ ∈ [0, 1] satisfies

lim
t→τ

|G(t, s) − G(τ, s)| = 0 for s ∈ [0, 1].

(H2) There exist a subinterval [a, b] ⊆ [0, 1], a measurable function Φ, and a constant

c3 ∈ (0, 1] such that

G(t, s) ≤ Φ(s) for t ∈ [0, 1], s ∈ [0, 1],

G(t, s) ≥ c3Φ(s) for t ∈ [a, b], s ∈ [0, 1].

(H3) A, B are functions of bounded variation, and KA(s),KB(s) ≥ 0 for s ∈ [0, 1], where

KA(s) :=

∫ 1

0

G (t, s) dA(t) and KB(s) :=

∫ 1

0

G (t, s) dB(t).

In the remainder of this paper, we always assume that 0 ≤ α[γ], β[δ] < 1, α[δ], β[γ] ≥ 0

and D := (1 − α[γ])(1 − β[δ]) − α[δ]β[γ] > 0.

As shown in Theorem 2.3 in [3], if u is a fixed point of T in (2.1), then u is a fixed point of

S, which is now given by

Su(t) :=
γ(t)

D

(

(1 − β[δ])

∫ 1

0

KA(s)f (s, u (s) , u′ (s)) ds + α[δ]

∫ 1

0

KB(s)f (s, u (s) , u′ (s)) ds

)

+
δ(t)

D

(

β[γ]

∫ 1

0

KA(s)f (s, u (s) , u′ (s)) ds + (1 − α[γ])

∫ 1

0

KB(s)f (s, u (s) , u′ (s)) ds

)

+

∫ 1

0

G(t, s)f (s, u (s) , u′ (s)) ds =:

∫ 1

0

GS(t, s)f (s, u (s) , u′ (s)) ds

in our case. The kernel GS is the Green’s function corresponding to the BVP (1.1).

Lemma 2.1 Let ρ := ac + ad + bc > 0. Then the Green’s function G(t, s) satisfies (H1), (H2)

with [a, b] = [θ, 1], c3 =
ρ

R

θ

0
Φ(τ)dτ

(a+b)(c+d)
, 0 < θ < 1.

Proof. A direct calculation shows that,

G (t, s) =

{

(at2+2bt)(c(1−s)+d)
2ρ

− (t−s)2

2
, 0 ≤ s ≤ t ≤ 1,

(at2+2bt)(c(1−s)+d)
2ρ

, 0 ≤ t ≤ s ≤ 1.

For any fixed s ∈ [0, 1], it is easy to see that

G1(t, s) :=
∂G (t, s)

∂t
=

1

ρ

{

(b + as) (d + c(1 − t)) , 0 ≤ s ≤ t ≤ 1,

(b + at) (d + c(1 − s)) , 0 ≤ t ≤ s ≤ 1,
(2.2)
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which shows that

0 ≤ G1(t, s) ≤
1

ρ
(b + as) (d + c(1 − s)) =: Φ(s), for (t, s) ∈ [0, 1] × [0, 1] , (2.3)

and so,

G (t, s) =

∫ t

0

G1 (τ, s) dτ ≤

∫ t

0

Φ(s)dτ = Φ(s)t ≤ Φ(s), for (t, s) ∈ [0, 1] × [0, 1] . (2.4)

On the other hand,

G1(t, s)

Φ(s)
=

{

(b+as)(d+c(1−t))
(b+as)(d+c(1−s))

= (b+at)(d+c(1−t))
(b+at)(d+c(1−s))

≥ ρΦ(t)
(a+b)(c+d)

, 0 ≤ s ≤ t ≤ 1,
(b+at)(d+c(1−s))
(b+as)(d+c(1−s))

= (b+at)(d+c(1−t))
(b+as)(d+c(1−t))

≥ ρΦ(t)
(a+b)(c+d)

, 0 ≤ t ≤ s ≤ 1,
(2.5)

so,

G1 (t, s) ≥
ρΦ(t)

(a + b)(c + d)
Φ(s), for (t, s) ∈ [0, 1] × [0, 1] . (2.6)

Thus,

G (t, s) =

∫ t

0

G1 (τ, s) dτ ≥

∫ t

0

ρΦ(τ)

(a + b)(c + d)
Φ(s)dτ ≥

ρ
∫ θ

0
Φ(τ)dτ

(a + b)(c + d)
Φ(s), for (t, s) ∈ [θ, 1]×[0, 1] .

(2.7)

�

Lemma 2.2 GS(t, s) satisfies (H1), (H2) for a function Φ1, the same interval [θ, 1], and the

constant c0 = min {c1, c2, c3}.

Proof. Let Φ1(s) := ‖γ‖∞
D

((1 − β[δ])KA(s) + α[δ]KB(s))+‖δ‖∞
D

(β[γ]KA(s) + (1 − α[γ])KB(s))+

Φ(s), s ∈ [0, 1]. The proof is same to the Theorem 2.4 in [2], so omitted. �

Moreover, we easily know that

0 ≤
∂GS (t, s)

∂t
≤ Φ2(s), t, s ∈ [0, 1] × [0, 1] (2.8)

for a function Φ2, i.e., for s ∈ [0, 1],

Φ2(s) :=
‖γ′‖∞

D
[(1 − β[δ])KA(s) + α[δ]KB(s)] +

‖δ′‖∞
D

[β[γ]KA(s) + (1 − α[γ])KB(s)] + Φ(s).

We will use the classical Banach space E = C1 [0, 1] equipped with the norm ‖u‖ =

max {‖u‖∞ , ‖u′ ‖∞}, where ‖u‖∞ is the usual supremum norm in C[0, 1].

Let

P = {u ∈ E : u (t) ≥ 0}

and let c0 be same as in Lemma 2.2, then define

K =

{

u ∈ P : min
t∈[θ,1]

u (t) ≥ c0 ‖u‖∞ and u′ (t) ≥ 0, t ∈ [0, 1]

}

.

Then it is to verify that P and K are cones in E. Note that this induces an order relation �

in E by defining u � v if and only if v − u ∈ K.

Similar to the proofs of lemma 2.6, 2.7 and 2.8 in [2], we can get the following lemmas.
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Lemma 2.3 The maps T, S : P → E are compact.

Lemma 2.4 T : K → K and S : P → K.

Lemma 2.5 T and S have the same fixed points (in K).

3 Main results

Now we apply monotone iterative techniques to seek solution of BVP (1.1) as fixed point

of the integral operator S.

Theorem 3.1 Let σ = max

{

max
s∈[0,1]

Φ1(s), max
s∈[0,1]

Φ2(s)

}

. Assume that f(t, 0, 0) 6≡ 0 for t ∈ [0, 1]

and there exists a constant r > 0 such that

f(t, u1, v1) ≤ f(t, u2, v2) ≤
r

σ
, 0 ≤ t ≤ 1, 0 ≤ u1 ≤ u2 ≤ r, 0 ≤ v1 ≤ v2 ≤ r. (3.1)

If we construct an iterative sequence vn+1 = Svn, n = 0, 1, 2, . . . , where v0(t) = 0 for t ∈ [0, 1],

then {vn}
∞
n=0 converges to v∗ in C1[0, 1], which is a monotone positive solution of the BVP

(1.1) and satisfies

0 < v∗(t) ≤ r for t ∈ (0, 1], 0 ≤ (v∗)′(t) ≤ r for t ∈ [0, 1].

Proof. Let Kr = {u ∈ K : ‖u‖ < r}. We assert that S : Kr → Kr. In fact, if u ∈ Kr, then

0 ≤ u(s) ≤ ‖u‖∞ ≤ ‖u‖ ≤ r, 0 ≤ u′(s) ≤ ‖u′‖∞ ≤ ‖u‖ ≤ r, for s ∈ [0, 1],

which together with the condition (3.1) and Lemma 2.2 and (2.8) implies that

0 ≤ (Su) (t) =

∫ 1

0

GS (t, s) f (s, u (s) , u′(s)) ds ≤ r, t ∈ [0, 1] ,

0 ≤ (Su)′ (t) =

∫ 1

0

∂GS (t, s)

∂t
f (s, u (s) , u′(s)) ds ≤ r, t ∈ [0, 1] .

Hence, we have shown that S : Kr → Kr.

Now, we assert that {vn}
∞
n=0 converges to v∗ in C1[0, 1], which is a monotone positive solution

of the BVP (1.1) and satisfies

0 < v∗(t) ≤ r for t ∈ (0, 1], 0 ≤ (v∗)′(t) ≤ r for t ∈ [0, 1].

In fact, in view of v0 ∈ Kr and S : Kr → Kr, we have that vn ∈ Kr, n = 1, 2, . . .. Since

the set {vn}
∞
n=0 is bounded and T is completely continuous, we know that {vn}

∞
n=0 is relatively

compact.
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In what follows, we prove that {vn}
∞
n=0 is monotone by induction. Firstly, by v0 = 0 and

S : P → K, we easily know v1 − v0 ∈ K, which shows that v0 � v1. Next, we assume that

vk−1 � vk. Then, in view of Lemma 2.2 and (3.1), we have

0 ≤ vk+1(t) − vk(t) =

∫ 1

0

GS (t, s)
[

f (s, vk(s), v
′
k(s)) − f

(

s, vk−1(s), v
′
k−1(s)

)]

ds

≤

∫ 1

0

Φ1(s)
[

f (s, vk(s), v
′
k(s)) − f

(

s, vk−1(s), v
′
k−1(s)

)]

ds, t ∈ [0, 1]

and

vk+1(t) − vk(t) =

∫ 1

0

GS (t, s)
[

f (s, vk(s), v
′
k(s)) − f

(

s, vk−1(s), v
′
k−1(s)

)]

ds

≥ c0

∫ 1

0

Φ1(s)
[

f (s, vk(s), v
′
k(s)) − f

(

s, vk−1(s), v
′
k−1(s)

)]

ds, t ∈ [θ, 1],

which imply that

vk+1(t) − vk(t) ≥ c0 ‖vk+1 − vk‖∞ , t ∈ [θ, 1]. (3.2)

At the same time, by Lemma 2.2, (2.8) and (3.1), we also have

v′
k+1(t) − v′

k(t) =

∫ 1

0

∂GS (t, s)

∂t

[

f (s, vk(s), v
′
k(s)) − f

(

s, vk−1(s), v
′
k−1(s)

)]

ds ≥ 0, t ∈ [0, 1].(3.3)

It follows from (3.2) and (3.3) that vk+1(t)− vk(t) ∈ K, which shows that vk � vk+1. Thus, we

have shown that vn � vn+1, n = 0, 1, 2 . . . .

Since {vn}
∞
n=0 is relatively compact and monotone, there exists a v∗ ∈ Kr such that

‖vn − v∗‖ → 0 (n → ∞), which together with the continuity of S and the fact that vn+1 = Svn

implies that v∗ = Sv∗. Moreover, in view of f(t, 0, 0) 6≡ 0 for t ∈ (0, 1), we know that the zero

function is not a solution of BVP (1.1). Thus, ‖v∗‖∞ > 0. So, it follows from v∗ ∈ Kr that

0 < v∗(t) ≤ r for t ∈ (0, 1], 0 ≤ (v∗)′(t) ≤ r for t ∈ [0, 1].

�

4 An example

Consider the BVP


















u′′′ (t) + 1
2
tu + 1

8
u′2 + 1 = 0, 0 < t < 1,

u (0) = 0,

u′ (0) = α[u],

u′ (1) = β[u],

(4.1)

where α[u] =
∫ 1

0
(1−s)u(s)ds and β[u] =

∫ 1

0
su(s)ds are nonlocal BCs of integral type. For this

BCs the corresponding γ(t) = 2t−t2

2
and δ(t) = t2

2
. By simple calculation shows that

α[γ] =
1

8
, α[δ] =

1

24
, β[γ] =

5

24
, β[δ] =

1

8
, D = (1 − α[γ])(1 − β[δ]) − α[δ]β[γ] =

109

144
,
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KA(s) :=

∫ 1

0

G (t, s) (1 − t)dt =
s

8
−

s2

4
+

s3

6
−

s4

24
, KB(s) :=

∫ 1

0

G (t, s) tdt =
5s

24
−

s2

4
+

s4

24
,

Φ1(s) =
265s

218
−

145s2

109
+

13s3

109
−

s4

218
, Φ2(s) =

156s

109
−

181s2

109
+

26s3

109
−

s4

109
,

and σ = max

{

max
s∈[0,1]

Φ1(s), max
s∈[0,1]

Φ2(s)

}

≈ 0.3303. Then all the hypotheses of Theorem 3.1 are

fulfilled with r = 1. It follows from Theorem 3.1 that the BVP (4.1) has a monotone positive

solution v∗ satisfying

0 < v∗(t) ≤ 1 for t ∈ (0, 1], 0 ≤ (v∗)′(t) ≤ 1 for t ∈ [0, 1].

Moreover, the iterative scheme is

v0(t) = 0, t ∈ [0, 1],

vn+1(t) =

∫ t

0

[

2ts − t2s − s2

2
+ g(t, s)

](

1

2
svn(s) +

1

8
(v′

n(s))
2
+ 1

)

ds

+

∫ 1

t

[

t2(1 − s)

2
+ g(t, s)

](

1

2
svn(s) +

1

8
(v′

n(s))
2
+ 1

)

ds, t ∈ [0, 1], n = 1, 2, . . . ,

v′
n+1(t) =

∫ t

0

[s(1 − t) + g′
t(t, s)]

(

1

2
svn(s) +

1

8
(v′

n(s))
2
+ 1

)

ds

+

∫ 1

t

[t(1 − s) + g′
t(t, s)]

(

1

2
svn(s) +

1

8
(v′

n(s))
2
+ 1

)

ds, t ∈ [0, 1], n = 1, 2, . . . .

where

g(t, s) =

(

126t

109
−

48t2

109

) (

s

8
−

s2

4
+

s3

6
−

s4

24

)

+

(

6t

109
+

60t2

109

) (

5s

24
−

s2

4
+

s4

24

)

,

g′
t(t, s) =

(

126

109
−

96t

109

) (

s

8
−

s2

4
+

s3

6
−

s4

24

)

+

(

6

109
+

120t

109

) (

5s

24
−

s2

4
+

s4

24

)

,

for t, s ∈ [0, 1] × [0, 1].

The first, second and third terms of the scheme vn and v′
n are as follows:

v0(t) = 0,

v1(t) =
7

436
t +

142

545
t2 −

1

6
t3,

v2(t) =
255406447517

15664670784000
t +

57295606951

217564872000
t2 −

506939

3041536
t3

−
497

5702880
t4 −

379849

570288000
t5 −

71

130800
t6 +

1

4032
t7,

v′
0(t) = 0,

v′
1(t) =

7

436
+

284

545
t −

1

2
t2,

v′
2(t) =

255406447517

15664670784000
+

57295606951

108782436000
t −

1520817

3041536
t2

−
497

1425720
t3 −

379849

114057600
t4 −

71

21800
t5 +

1

576
t6.
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