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Abstract

In this article, we consider the second order quasilinear elliptic system of
the form
Apu; = Hi(|z)ufiy, z€eRY,i=1,2,---,m

with nonnegative continuous functions H;. Sufficient conditions are given to
have nonnegative nontrivial radial entire solutions. When H;, i =1,2,--- ,m,
behave like constant multiples of |ac|>‘, A € R, we can completely characterize

the existence property of nonnegative nontrivial radial entire solutions.
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1 Introduction

This paper is concerned with existence and nonexistence of nonnegative radial

entire solutions of second order quasilinear elliptic systems of the form
(
Apyur = Hy(Jz])ug’,

Ap,us = Ha(|z|)us®,
(1.1) z e RY,

. Ap, um = qux’)u?nﬁ-lv Um+1 = UL,

where Apu = div(|Du|P~2Du), |z| denotes the Euclidean length of x € RY, m >
2, N>1, p;>landa; >0, i=1,2,--- ,m, are constants satisfying ayag - - - ap, >
(p1 —1)(p2 —1)--+ (pm — 1), and the functions H;, i = 1,2,--- ,m, are nonnegative

continuous functions on [0,00). When p = 2, A, reduces to the usual Laplacian.
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An entire solution of (1.1) is defined to be a function (uy,ua, -+ ,uy) € (CH(RN))™
such that |Du;[Pi~2Du; € CH(RY) and satisfy (1.1) at every point of RV. Such a
solution is said to be radial if it depends only on |z|.

The problem of existence and nonexistence of nonnegative radial entire solutions

for the scalar equation
Apu = f(|z|,u), =R,

has been investigated by several authors, and numerous results have been obtained;
see, e.g. [3, 6, 7, 10] and references therein. In particular, when f has the form
f(z|,u) = £H(|z|)u® with a > 0 and positive function H, critical decay rate of H
to admit nonnegative radial entire solutions has been characterized. However, as
far as the author knows, very little is known about this problem for the system (1.1)
except for the case p; =2, i =1,2,--- ,m. For p; = 2, we refer to [2, 5, 11, 13, 14].
Recently, in [12], the author has considered the elliptic system (1.1) with m = 2
and has obtained existence and nonexistence criteria of nonnegative nontrivial ra-

dial entire solutions. The results in [12] are described roughly as follows :

Theorem 0.1 [12, Theorems 1 and 2] Letm = 2. Suppose that H;, i = 1,2,
satisfy

U Hy(la]) <

2
1.2 —_— —
- o < E

x| >ro >0, i=1,2,
where C; > 0, i = 1,2, are constants and X\;, i = 1,2, are parameters.
(i) If \i, = 1,2, satisfy

a1(Ag — 1o — -1 -1
Nyt 1(A2 — p2) 102 — (p1 — 1)(p2 — 1)

max{0,py — N} and

13) p2—1 (p1—D(p2—1)
) ag(A1 —p1) . ajae — (p1 —1)(p2 — 1)
Az—p2 ¥ p1—1 (p1—D(p2—-1) mex{0.p2 = N},

then the system (1.1) has infinitely many positive radial entire solutions.
(ii) If N;, i = 1,2, satisfy

041()\2 —pz) < a10 — (P1 - 1)(272 - 1)

)\ — + 07 - N
Lo p2—1 = (p1—1)(p2—1) max{0, p1 boor
as(A —p1) _ oqaz — (p1 —1)(p2 — 1)
)\ - + < 07 - N 9
2 p—1 = (p1—1)(p2—1) max{0,p2 J

then the system (1.1) does not possess any nonnegative nontrivial radial entire so-

lutions.
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Theorem 0.2 [12, Theorems 3 and 4] Let m =2 and p; = N, i = 1,2.
Suppose that H;, i = 1,2, satisfy

Cl CQ
—— < Hi(|7|) £ — 77—+,
2N og e = ) < N fog fay™

where C; > 0, i = 1,2, are constants and N\;, i = 1,2, are parameters.
(i) If N, 1 = 1,2, satisfy

lz| > 19 >1, i=1,2,

a1(Ag — N) N (N —1)?
N-—1 N -1
as(Ay — N) S 0102 — (N —1)2
N-—1 N -1 ’
then the system (1.1) has infinitely many positive radial entire solutions.
(ii) If N;, i = 1,2, satisfy

A — N+ and

Ao — N +

Oél()\z - N) 10 — (N — 1)2

— N
Al + N 1 < N1 or
az()\l—N) 0110[2—(N—1)2
- N
Az T N-T < N-—1 ’

then the system (1.1) has no nonnegative nontrivial radial entire solutions.

Theorem 0.1 characterizes the decay rates of H; and Hj for the system (1.1) to
admit nonnegative nontrivial radial entire solutions. That is, under the assumption
(1.2) the system (1.1) has a nonnegative nontrivial radial entire solution if and only
if (1.3) holds.

Considering some results in [11], we conjecture that the conclusion (ii) of The-

orem 0.2 is still true even if the condition for (A1, A2) is weakened to

()41()\2 - N) a109 — (N — 1)2

— <
M-N+—F——=< N_—1 or
ag()\l—N) 041042—(]\7—1)2
Ay — N < .
2 tTN_1 N1

The aim of this paper is to extend Theorems 0.1 and 0.2 to the system (1.1)
with m > 3 and to answer the conjecture mentioned above affirmatively.
For nonnegative functions f;, i = 1,2, there have been a great number of works
on qualitative theory for solutions of the elliptic system
Apur = fi(z, u1, uz), e RV
—Apyuz = fo@,ur, uz),

EJQTDE, 2002 No. 16, p. 3



We can find in many works necessary and/or sufficient conditions for this system to
have positive entire solutions with (or without) prescribed asymptotic forms near
+o0; see, e.g.[1, 8, 9] and references therein.

Let us introduce some notation used throughout this paper. Denote
A=ojag---

and

P=(p1—1)p2—1) (pm —1).
It follows from these definitions that our assumption is written as A > P. For
any sequence {s1, 52, ,Spn}, we always make the agreement that s,,4; = s, j =
1,2,--- ,m, that is, the suffixes should be taken in the sense Z/mZ. For real con-

stants A1, Ag, -, A\, We put

(Nit1 = pit1)ai (Mg — pit2)icipn
1.4 Ai = N—pit + T
(1.4) ’ L Piv1 — 1 (Piv1 — 1) (piy2 — 1)

(Nitm—1 — Pitm—1)0G0G 41+ * Qjpn—3Cim—2
Pi41 — )iz — 1) -+ (Pitm—2 — 1)(Pixm—1 — 1)

m—1 Jj—1
Qitk
= XNi-pit Y {()\i-i-j - i) || 7+} ;
j=1

_l’_

o Piti+k — 1
and
PA;
(1.5) Bi = - ;
(A= P)(pi—1)
i =1,2,--- ,m. Since our assumptions imposed on H;, i = 1,2,--- ,m, take the
forms
lim inf |z H;(|z]) > 0
|z|—o0
or
lim sup |z|* H; (|z|) < oo,
|z|—o00
all our results are formulated by means of the numbers A\;, A;,3;, i =1,2,--- ,m.

This paper is organized as follows. In Section 2, we consider the existence of
positive radial entire solutions. In Section 3, we give estimates for nonnegative
entire solutions of (1.1). In Section 4, we give nonexistence criteria of nonnegative

nontrivial radial entire solutions of (1.1) based on the results in Section 3.
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2 Existence results

In this section we consider the existence of positive radial entire solutions of

(1.1).
We first observe that (w1, ug, - -, uy,) is a positive radial entire solution of (1.1) if
and only if the function (vy(r), va(r), -+ v (1)) = (ur(|z]), ue(|x]), - -, um(|z])), r =

||, satisfies the system of second order ordinary differential equations
PN N ) = Hi(ryogy, >0,

(21) 1:1727"'7m7
U;(O) =0,

where ' = d/dr. Furthermore, integrating (2.1) on [0, r| twice, we obtain the system

of integral equations equivalent to (2.1) :
(2.2)

1
T S ?
vi(r) =a; _|_/ <81—N/ tN_lHi(t)"Ui-i—l(t)O‘idt) P ds, r>0,i=1,2---,m,
0 0

where a; = v;(0). Therefore a positive radial entire solution of (1.1) can be obtained,

under suitable conditions on H;, by solving the system of integral equations (2.2).

Theorem 2.1 Suppose that H;, i =1,2,--- ,m, satisfy

(2.3) Hy(|x]) < |z = o >0,

A
where C; > 0 and N\;, i = 1,2,--+ ,m, are constants. Moreover, for these \;, A;

defined by (1.4) satisfy
A-P
A; > Tmax{(),pi — N}, i=1,2,--- ,m.

Then (1.1) has infinitely many positive radial entire solutions.

Theorem 2.2 Let p; < N, ¢ = 1,2,--- ;m. Suppose that H;, i = 1,2,--- ,m,
satisfy

Ci
(2.4) Hi(|lz]) € mr—ms 17 =710 > 1,
' |z[Pi (log |z[)*
where C; > 0 and X\;, 1 =1,2,--- ,m, are constants. Moreover
A—P)(p; —1
A L ;D(pl ) 12 .m.

Then (1.1) has infinitely many positive radial entire solutions.
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Remark 2.1 (i) When m = 2, Theorem 2.1 reduces to Theorem 1 of [12].

(ii) When p; = 2, i = 1,2,--- ;m, and N # 2, Theorem 2.1 reduces to Theorems
3.1 and 3.3 of [13].

(iii) When p; =N =2, i =1,2,--- ,m, Theorem 2.2 reduces to Theorem 3.2 of [13].

Proof of Theorem 2.1. Without loss of generality, we may assume that
ro = 1 in (2.3). Choose constants a; >0, i =1,2,--- ,m, so that

p'—l .
( 2ai41)" / H;( > < %,

(2.5) 1 . )
. p;—1 Qa;
M; | 2(2a;41)% max / sNTUH (s)ds, . }) <2,
Z( (2ai11) { 0 i(s) N =X\ + ;i1 -2
where 1
pi —
, Di S N’
M, — Di — ); + ;B
pi —
> N
pZ_N7 pl b

and (;, i =1,2,--- ,m, are defined by (1.5). It is possible to choose such constants
by the assumption A > P. From the definitions of ; and A; we can see that

Pi — Ni + ifit1

-1 7j—1
Po; < Qi 14k
N1 —pin1+ Y S Qi —piny) [ [ ———
(A B P)(pl+1 _ 1) ) 7 ]:1 1 Vi 2 J 3

-1
o Pit2+k

= pi— A+

Pi+1 — 1 pe_q Pit2+k — 1

P L= pir) | = i
= pi—Aito Nt~ Pit) > {()‘i+1+j —piring) [] L}
m

P ! i= o

i+ 1+k
= pi— AN+ +14j — Pi+1+j —
RPN PO{Z ) | verses

.

I
S
|
3/
+
I
[ )
|
/—/:

Jj—1
Qit1+k A
Nid14i — Piglsi Il ? + =\ —pi
( 1+1+y 1+ +J)k:71 Pitosk — 1 P( i z)

i1
P(X\i —pi) P ; Qi

_ ¥ A — piai) T —2itk
A—-P A-P {( + pﬂ)kljopwruk—l
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Define the functions F;, i =1,2,--- ,m, by
Fi(r) =

We regard the space (C[0,00))™ as Fréchet space equipped with the topology of
uniform convergence of functions on each compact subinterval of [0,00). Let X C
(C[0,00))™ denotes the subset defined by

X ={(vy,v2, -+ ,um) € (C[0,00))™;a; < vi(r) <2a;F;(r), r>0, 1 <i<m}.

Clearly, X is a non-empty closed convex subset of (C[0,00))™. Consider the map-

)
ping F : X — (C[0,00))™ defined by F(vi,ve, - ,vm) = (01,02, -+ , ), where

1

r s pi—1

Bi(r) = ag +/ <31N/ tNlHi(t)viH(t)aidt) ’ ds, r>0, ¢=1,2,---,m.
0 0

In order to apply the Schauder-Tychonoff fixed point theorem, we will show that F
is a continuous mapping from X into itself such that F(X) is relatively compact.

(I) F maps X into itself. Let (vi,ve, -+ ,vy) € X. Clearly, 0;(r) > a;, > 0.
For 0 <r <1, we have

1
T S ?
oi(r) < ai"‘/ </ Hz‘(t)vi+1(t)a"dt>p ds
0 0
1 1 —pil_l
< x| ( / Hi<t><2ai+1m+1<t>>%dt) ds
0 0

1 T
= a;+ <(2ai+1)0¢¢/ Hl(t)dt>
0

< ai+%<2ai, i=1,2,---,m.

For » > 1, we then write

vi(r) = a; + (/01+/1) <31—N /OStN_lHi(t)le(t)aidt)rl_lds

= ai+11+12.
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A similar computation shows that Iy < a;/2, i =1,2,--- ,m. When p; < N, we
see that

1
r s 7o
I < / <81N/ tN1H¢(t)(2@¢+1ﬂ+1(t))aidt>p ds
1 0

. TN ; * N—1-A+aifs piet
< / spi—1 ((2ai+1)al/ t Hz(t)dt—F (2ai+1)alCi/ T Z+a262+1dt> ds
1 0 1
1
1 o1 1-X\;+a;8;
C~ p;—1 r it ’Lﬁl+1
< [ 2(2a;41)% max / N H (¢)dt, ! }) / s Pl (s
< (( 1) {0 0t K
1
1 o1 it Bs
C~ p;—1 Pg it 1/81+1
< M; | 2(2a;41)" max{/ tNUH; () dt, : }) r Pl
Z<( +1) 0 (%) N =X\ + @it
. P AitaB .
< %7«%771“ — &Tﬁi.

2 2
When p; > N, we see that

To1-N " oN_1 Tl—l
_[2 S / sPi—lds </ t Hl'(t)(2ai+1Fi+1(7f))aidt>
1

0

pi—N

1
1 r Pi1
< Mirei? <(2az‘+1)ai/ tN_lHi(t)dt+(2ai+l)aiCi/ tN_l_AiJraiﬁ"“dt)
0 1

M mN<2(z ) { N ¢ N )
< o pi—1 a'limax/t i(t)dt, }ri “’*)
’ " 0 ' N — X\ + aifiva

. pi—AitaiB .

B e Y

- 2 2
Thus we obtain

3 i 8 ,
0i(r) < Ui + %’I“BZ <2ar%, r>1, i=1,2,---,m.
Therefore, F(X) C X.

() F is continuous. Let {(vi,var,- - ,Umi)};2; be a sequence in X which
converges to (v1,va,- -+ ,vy) € X uniformly on each compact subinterval of [0, co).
We put

T
Gi(r) :rl_N/ sN T H (8)vi41(5) ¥ ds
0
and

oi(r) = ri=N /07‘ SN_lHi(s)le(s)o‘ids.

EJQTDE, 2002 No. 16, p. 8



Then we have

P (r) — di(r)| < /Or H;(8)|vit1,(8)* — vit1(s)™|ds.

Let R > 0 be an arbitrary constant. Since {v;;};°,, i = 1,2,--- ,m, converge

to v; uniformly on [0, R], it follows that {¢;;}7°,, ¢ = 1,2,--- ,m, converge to
1 1

¢; uniformly on [0, R]; and hence {¢/""}2,, i = 1,2,--- ,m, converge to ¢/ '

uniformly on [0, R]. From this fact and

(Bua(r) — @(r)] < /0 '

we can see that {0;;}7°,, i =1,2,--- ,m, converge to ¥; uniformly on [0, R]. These

1

Gia(s)7 T — ()71 | ds,

imply that {9;;}7°,, i« = 1,2,--- ,m, converge to ¥; uniformly on each compact
subinterval of [0,00). Therefore F is continuous.

(I) F(X) is relatively compact. It is sufficient to verify the local equicontinuity
of F(X), since F(X) is locally uniformly bounded by the fact that F(X) C X. Let
(v1,v2, -+ ,vy) € X and R > 0. Then we have

alr) = </0T <§>N_1 Hi(s)vz‘+1(s)°‘ids> et

R i1
= </ H@'(S)(2ai+1F¢+1(S))a"dS> <oo, i=1,2,- ,m.
0

Obviously, these imply the local boundedness of the set { (0,5, ,0,,)|(v1,v2, -+ ,vm) €
X}. Hence the relative compactness of F(X) is shown by the Ascoli-Arzela theorem.
Therefore, there exists an element (vy, v, - ,vy,) € X such that (vy, vy, -+ ,v) =
F(v1,v9, - ,vp) by the Schauder-Tychonoff fixed point theorem, that is, (vy,va, -+, Up,)
satisfies the system of integral equations (2.2). The function (uq(x), uz(x), - ,upm(z)) =
(v1(Jz|), v2(Jx|), -+ s vm(|x])) then gives a solution of (1.1). Since infinitely many
(a1,az2,- - ,an) satisfy (2.5), we can construct an infinitude of positive radial entire

solutions of (1.1). This completes the proof.[]

Proof of Theorem 2.2. Without loss of generality, we may assume that ro = e
n (2.4). Take constants a; >0, i =1,2,--- ,m, so that

Y € Tl—l a;
e (2ai+1) 1/ Hz(t)dt < 5,
0

(2(2 )oz {/etp'—lH (t)dt CZ }) Pil_l
a; ‘ max ¢ i )
o 0 1— X+ Bt

EJQTDE, 2002 No. 16, p. 9

IN

a;
5



It is possible to take such constants by the assumption A > P.
Define the functions F;, i =1,2,--- ,m, by

1, 0<r<e,
Fir) =
(logr)%, r>e.
Consider the set
Y = {(vi,v2, -+ ,vm) € (C[0,00))™;a; < vi(r) < 2a;F5(r), »>0, 1 <i<m}

and the mapping F : Y — (C[0,00))™ defined by F(vi, v, -+ ,vm) = (01,02, , Om),

where )
T S ?
Ui(r) = a; + / <81_N/ tN_lHi(t)UiH(t)aidt) " ds.
0 0

Obviously, the set Y is closed convex subset of Fréchet space (C[0,00))™. We first
show that F(Y) C Y. Let (v1,va,--+ ,vy) € Y. Clearly, 0;,(r) > a;, » > 0. For

0 <r <ewe have

B < ait /0 ' ( /0 S Hi<t>vi+1<t>aidt) "y

1
e e i1
a; +/ </ Hi(t)(Qai+1E+1(t))aidt> ’ ds
0 0

1

e i1
= a;t+e <(2ai+1)ai / Hi(t)dt> ’
0

@
< ai+5’<2ai, i=1,2,---,m.

) Y

IN

For r > e, we then write

oi(r) = a;+ (/OEJF/;) <51—N /OStN_lHZ-(t)viH(t)aidt)pil_l ds

= a;+ 1 + I

A similar computation shows that Iy < a;/2, i = 1,2,--- ,m. The integral I5 is
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estimated as follows:

r s ﬁ
I < / (81’”/ tpile‘(t)le(t)aidt) ds
e 0

r . r . . ﬁ
< /S ds /tpZ H/L'(t)viJrl(t)aldt
e 0
1

e r pi—1
< ((2ai+1)°‘i / PV H () dt 4 (2a441) Cy / tl(logt)’\”aiﬁi“dt)p log r
0 e

1
e C, P 1
< {2(2a;41)" max / tPim L H; (t)dt, - } log r 1>‘i+aiﬁi“> log r
< (2em e [ ot S o :
. Pi— Nt Bip1 .
< &(log r) Pl = &(log T)B".
2 2
Thus we obtain
- 3 a; Bi Bi .
Ui(r) S §al+5(10gr) ¢ SQGZ(IOgT) 17 TZ€7 7’:1727"' , .

Therefore, F(v1,va, -+ ,Um) €Y.

The continuity of F and the relative compactness of F(Y') can be verified with-
out difficulty, and so by the Schauder-Tychonoff fixed point theorem there exists
(v1,v9 -+ ,vy) € Y such that (vi,ve,-+ ,vm) = F(v1,v2, - , V). It is clear that
this fixed point (v, va, -+ ,vy,) gives rise to a positive radial entire solution of (1.1).
The proof is finished.[]

3 Growth estimates for nonnegative entire solutions

In this section we consider estimates for nonnegative radial entire solutions of
(1.1) which will play an important role to prove nonexistence theorems for nonneg-

ative nontrivial radial entire solutions.

Theorem 3.1 Suppose that H;, i =1,2,--- ,m, satisfy

C.
(3.1) Hy(|z]) > —-,  |z| >0 >0,

||
where C; > 0 and \; are constants. Let (uj,ug, -+ ,uy) be a nonnegative radial

entire solution of (1.1). Then u;, i =1,2,--- ;m, satisfy

(3.2) ui(r) < CirPi at oo,
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where C; >0, i =1,2,--- ,m, are constants and B;, i =1,2,--- ,m, are defined by

(1.5).

Theorem 3.2 Let p; = N, ¢ = 1,2,--- ,;m. Suppose that H;, i = 1,2,--- ,m,
satisfy

Ci
(3.3) Hi(lz]) > —xr—mx |2l >7r0>1,
' ||V (log [z])*i
where C; > 0 and \; are constants. Let (ui,ug, - ,upy) be a nonnegative radial

entire solution of (1.1). Then u;, i =1,2,--- ;m, satisfy

(3.4) ui(r) < Ci(logr)% at oo,
where C; > 0, i = 1,2,--- ,m, are constants, and B;, i = 1,2,--- ,m, are defined
by (1.5).

Proof of Theorem 3.1. Let (uj,ug,---,uy) be a nonnegative radial en-
tire solution of (1.1). We may assume that (ui,ug, -+ ,um) # (0,0,---,0). Then
(uq,ug, - ,upy) satisfies the following system of ordinary differential equations
(3.5)

(P g () P2 (r)) = e N T H (P uia (r)*, >0,
i=1,2,--- ,m.

Integrating (3.5) over [0, 7], we have

T

PN g () P g () :/ sNTUH (s)ugg(s)Mds, i=1,2,--- ,m.
0

Hence, we see that u(r) > 0 for » > 0. Integrating (3.5) twice over [R,r], R > 0,

we have

(3.6)
wi(r) > u;(R) + /T

1
s =1
(sl—N/ tN_lHi(t)uiH(t)aidt)p ds, i=12--,m.
R

R

Since u;, © =1,2,--- ,m, are nonnegative and nontrivial, there exists a point =, €
RN such that u;,(r4) > 0, 7. = |z4| for some i € {1,2,--- ,m}. We may assume
that r, > 9. Therefore we see from (3.6) with R = r, that w;(r) > 0 for r > r,, i =

1,2, ,m.
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Let us fix R > r, arbitrarily. Using (3.1) and the inequality

P\ N1 1\ V-1
<_> 2<_>  R<i<s<3R
S 3

in (3.6), we have

1

r s 1\ N1 -1
ul(r) 2 UZ(R) +/ / <—> Citi)\iuiJrl(t)aidt ds
rR \Jr \3
- N T S Tl—l
> C;R »i! / (/ Uz‘+1(7f)aidt> ds, R<r<3R,
R R
where C; > 0, i = 1,2,--- ,m, are some constants independent of r and R. From

now on, we use C' to denote various positive constants independent of » and R as

we will have no confusion. Put

1
s i1
/ ui+1(t)°‘idt> ’ ds, R<r<3R.
R

G1) =R [ <

R
Clearly, f;, ¢ =1,2,--- ,m, satisfy

ui(r) > fi(r), R<r<3R,

JO Y r Pi—1
fitr) =GR »i T </ uz‘+1(8)a"ds> "7 >0, R<r<3R,

i <
f(r)y>0, R<r<3R,

(3.8) (Sl =) = CR Mugpa(r)™
> CRifi1(r)%, R<r<3R.
From (3.7) and the monotonicity of u;, we see that
A oy y

(3.9) filr) > CR 7Ty (R)7-T (r — R)71, R <r<3R.

Let us fix i € {1,2,--- ,m}. Multiplying (3.8) by f/ ;(r) > 0 and integrating
by parts the resulting inequality on [R + €, 7], £ > 0, we have

Fa ) Fr)P=t > CR™ (fi(n)™ ™ — fii(R+e)™™), R+e<r <3R.
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Letting € — 0, we get
1 M atl
F ) fla(r)pict > CR Pt fiyy (r)7i~t, R <r <3R.
Multiplying this inequality by f;,; and integrating by parts on [R+¢,r] and letting
€ — 0, we obtain

A g +pZ

fi(r) fia (r ) Pl > CR 71 fi(r) 71, R<r<3R

From (3.8), we have

P01 A1 A, (o +pi)oi—1
—Ai—1 e ——

(iA@Y fig () 7T 2 CR™ 7T W fiy(r)” 7T, R<r<3R.

Again, multiplying this relation by f/ ; and integrating by parts on [R + ¢, 7]
and letting ¢ — 0 twice, we get

Pi%¥i—1 Pi—1

fifl(r)fi,_i_l( )(plil)(pz 1— 1) p;i—1—1

A1 Ai—1 (aj+pi)ei—q Pi—1

> CR_ (pi—DPi—1-1) pi_1-1 fi+1(74)(Pi—l)(Pi—1—1)+Pi—1—1’ R <r< 3R.

From (3.8), we obtain

PiXi—1%4—2 171,1042',2

(f{_Q(r)pi—2—1)1f2{+1( )(,7171)(;7z e R

Ajoi_jaq_9 Ai—1%i—2 (aj+piloj_10i_2 | Pi—104—2

> CR @i—D@i-1-1  pi1-1 i72fi+1(r) Pi—Dpi-1=b " rici-l | R <r < 3R.
By repeating this procedure we get

(3:10) (f{_ gy (r)Pimtm= =1 £l ()
= (fi,+1(T)piﬂ_l),fz‘lﬂ(?")m > CR_LifiH(?“)Mi, R<r<3R,

where
m—1
K; = D; ,
‘ — - jl)szJrl g—1
ji
m—1
Li= Ai—(j-1 + Ait1,
’ j=1 i=U- )sz-‘rl k_l ‘
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and

m—1
M; =
Z i +j:1 PG H Dit1- k—l
(pi—j — 1)
7=0
A(piy1
_ (zJ;D D k.

Multiplying (3.10) by f/,;(r) > 0 and integrating by parts on [R + ¢,7] and
letting € — 0, we have

M;+1

L
3.11 L) fizi(r) Fitpist > CR Kitrivr, R < r < 3R.
i+1 +

Since (M; + 1)/(K; + pi+1) > 1, we can set

Mi +1
K; + pit1

(A= P)pit1 — 1)‘

(K + pig1)P

Integrating (3.11) on [2R, 3R], we get

Li
fir1(2R) ™% > R Frei

From (3.9) with » = 2R and this inequality, we have
uiy2(R) < CR™,

where

L;

{ K; + pit1
From the definitions of K;, L; and ¢;, we see that

_ DPit1—1

- 14 (Nit1 — Pit1)0;
Q4+10;

Pit1 — 1

b

pit1— 1 (A—P)(Nig1 — pi+1)}
T, = L. — K. —n; +
' @i 10; (K + piy1) [ ' I P
P _m—l m—1 Gk A()\'+1 _p_+1)
- - i — Di_ii1 = + 4 4
aiy1(A—P) = Ricr = Pimj1) kl;[] Dit1-k — 1 P
Vi = e (Nit2 — Dit2)it1
_ Aiitl — Piin i— + i i i
ait1(A - P) s iy i=i+1) kl_[] Pit1-k — 1 Piy2 — 1
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P = o O
= A P D) jgo (Ni—j+1 — Pimjt1) kl;[] P + Ait2 — Dit2
P [ (N1 — Dig1) 1+ * Qim0
(A= P)(pit2 = 1) [(Pit1 = D)(pi = 1)+ (Pi=mt3 — 1)
(Ni = pi)ai 1062 Qi _my2 (Ni—mad = Picmid) Qi—m 130 —m 2

+(Pz‘ —D(pi-1 = 1)+ (Picms3z — 1) M (Pi—mta — 1) (Pi—my3 — 1)

Ni— — Di_ o
+( ) m+3pA pz+3mj31) i—m+2 +)\i+2 _pi+2]
i—m

P m—1 7j—1 - .
_ Nit2 — Pivo + N2t i — Pitoti _id24k
(A — P)(pi+2 — 1) 1+2 142 ; {( i+2+4j i+ +J) ]}_IO Ditsih — 1

PAiyo
(A= P)(pit2 — 1)
Therefore we obtain (3.2) by the definition of ;. Thus the proof is completed.O]

The next lemma is needed in proving Theorem 3.2.

Lemma 3.3 Let p;, = N, i = 1,2,--- ,m, and (uy,ua, - ,uy) be a nonnegative

radial entire solution of (1.1). Then u;, i =1,2,--- ,m, satisfy

wi(r) > u;(0) + </OT sNTUH (s) <log (T))N_l ui+1(<<s)o‘ids>ﬁ , r>0.

S

Proof. Let (uy,us, -+ ,uy) be a nonnegative radial entire solution of (1.1).
Then u;, i =1,2,--- ,m, satisfy the following system of ordinary differential equa-
tions

(N ()N 2 () = PV P ()%, 7> 0,

1=1,2,--- ,m.
u;(O):O,

Integrating these equations on [0,r] twice, we have

wi(r) = ui(0)+/or (/O <£>N1Hl-(t)ui+1(t)aidt> s

1
T T N—1
= uz-(0)+/ (/ D, (s,t)dt ds, r>0,
0 0

EJQTDE, 2002 No. 16, p. 16



where
sSENENELH (B ()% for 0 <t < s,
<I>i(s, t) =
0 for t>s.
Using Minkowski’s inequality (cf. [4, p.148]), we see that

1

/Or </0 @i(s,t)dt>N1_l ds > </0 </0 ¢¢(s,t>ﬁd8>N_ldt> ez

Then we have

1

([ )
= u(0) + </Or (/tr sltHi(t)l_lqu(t)N‘”ildS) Nldt> =

= u;(0) + </OT tNTLH; () <10g %)N_l Uz‘+1(t)aidt> |

Thus the proof is finished.[]

v

u;(r)

N-1

Proof of Theorem 3.2. Let (uj,us---,uy) be a nonnegative radial entire
solution of (1.1). We may assume that (ui,ug- - ,upy) # (0,0,---,0). As in the
proof of Theorem 3.1 we see that w;(r) > 0, r > r,, i = 1,2,--- ;m, for some
Ty > 7.

Let us fix R > r, arbitrarily. From Lemma 3.3, we see that u;, ¢ =1,2,--- ,m,
satisfy

(3.12) wi(r) > wi(0) + ( /O "N (s) (log g)N_lqu(s)aids

r N=1
> </ sNLH (s)(log r — log S)Nlqu(s)aids) . r>ell

R

Let logs =t, logr = p. Then (3.12) becomes

1

1

P N—
ui(ep) > </ eNtHi(et)(p - t)Nlui-Fl(et)aidt) y P > R7 i = 17 27 e, M.
R
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Now we discuss only on the interval [R,3R] for a moment. Let R < p < 3R.
Then, from (3.3), we have

1

P =1
we) = (0 [ -0 tu(eyar)

R
1
N N1 RS =
> CiR Z/ (p—t) ui+1(e )aldt , RS[)SBR,
R

where C; > 0 are some constants independent of  and R. From now on we use the
same letter C to denote various positive constants.
Define the functions f;, i =1,2,--- ,m, by
P

(313)  fi(p) =GR~ / (p— OV Lus()dt, R<p<3R.
R

Then we see that f;, i = 1,2, ,m, are of class CV[R, 3R] and satisfy

1

ui(”) = fi(p) 71, R<p<3R,
[Py =0 R<p<3r [P(R)=0, k=012 N-1,
and

(3.14) M) = CR Mug(er)™

X

> CR ™ fi(p)™1, R<p<3R.

From (3.13) and the monotonicity of u; we have
p

(3.15) filp) > CR Mupey(eR) / (p— )N ldt
R

> CR i (p—R)Nui(e®)*, R<p<3R.

Let us fix ¢ € {1,2,--- ,m}. Multiplying (3.14) by f/,, and integrating by parts

the resulting inequality on [R, p], we have
FN V) fLa(p) = CR™ fia(p) T, R < p<3R.

By repeating this process (N — 1) times, we get

Fi0) fia(p)Y = CR™ fia(p) v, R<p<3R.
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From (3.14) we have

ajoy1 | Noj_g

1 7>‘i0‘i—17>\, o R e S Wi et §
>CR N1 Ml fi(p)@v-n?t N-L o R < p < 3R.

F™N () s (p) ¥

Multiplying this inequality by f;,; and integrating by parts N times on [R, p], we
have

Noaj;_ Ajo ajaj_q | Nejq
1) fla(p) T N > ORI g () T Y R < p < 3R
i+1 +

From (3.14) we have

Naj_joaj_g  Noj_g

I () flaa(p) 07 TN

Ajoi—1—9  Aj_1Q;_2 )\ aio‘i—lai—2+N°‘i—lai 2+N0¢1 2
(N—-1)2 N-1

> CR =~ -0 TN R (p) (VP - , R<p<3R
By repeating this procedure we get

N .
316) 1 (D) ()

= IO () > CR ™ fia(p)™, R<p<3R,

where
m—1
Kz: _1mJHaZk 5
Jj=1
m—1 (
z j—1)
_]_m]Halk +)\z+17
Jj=1
and

HO[Z] m—1
Mi: +Z _]_m]Halk

7j=1
A
N -1m
Multiplying (3.16) by f;,; and integrating by parts (N — 1) times on [R, p], we

get
A—(N-1)™

AN L;
Frr(p) fipa (p) TFO@7m L > CRTFAN R < p < 3R.
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Integrating this inequality on [2R, 3R], we have

A—(N-1)™

fir1(2R)” ®ANMN-I" > OR™ K+N+1

From (3.15), we get

(o]
. vy " Li—Ki+ 21—
Ujyo ()it < RAN-DT (N—pm

From the definitions of K; and L;, we see that
A(Xiy1 — N)

L — K; + (N —1)m — Aig1

_ m—1 )\i—j+1 nﬁla m—1 H . A )\z+1 —N)
) (N — 1) ! ik ~ (N —1)ym—i ik (N —1)m
J= =J =
m—2

(N — 1)m=

- N1 (N —1)m

<
Il

2

=J
Qi A -
T N-1 {A’“NJFJZ

()‘H-l J_N) Ha i

m—1
_ (Ait1-j = N) T i s + @it1(Aig2 — N) . A(Ait1 — N)
(N — 1ym—i—1
o (V-

= N1 )\z+2 N + (N _ 1)m71 + (N — 1)m72
4+t ()\i—m+4 - N)ai—m+3ai—m+2 + ()‘i—m—i—?, — N)a’i—m+2
(N —1)? N -1

o 2
= Nzill Aig2 — N + Z { ax +] H az+2+k}

air1Nipo
N-—-1
Therefore we see that

. o (N=1)™ 1A o
uio(e)MH < CRT AT

Thus we obtain
(Nfl)m_lAi+2
ui+2(6p) < CP A-(N=1™ at oo, 1= 1a 2, y M.

Hence we obtain (3.4) since p = logr. The proof is completed.[]
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4 Nonexistence results

In this section we study the nonexistence of nonnegative nontrivial radial entire

solutions of (1.1).

Theorem 4.1 Suppose that H;, © =1,2,--- ,m, satisfy

C.
(4.1) Hi(|z|) > \w!;i’ || > rg >0,
where C; >0 and \;, 1 =1,2,--- ,m, are constants. Moreover
A-P .
A < max{0,p; — N} for some i€ {1,2,--- ,m}.

If (uy,ug, -+ ,um) is a nonnegative radial entire solution of (1.1), then
(U1,U2,"‘ 7um) = (0707 70)

Remark 4.1 (i) When m = 2, Theorem 4.1 reduces to Theorem 2 of [12]. However,
the proof presented here is simpler than that of Theorem 2 of [12].

(ii) When p; = 2, i = 1,2,--- ;m, and N # 2, Theorem 4.1 reduces to Theorems
2.3 and 2.5 of [13].

Theorem 4.2 Let p; = N, i = 1,2,--- ,m. Suppose that H;, i = 1,2,--- ,m,
satisfy

C;
(4.2) Hi(|z]) > —————, |x|>1r0>1,
' | [N (log |2[)*
where C; > 0 and X\;, 1 =1,2,--- ,m, are constants. Moreover
A—(N-1)™
A < W for some i€ {1,2,--- ,m}.
If (uy,ug, -+ ,up) is a nonnegative radial entire solution of (1.1), then

(u17u27'” 7um) = (0707 70)

Remark 4.2 (i) Theorem 4.2 shows that the conjecture stated in the introduction
is true.
(ii) When p; =2, i =1,2,--- ,m, Theorem 4.2 reduces to Theorem 2.4 of [13].
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We give an example to show the sharpness of our results.

Example. Let us consider the elliptic system

( 1
A = ————ud!
p UL (1 + |.’ED)‘1 COR
Ap,un = éugﬂ
(1 + |z])*
(4.3) ) z e RV,
1
Ay Uy = ——————ul™,
Pm Ym (]_—|—|.’E’))\m 1
where N > 1, p; > 1, a; > 0, ¢ = 1,2,--- ,m, are constants satisfying A > P.
Since ~
CZ' 1 Cz
, lzl=>21, +1=12,--- 'm
FR T
hold for some positive constants C; and C;, i = 1,2,--- ,m, we can see from Theo-

rems 2.1 and 4.1 that a necessary and sufficient condition for (4.3) to have a positive

radial entire solution is

A—-P
Ai>TmaX{0,pi—N}, 7::1,2’...,m.

Proof of Theorem 4.1. Let (uj,ug, - ,u,;) be a nonnegative nontrivial

radial entire solution of (1.1). From Theorem 3.1 and its proof, we see that

ui(r) >0, r > ry, i = 1,2,--- ;m, for some r, > r9 and w;, i = 1,2,--- ,m,
satisfy
(4.4) ui(r) < Cir% at oo, i=1,2,---,m
for some constants C; >0, i =1,2,--- ,m.
If there exists an g € {1,2,--- ,m} such that
Aiy < —— max{0,p;, — N},

then we can see from the definition of 3;, that

Bi, <0 if pj, <N,
pio -

Biy < if pj, > N.

0
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If p;, < N, then it is found that lim, . u;,(r) = 0. On the other hand, since u;, is

nondecreasing and w;, (r) > 0, we have
Ui (1) > wig (1) >0, 7>y

This is a contradiction. If p;, > N, then integrating (3.5) on [0, r] twice we have

1-N

r s Tl—l
uio(r) - Ui0(0)+/ stio™! (/ tNlHio(t)uio-f—l(t)aiOdt) ’ ds
0 0
r 1-N T o o
/ sPio " ds (/ tNle(t)Uerl(t)a"Odt) ’
T 0

1 L p; —N
Tx F p o 1 plo N ng =
= (/ N Hig () uig 1. (8) ™0 dt> S0 Qg 0
0 Dig — N

—N

v

Pio

> COrPio™" | r>7, >,

for some constant C' > 0. This contradicts to (4.4) with 8;, < (pi, — N)/(pi, — 1).

It remains to discuss the case that

A—-P

A; > max{0,p; — N}, i=1,2,--- m.

From the assumption of A;, there exists an ig € {1,2,--- ,m} such that

A-P
Ay = —5 max{0,p;, — N}

Without loss of generality, we may assume that ig = m, that is,

A—-P

A > max{0,p; — N}, i=1,2,--- ,m—1

and A_P
Ay = % max{0, p, — N}.

We first observe that

m—i—1 -1
Q; .
@5 N < {(Pz‘+j i) [ 7%} + min{p;, N}

; -1
= o Pit1+k

m—i—1

+max{0,pm — N} ] —E— =12 m -2
g Pitik — 1
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and

-1 max{0,p, — N}

4. A1 <
( 6) b= pm_l

+ min{p,,—1, N}.

In fact, from the definition of A;, we obtain

! it k A-P
A > — (Aitj — Pis) H ——FE b 4 pi + ——— max{0,p; — N}

— - Dir1+k — 1 P

j=1 k=0

m—i—1 m—1 7—1 a
i+k
= - + {(Ai+j = Pitj) H 27_1}
=1 je=m—itl j—o Pit1+k
m—i—1
ik A—-P
—(Am — — i+ ——max{0,p; — N

O = 2m) kl_[o par -1 0 P {0.p J

A-P
=81 — 52— 53 +pi+TmaX{0,pi - N}

From the assumption of A,, we have

m-l il ()ém+k A — P
A — Dm = — Z (Amtj — Pmtj) H + Iz max{0,p,, — N}.

-1
= ko P14k

Substituting this relation to S3 we have

m—1 7j—1 m—i—1 )
S3: _Z{()‘erj_perj)HM} H M
j=1

o Pmtltk — 1 o Pititk — 1
A—PpP m—i—1 -
+ max{0,p,, — N} H _ Gtk
oo Pitik — 1
m—1 m—i+j—1 o
i+k
= = ()‘m-i-j - pm-i—j) H 271
j=1 im0 Pitltk T
A_P m—i—1 it
+——max{0,p,, — N —
P (0. J kl—[o Pit1+k — 1
2m—i—1 j—1 i1
; A—-P "
= = Y SO p) [[—— + max{0,p, — N} [ ——th
j=m—it1 p—o Pit1+k — 1 P ko Piti+k — 1
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m—1 j—1 A 2m—i—1 j—1 o
= - Z {()\Hj — Ditj) H &} - Z {()\z‘Jrj — Di+j) H Lk}

j=m—i+1 k=0 Pit14+k — 1 j=m 50 Dit1+k — 1
A_PpP m—i—1 Qi
+——max{0,p,, — N —
P {0.pm J kl;[() Pit1+k — 1
m—i—1 jmel
— S, — Nt i — Pisi _ Stk
j;) {( i+ = Piti) kl;[() Pit1+k — 1
A _p m—i—1 it
+——max{0,p,, — N —
P {0.pm ) kl_IO Pit1+k — 1
A A A-P e ik
= -8 — =51 —-=(\ —p;) + ———max{0,p,, — N .
2 P 1 P( i pz) 2 { Pm } kl;[O Pitirh — 1
Thus, we obtain
A A —
Ai > F_l 51+F(>\i—1?i)+pi+ max{0,p; — N}
A _p m—i—1 itk
————max{0,p,, — N T
P {0.pm ; kl;IO Pit1+k — 1
namely,
m—i—1 o
0> S1+ A —pi+max{0,p; — N} — max{0,p,, — N} H L
o Pititk — 1
m—i—1 j—1 it
= > Qi) [T % + Ai — min{p;, N'}
= E—0 Pit1+k —
m—i—1 Oé'
—max{0,p,, — N itk
{0.pm J kl;IO Pit1+k — 1

Therefore we obtain (4.5). Similarly we obtain (4.6). From the above computation

we see that if A_p
A; > % max{0,p; — N},
then ”<” holds in (4.5) and (4.6), and if
A—-P
Ai=—5— max{0, p; — N},

then ”=" holds in (4.5) and (4.6).
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From now on, the letter C' denotes various positive constants independent of r

and R. Integrating (3.5) twice over [r,, ], from (4.1), we have

(4.7 ui(r) > ui(r*)+/T: (gl—N /StN_lHl-(t)qu(t)o‘idt)rl_lds

Tx

1
r s =1
> C/ <81N/ tNl/\z'qu(t)aidt)p ds, i=1,2---,m.
Tx

Tx

In what follows of the proof the argument is divided into two cases according to p,.
(i) Let pp, < N. We first consider the case that

A-P
Ap_q1 = 5 max{0, pyp—1 — N}.

Then from (4.6) we see that A\,,—1 = min{p,,—1, N}. From (4.7) with i = m — 1 we

have

1

Omo1_ (T J . P——

Upp—1 (1) = Ctigy () Pm—1-1 / (slN / tNlmm{Pm—hN}dt> Y ds.
7‘*+1 Tx

Therefore we see that, for p,,_1 < N

" 1N 7 N .
Up—1(r) > C (s - / T pm‘ldt> ds
Tx

rv«+1
T
> C s lds
re+1
> Clogr, r>ri>re+1,

for pj,_1 =N

1
r s P——
Up—1(r) > C <31N/ tldt>p " ds

re+1
r 1
> C s 1(log s)Pm-1""ds
re+1
Pm—1

> C(logr)rm=17 r>r >r,+1,
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and for p,,_1 > N

1

r s P
Up—1(1) > C/ (sl_N/ t_ldt>p " ds
Tet+1 T

T 1-N 1
C/ sPm-1=1(log s)Pm-1-1ds
re+1

v

Pm—1—N

1
> Crrm—17t(logr)rm-1"1 r>ry >r,+ 1

Here, the last inequality is given by integration by parts. On the other hand, from
(4.4) with ¢ = m — 1 and the definition of 3,,_1 we see that

C if Pm—1 S N7
um—l(r) < 1N

Crprm-—1-1 if Pm_1> N

for large r > r,. This is a contradiction.

Next we consider the case that
A-P
Apo = 5 max{0, pp—2 — N}.
Then we see from (4.5) with ¢ = m — 2 and (4.6) that

(pmfl - )\mfl)am72
Pm—1 — 1

Am—1 < min{p,,—1, N} and A\,—2 = + min{p,,_2, N}.

From (4.7) with ¢ = m — 1 we have

Cmot [T s T——
U1 (1) > C (1) i / <31N / tNHm—ldt> ds
r Tx

w1
r 1=Apm_1
> C sPm-1"1(g
re«+1
Pm—1—"Am-—1
> Cr pm17t o p>rp >+ 1

From this estimate and (4.7) with ¢ = m — 2 we obtain

1

r s A —2(Pm—1—"2Am—1) Po—1

_ N—1—Ap_g+ Zm=2"Pm m Pm—2

Um—a(r) > C (sl N/ t 2 Pm—1-1 dt) ds
ri+1 1

1
Co [ (s [

r1+1 1
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Therefore we see that for r > rg > r; +1

Clogr if pm—o <N,
Pm—2
Upm—2(T) > C(logr)Pm—2-1 if pm_2 =N,
Pm—2—N 1

Crrm—271 (logr)pm-2"1 if p,,_9 > N.
On the other hand, from (4.4) with i = m — 2 and the definition of 3,,_2 we see
that
C if Pm—2 S N7
Pm—2—N
Crem—271 if p._ o> N,
for large r > r,. This is a contradiction.

um72(7ﬂ) <

Similarly, suppose that there exists an ig € {1,2,--- ,;m} such that
A—

P
= —— max{0,p;, — N}

As, 2

and A_p
Ai>%max{0,pi—]\f}, i=1dg+1,--- ,m—1.

Then we see from (4.6) and (4.7) with ¢ = m — 1 that

Pm—1—Am—1

Up—1(r) > Cr Pm—1=t 0 p > >+ 1.

From this estimate, (4.5) with i = m — 2, (4.7) with ¢ = m — 2 we have

1
r s A —2(Pm—1—"2Am—1) Pr_o—1
_ N—1-Apg+ m=2Pm=1"m Pm—2
Um—2(r) > C <51 N/ t ? Pm—1-1 dt> ds
s

ri+1 1
r 1-Am—2 | am—2Pm—1—Am—1)
> O sgPm—2—1" (Pm—1-DPm-2-1 (g
ri1+1

Pm—2—"Am—2 | *m—2Pm—1—"Am—1)
Pm—2—1 (Pm—-1—D@m—2-1)
> CT m m m ,

r>rg >1ry+ 1.

By repeating this procedure, we get a sequence {r; };”;;0_1 such that

ui(r) >Cr™, r>r;>ri+1, i=m—-2m-=3,-- ,ig+1,

where

1 m—i—1 j—1 o
-+
(i pi—Xit Y, {(Pz‘ﬂ—)\z‘ﬂ)HL}
7 ]:1

oo Piti+k — 1
Pi — Ai + QiTiq
pi—1
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From this estimate, (4.5) with i = ig, (4.7) with i = ip we have

T S
uig(r) = C » sl_N/
Tm—ig—1 T

m—ig—1

N—-1-Xjy+ai,Tig+1 Pio™!
t fo o Tio 1 ¢ ds

T s . piol—l
- C Sl—N/ tN_l_mln{piO’N}dt ds.
Tm—ig—1+1 Tm—ig—1
Therefore we see that for r > rp,—;y > rm—io—1 +1
Clogr it pj, <N,
pio
wi (1) > C(logr)¥io~! if p;, =N,
PiO*N 1

Cr¥io~! (logr)¥o~' if p;, > N.
On the other hand, from (4.4) with ¢ = i¢ and the definition of 3;, we see that

c if Pig <N,
U (’I“) <

—= piO_N

CrPio~' if Dio > N,

for large r > r,. This is a contradiction. Thus the proof is completed for the case
Pm < N.
(ii) Let p,, > N. Then, integrating (3.5) on [0, r] twice, we have

1-N

(4.8)  up(r) = um(0)+/orsm (/OStN—le(t)ul(t)“mdt>Wl_lds

1
L T —
/ spm—1ds (/ tNle(t)ul(t)amdt>p
Tx 0

pm—N

> Crem=1, 7r2>7r]>7,.

v

Let us consider the case that
A-P
Apq1 = —5 max{0, pp—1 — N}.
Then from (4.6) we see that

B — N
_ om-1(Pm — N) + min{p,,—1, N}.
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From (4.7) with i = m — 1 and (4.8) we have

1
r s am—1(m—N) Pm_1-1
_ N—1=XAm— m—1 Pm—1
Um—1(r) > / <sl N/ t Am-1+ =50 dt> ds
ri+1 1

r s ) —Pm—ll—l
_ / <81_N/ tN—l—mln{pth}dt) ds.
ri+1 1

Therefore we see that for r > r9 > r; +1

Clogr if pm—1 <N,
Pm—1
um—l(r) Z C(logT’)pWﬁl_l if Pm—1 = N,
Pm—1—N 1

Crrm=1=1(logr)Pm-1=1 if pp,_; > N.

On the other hand, from (4.4) with i = m — 1 and the definition of 3,,_1 we see

that
C if Pm—1 S N7
Um—1(r) < Pm—1-N
Crrm—1=1 if p, 1 >N,

for large > r,. This is a contradiction.

Using similar arguments as in (i), we can get a contradiction for the case that

A-P
Ay = Tmax{(),pio,l — N} for some ig€{1,2,---,m},

and
A-P o .
A¢>Tmax{0,pi,1—]\/'}, i=ig+1,ig+2,---,m—1.

The proof is finished.[]

Proof of Theorem 4.2. Let (uj,ug, - ,u;) be a nonnegative nontrivial ra-

dial entire solution of (1.1). From Theorem 3.2 and its proof we see that wu;(r) >

0, r>ry, t=1,2,--- ,m, for some r, > rg and u;, 1 =1,2,--- ,m, satisfy
(4.9) ui(r) < Cilogr)%  at oo,
where C; > 0, ¢ = 1,2,--- ,m, are constants. If there exists an ig € {1,2,--- ,m}
such that A (N—1)
SN
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then we see that (3;, < 1 by the definition of 3;,. On the other hand, integrating
(3.5) on [0, 7] twice, we have

1

(4.10) g (r) = u,~0(0)+/0r<<s1 (/OstNlHiO(t)uiOH(t)aiodt)Mds

r Ta NoT
/ s~ tds (/ tNle‘ouz‘OH(t)aiOdt)
T 0

> Clogr, 7211 >

v

for some constant C' > 0. This contradicts to (4.9) with 3;, < 1. It remains to

discuss the case

A—(N-1)™
A > N-1m 1 1=1,2,---,m.
From the assumption of A; there exists an ig € {1,2,--- ,m} such that
A—(N-1)™
Aio - —_1.
(N —1)m

Without loss of generality we may assume that iy = m, that is,

A—(N-1)m™
AZ>—, :1727...’ _1
= (N—]_)mfl 1 m
and A—(N—-1)m
A, = AW =D7
(N — 1)m-1

A similar computation as was used in the proof of Theorem 4.1 shows that
(4.11)

m—i—1 (A N) j—1
< Wity = 2V A _ k=0 P — _
N < ]Zl { Y l}:[()a,+k} + == +1, i=1,2,--,m—2,

and
(4.12) Am-1 < a1 + 1.

We notice that ”<” holds in (4.11) and (4.12) if

A— (N —1)m

Ay > (N —1)m—1 "
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and ”=" holds in (4.11) and (4.12) if

A—(N-1)™
ANj=—r-— 7.
(N =1)mt
First we consider the case that
o A—(N-1) .
(N —1)m-1

Using the same computation as (4.10), we have
U (r) > Clogr, r>mr1 >r,

for some constant C' > 0. From this estimate, (4.7) with i = m — 1, (4.12) we have

Um—1(r) > C st </ til(log t)Am—1+°‘m‘1dt> ds
r1+1 1

1
r s N-_1
= C st </ tl(logt)ldt> ds
r1+1 1

> C 571 (log(log s))ﬁds
r1+1

> C'logr(log(log r))ﬁ, r>ry>1r)+1
for some constant C' > 0. On the other hand, from (4.9) with ¢ = m — 1 and the
definition of (3,,_1 we see that

Um—1(r) < Cp—1logr  at oo.

This is a contradiction.
Using similar arguments as in the proof of Theorem 4.1, we get a contradiction
for the case that

A—-(N-1)™
AiO:W for some ig € {1,2,--- ,m}

and (N 1y
Ai>¥ i=10+ lig+2,---,m—1

(N —1)m-1 "~
The proof is completed.[]
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