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Abstract

This paper is concerned with the traveling wavefronts of Belousov-Zhabotinskii

model with time delay. By constructing upper and lower solutions and applying the

theory of asymptotic spreading, the minimal wave speed is obtained under the weaker

condition than that in the known results. Moreover, the strict monotonicity of any

monotone traveling wavefronts is also established.
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1 Introduction

For the traveling wavefronts of parabolic equations, one well studied model is the

following simplified Belousov-Zhabotinskii system






∂U(x,t)
∂t

= ∆U(x, t) + U(x, t) [1 − U(x, t) − rV (x, t)] ,

∂V (x,t)
∂t

= ∆V (x, t) − bU(x, t)V (x, t),
(1.1)

where x ∈ R, t > 0, r ∈ (0, 1) and b > 0 are constants, and U, V ∈ R correspond

to the concentration of Bromic acid and bromide ion in chemical reaction, respectively.

Moreover, (1.1) was also derived from biochemical and biological fields, see Belousov [2],

Murray [7–9], Zaikin and Zhabotinskii [13], Zhabotinskii [14]. Recalling the chemical and

biological backgrounds of (1.1), much attention has been paid to the following asymptotical
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boundary conditions (see Kanel [3], Kapel [4], Troy [10], Ye and Wang [12])





limx→−∞U(x, t) = 0, limx→−∞ V (x, t) = 1,

limx→∞U(x, t) = 1, limx→∞ V (x, t) = 0,
(1.2)

which formulates a spatial-temporal transformation process of bromide element with dif-

ferent atomicity in the chemical reaction.

Recently, Lin and Li [5], Ma [6], Wu and Zou [11] further investigated the traveling

wavefronts of the following delayed system






∂U(x,t)
∂t

= ∆U(x, t) + U(x, t) [1 − U(x, t) − rV (x, t− τ)] ,

∂V (x,t)
∂t

= ∆V (x, t) − bU(x, t)V (x, t),
(1.3)

where τ ≥ 0 is the time delay and other parameters are the same to those in (1.1). Clearly,

if τ = 0, then (1.3) becomes (1.1). So, we only discuss (1.3) in what follows.

Because (1.3) is not a monotone system in the sense of the standard partial ordering

of the phase space of (1.3), we first make a change of variables such that we can study

it by usual partial ordering when the theory of classical monotone dynamical systems is

utilized. Let u = U and v = 1 − V, then (1.3) becomes






∂u(x,t)
∂t

= ∆u(x, t) + u(x, t) [1 − r − u(x, t) + rv(x, t− τ)] ,

∂v(x,t)
∂t

= ∆v(x, t) + bu(x, t) [1 − v(x, t)] ,
(1.4)

and (1.2) leads to

lim
x→−∞

u(x, t) = lim
x→−∞

v(x, t) = 0, lim
x→∞

u(x, t) = lim
x→∞

v(x, t) = 1. (1.5)

Hereafter, a traveling wavefront of (1.4) is a special solution taking the following form

(u(x, t), v(x, t)) = (φ(ξ), ψ(ξ)), ξ = x+ ct,

in which (φ(ξ), ψ(ξ)) ∈ C2(R,R2) is the wave profile which is monotone in ξ ∈ R while

c > 0 formulates the wave speed. Clearly, (φ,ψ) should satisfy





cφ′(ξ) = φ′′(ξ) + φ(ξ) [1 − r − φ(ξ) + rψ(ξ − cτ)] ,

cψ′(ξ) = ψ′′(ξ) + bφ(ξ) [1 − ψ(ξ)] ,
(1.6)

and the asymptotical boundary conditions formulated by

lim
ξ→−∞

φ(ξ) = lim
ξ→−∞

ψ(ξ) = 0, lim
ξ→∞

φ(ξ) = lim
ξ→∞

ψ(ξ) = 1. (1.7)
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In literature, the existence of (1.6)-(1.7) has been widely studied by many investigators.

For example, when τ = 0, Troy [10] proved that for each b > 0, there exist r∗ > 0, c∗ ∈ (0, 2]

such that (1.6)-(1.7) has a positive solution if we take c = c∗, r = r∗. However, the accurate

presentation of c∗, r∗ is not given and whether such a c∗ is the minimal wave speed is also

open, here the minimal wave speed c∗ implies that (1.6)-(1.7) has no positive solution for

c < c∗ while has a positive solution for c ≥ c∗. Moreover, for τ = 0, Murray [8, pp.326]

obtained the following bounds on minimal wave speed c in terms of r, b given by

(√
r2 + 2b/3 − r

)

√
2(b+ 2r)

≤ c ≤ 2.

Furthermore, some results of existence of (1.6)-(1.7) with τ = 0 were obtained by con-

structing upper and lower solutions and it was proved that c1 =: 2
√

1 − r is the minimal

wave speed if b ≤ 1 − r, we refer to Ye and Wang [12].

Recently, Ma [6], Wu and Zou [11] studied the existence of traveling wave solutions

of (1.3) for c > c1 and b ≤ 1 − r. Lin and Li [5] further proved the nonexistence of

traveling wave solutions of (1.3) when the wave speed c < c1. At the same time, Lin and

Li [5] also investigated the existence of (1.6) when c = c1 holds, but the authors did not

confirm (1.7). Therefore, even if b ≤ 1−r, some problems of the existence/nonexistence of

(1.6)-(1.7) remain open. Moreover, the role of time delay has not been reflected in these

results, and we shall further consider the existence and nonexistence of (1.6)-(1.7).

In this paper, by constructing upper and lower solutions and utilizing the theory of

asymptotic spreading, we prove that c1 is the minimal wave speed of (1.6)-(1.7) if

b ≤ (1 − r)e(1−r)τ

r
,

which extends/completes some known results. In particular, it also confirms the conjecture

of Lin and Li [5, Remark 2.4] by obtaining the asymptotic behavior of traveling wave

solutions with c = c1. Moreover, we also consider the strict monotonicity of traveling

wavefronts and prove the strict monotonicity of any monotone solutions of (1.6)-(1.7).

2 Preliminaries

In this section, we provide some known results such that we can follow our discussion

in the subsequent section. Let X be defined by

X = C(R,R2) =
{
u(x)|u(x) : R → R

2 is uniformly continuous and bounded
}
.
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If (φ,ψ) ∈ X, then we denote (H1,H2) : X → X as follows




H1 (φ,ψ) (ξ) = 2φ(ξ) + φ(ξ) [1 − r − φ(ξ) + rψ(ξ − cτ)] ,

H2 (φ,ψ) (ξ) = bψ(ξ) + bφ(ξ) [1 − ψ(ξ)] .

Using the notation, (1.6) equals to




cφ′(ξ) = φ′′(ξ) − 2φ(ξ) +H1 (φ,ψ) (ξ),

cψ′(ξ) = ψ′′(ξ) − bψ(ξ) +H2 (φ,ψ) (ξ).

Let c > 0. Choose constants as follows

γ1(c) =
c−

√
c2 + 8

2
, γ2(c) =

c+
√
c2 + 8

2
,

γ3(c) =
c−

√
c2 + 4b

2
, γ4(c) =

c+
√
c2 + 4b

2
.

Moreover, for (φ,ψ) ∈ X, define an operator F = (F1, F2) : X → X by

F1 (φ,ψ) (ξ) =
1

γ2(c) − γ1(c)

[∫ ξ

−∞
eγ1(c)(ξ−s) +

∫ ∞

ξ

eγ2(c)(ξ−s)

]
H1 (φ,ψ) (s)ds,

F2 (φ,ψ) (ξ) =
1

γ4(c) − γ3(c)

[∫ ξ

−∞
eγ3(c)(ξ−s) +

∫ ∞

ξ

eγ4(c)(ξ−s)

]
H2 (φ,ψ) (s)ds,

which was earlier used by Wu and Zou [11]. Then, it is evident that a fixed point of F

is a solution of (1.6) and it is sufficient to study the fixed point of F . In particular, we

present a nice property of F as follows.

Lemma 2.1 Assume that (0, 0) ≤ (φ1(ξ), ψ1(ξ)) ≤ (φ2(ξ), ψ2(ξ)) ≤ (1, 1), ξ ∈ R. Then

(0, 0) ≤ Fi(φ1, ψ1)(ξ) ≤ Fi(φ2, ψ2)(ξ) ≤ (1, 1), i = 1, 2.

Lemma 2.1 is a special form of the comparison principle listed by [6, 11] and we omit

its proof here. To proceed our discussion, we need the following definition of upper and

lower solutions (see [6, 11]).

Definition 2.2 Assume that (φ(ξ), ψ(ξ)) ∈ X satisfies (0, 0) ≤ (φ(ξ), ψ(ξ)) ≤ (1, 1), ξ ∈ R

and is twice differentiable on R\T, where T contains finite points of R. If φ
′
(ξ), ψ

′
(ξ), φ

′′
(ξ), ψ

′′
(ξ)

are essentially bounded and




cφ

′
(ξ) ≥ (≤)φ

′′
(ξ) + φ(ξ)

[
1 − r − φ(ξ) + rψ(ξ)

]
,

cψ
′
(ξ) ≥ (≤)ψ

′′
(ξ) + bφ(ξ)

[
1 − ψ(ξ)

] (2.1)

for ξ ∈ R \ T, then (φ(ξ), ψ(ξ)) is called an upper (a lower) solution of (1.6).
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By what we have done, we present the following existence result of (1.6).

Lemma 2.3 Assume that (φ(ξ), ψ(ξ)) is an upper solution of (1.6) while (φ(ξ), ψ(ξ)) is

a lower solution of (1.6). Also suppose that

(A1) (φ(ξ), ψ(ξ)) ≤ (φ(ξ), ψ(ξ)), ξ ∈ R;

(A2) (φ
′
(ξ−), ψ

′
(ξ−)) ≥ (φ

′
(ξ+), ψ

′
(ξ+)), (φ′(ξ−), ψ′(ξ−)) ≤ (φ′(ξ+), ψ′(ξ+)), ξ ∈ T;

(A3) sups<ξ φ(ξ) ≤ infs>ξ φ(ξ), sups<ξ ψ(ξ) ≤ infs>ξ ψ(ξ), ξ ∈ R.

Then (1.6) has a monotone solution (φ∗(ξ), ψ∗(ξ)) such that

(F1(φ(ξ), ψ(ξ)), F2(φ(ξ), ψ(ξ))) ≤ (φ∗(ξ), ψ∗(ξ)) ≤ (F1(φ(ξ), ψ(ξ)), F2(φ(ξ), ψ(ξ))) (2.2)

for any ξ ∈ R.

Proof. By Ma [6], Wu and Zou [11], (1.6) has a monotone solution (φ∗, ψ∗) satisfying

(φ(ξ), ψ(ξ)) ≤ (φ∗(ξ), ψ∗(ξ)) ≤ (φ(ξ), ψ(ξ)), ξ ∈ R.

By the definition of F , we see that (φ∗, ψ∗) is also a fixed point of F. Therefore, Lemma

2.1 further indicates (2.2). The proof is complete. 2

We now recall some conclusions of the so-called Fisher equation as follows






∂w(x,t)
∂t

= ∆w(x, t) + dw(x, t) [1 −w(x, t)] ,

w(x, 0) = w(x),
(2.3)

in which d > 0 holds and w(x) is bounded and uniformly continuous.

Lemma 2.4 (see [1]) If w(x) > 0, then

lim inf
t→∞

inf
|x|<ct

w(x, t) = lim sup
t→∞

sup
|x|<ct

w(x, t) = 1

for any c ∈
(
0, 2

√
d
)
.

Moreover, let w(x, t) = ρ(ξ), ξ = x+ ct be a traveling wavefront of the following Fisher

equation
∂w(x, t)

∂t
= ∆w(x, t) + dw(x, t) [1 − w(x, t)] . (2.4)

Then the following result is well known and can be found in many textbooks.
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Lemma 2.5 (T1) If c > 2
√
d, then (2.4) has a unique traveling wavefront ρ(ξ) such that

lim
ξ→−∞

ρ(ξ) = 0, lim
ξ→∞

ρ(ξ) = 1, lim
ξ→−∞

ρ(ξ)e−λ(c)ξ = 1, ρ(ξ) < min{1, eλ(c)ξ},

in which λ(c) = c−
√

c2−4d
2 .

(T2) If c = 2
√
d, then (2.4) has a traveling wavefront ρ(ξ) satisfying

lim
ξ→−∞

ρ(ξ) = 0, lim
ξ→∞

ρ(ξ) = 1, lim
ξ→−∞

ρ(ξ)e−
√

dξ/ξ = −1.

We also state the following standard comparison principle.

Lemma 2.6 Assume that w(x, t) is bounded and






∂w(x,t)
∂t

≥ ∆w(x, t) + dw(x, t) [1 −w(x, t)] ,

w(x, 0) ≥ w(x).
(2.5)

Then w(x, t) ≥ w(x, t).

3 Main Results

We first present our main result as follows.

Theorem 3.1 Assume that

b ≤ (1 − r)e(1−r)τ

r
.

Then c1 is the minimal wave speed of (1.6)-(1.7). Moreover, if c ≥ c1, then a monotone

solution of (1.6)-(1.7) is strictly monotone.

We now prove Theorem 3.1 by five lemmas as follows.

Lemma 3.2 If

b ≤ (1 − r)e(1−r)τ/r and c > c1,

then (1.6)-(1.7) has a strict positive solution which is also monotone.

Proof. Define positive constant µ(c) =
c−
√

c2−4(1−r)

2 , then

cµ(c) = µ2(c) + 1 − r > 1 − r.

Further construct continuous functions as follows

φ(ξ) = min{eµ(c)ξ , 1}, ψ(ξ) = min{eµ(c)ξ+(1−r)τ /r, 1}.
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Moreover, let φ(ξ) be the unique positive solution of

cφ′(ξ) = φ′′(ξ) + φ(ξ) [1 − r − φ(ξ)] , lim
ξ→−∞

φ(ξ)e−µ(c)ξ = 1.

Then Lemma 2.5 implies that

(φ(ξ), ψ(ξ)) ≤ (φ(ξ), ψ(ξ)), ξ ∈ R

with ψ(ξ) = 0. Moreover, these functions also satisfy (A1)-(A3) of Lemma 2.3.

Claim 1. (φ(ξ), ψ(ξ)) is an upper solution while (φ(ξ), ψ(ξ)) is a lower solution of (1.6).

Applying Lemma 2.3, we see that (1.6) has a positive monotone solution (φ∗, ψ∗)

satisfying (2.2). Then limξ→±∞(φ∗(ξ), ψ∗(ξ)) exist and

lim
ξ→−∞

(φ∗(ξ), ψ∗(ξ)) = (0, 0), (1, 1) ≥ lim
ξ→∞

(φ∗(ξ), ψ∗(ξ)) ≫ (0, 0)

by Lemma 2.1. Applying Lebesgue dominated theorem in F, we see that

lim
ξ→∞

(φ∗(ξ), ψ∗(ξ)) = (1, 1)

because

1 − r − u+ rv ≤ 0, 1 − v ≤ 0, 0 < u, v ≤ 1

implies u = v = 1. Therefore, we only need to verify Claim 1.

Proof of Claim 1. For φ(ξ), it suffices to verify that

cφ
′
(ξ) ≥ φ

′′
(ξ) + φ(ξ)

[
1 − r − φ(ξ) + rψ(ξ − cτ)

]
(3.1)

when ξ 6= 0. If φ(ξ) = 1 < eµ(c)ξ , then ψ(ξ − cτ) ≤ 1 implies that

φ
′′
(ξ) − cφ

′
(ξ) + φ(ξ)

[
1 − r − φ(ξ) + rψ(ξ − cτ)

]

≤ φ
′′
(ξ) − cφ

′
(ξ) + φ(ξ)

[
1 − r − φ(ξ) + r

]

= 0.

If φ(ξ) = eµ(c)ξ < 1, then ψ(ξ) ≤ eµ(c)ξ+(1−r)τ /r such that

−φ(ξ) + rψ(ξ − cτ)

≤ −eµ(c)ξ + eµ(c)(ξ−cτ)+(1−r)τ

≤ −eµ(c)ξ + eµ(c)ξ−cµ(c)τ+(1−r)τ

≤ 0

and

φ
′′
(ξ) − cφ

′
(ξ) + φ(ξ)

[
1 − r − φ(ξ) + rψ(ξ − cτ)

]
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≤ φ
′′
(ξ) − cφ

′
(ξ) + φ(ξ) [1 − r]

= eµ(c)ξ
[
µ2(c) − cµ(c) + 1 − r

]

= 0.

For ψ(ξ), we need to prove that

cψ
′
(ξ) ≥ ψ

′′
(ξ) + bφ(ξ)

[
1 − ψ(ξ)

]
(3.2)

if ξ ∈ R satisfies eµ(c)ξ+(1−r)τ /r 6= 1.

When ψ(ξ) = eµ(c)ξ+(1−r)τ /r < 1, then φ(ξ) ≤ eµ(c)ξ such that

ψ
′′
(ξ) − cψ

′
(ξ) + bφ(ξ)

[
1 − ψ(ξ)

]

≤ ψ
′′
(ξ) − cψ

′
(ξ) + bφ(ξ)

≤ eµ(c)ξ+(1−r)τ

r
[µ2(c) − cµ(c) + bre(r−1)τ ]

≤ eµ(c)ξ+(1−r)τ

r
[µ2(c) − cµ(c) + 1 − r]

= 0.

If ψ(ξ) = 1 < eµ(c)ξ+(1−r)τ /r, then it is clear that

ψ
′′
(ξ) − cψ

′
(ξ) + bφ(ξ)

[
1 − ψ(ξ)

]
= 0.

These complete the proof of (3.2).

Clearly, (φ(ξ), ψ(ξ)) satisfies




cφ′(ξ) = φ′′(ξ) + φ(ξ)

[
1 − r − φ(ξ) + rψ(ξ)

]
,

cψ′(ξ) ≤ ψ′′(ξ) + bφ(ξ)
[
1 − ψ(ξ)

]
,

(3.3)

and this indicates Claim 1. By what we have done, the proof is complete. 2

Lemma 3.3 If b ≤ (1 − r)e(1−r)τ/r and c = c1, then (1.6)-(1.7) has a strict positive

solution which is monotone.

Proof. Let µ(c) =
√

1 − r, then cµ(c) = 2(1 − r). Define continuous functions as follows

φ(ξ) =





−Kξeµ(c)ξ , ξ ≤ ξ1,

1, ξ > ξ1,
ψ(ξ) =





−Kξeµ(c)ξ+(1−r)τ/r, ξ ≤ ξ2

1, ξ > ξ2,

in which K > 1 such that maxξ∈R{−Kξeµ(c)ξ} > 1 and ξ1 is the smallest ξ such that

−Kξeµ(c)ξ = 1 while ξ2 is the smallest ξ satisfying −Kξeµ(c)ξ/r = 1. Clearly, if K > 1 is

large, then
ξ − cτ

ξ
< e(1−r)τ , ξ < ξ1 < 0. (3.4)
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Let K > 1 be large enough such that φ(ξ) > φ(ξ), herein φ(ξ) satisfies

c1φ
′(ξ) = φ′′(ξ) + φ(ξ) [1 − r − φ(ξ)] ,

and limξ→−∞ φ(ξ)e−
√

dξ/ξ = −1. By simple analysis, we see that K > 1 is well defined.

Claim 2. Let ψ(ξ) = 0, then (φ(ξ), ψ(ξ)) is an upper solution while (φ(ξ), ψ(ξ)) is a lower

solution of (1.6). Moreover, (φ(ξ), ψ(ξ)) and (φ(ξ), ψ(ξ)) also satisfy (A1)-(A3).

By Claim 2 and Lemma 2.3, we obtain our result. Now, we are in a position of verifying

Claim 2.

Proof of Claim 2. For φ(ξ), it suffices to verify that (3.1) holds.

If φ(ξ) = −Kξeµ(c)ξ < 1, then ψ(ξ) ≤ −Kξeµ(c)ξ+(1−r)τ/r such that

−φ(ξ) + rψ(ξ − cτ) ≤ Kξeµ(c)ξ −K(ξ − cτ)eµ(c)(ξ−cτ)+(1−r)τ

= Kξeµ(c)ξ −K(ξ − cτ)eµ(c)ξ+(r−1)τ

≤ 0

by (3.4). Therefore, we have

φ
′′
(ξ) − cφ

′
(ξ) + φ(ξ)

[
1 − r − φ(ξ) + rψ(ξ − cτ)

]

≤ φ
′′
(ξ) − cφ

′
(ξ) + φ(ξ) [1 − r]

= 0.

Otherwise, φ(ξ) = 1 < supξ∈R{−Kξeµ(c)ξ} and ψ(ξ) ≤ 1 indicate that

φ
′′
(ξ) − cφ

′
(ξ) + φ(ξ)

[
1 − r − φ(ξ) + rψ(ξ − cτ)

]

≤ φ
′′
(ξ) − cφ

′
(ξ) = 0,

and we finish the verification of (3.1).

For ψ(ξ), we need to prove that (3.2) holds. If ψ(ξ) = −Kξeµ(c)ξ+(1−r)τ/r < 1, then

φ(ξ) = −Kξeµ(c)ξ such that

ψ
′′
(ξ) − cψ

′
(ξ) + bφ(ξ)

[
1 − ψ(ξ)

]

≤ ψ
′′
(ξ) − cψ

′
(ξ) + bφ(ξ)

≤ ψ
′′
(ξ) − cψ

′
(ξ) − bKξeµ(c)ξ

= ψ
′′
(ξ) − cψ

′
(ξ) − bre(r−1)τKe(1−r)τ ξeµ(c)ξ/r

= ψ
′′
(ξ) − cψ

′
(ξ) + bre(r−1)τψ(ξ)

≤ ψ
′′
(ξ) − cψ

′
(ξ) + (1 − r)ψ(ξ)

= 0.
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If ψ(ξ) = 1 < supξ∈R{−Kξeµ(c)ξ+(1−r)τ/r}, then φ(ξ) ≤ 1 such that

ψ
′′
(ξ) − cψ

′
(ξ) + bφ(ξ)

[
1 − ψ(ξ)

]
= 0.

Therefore, (3.2) is verified.

Moreover, it is evident that (3.3) is true. The proof is complete. 2

Lemma 3.4 Assume that c < c1. Then (1.6)-(1.7) has no strict positive solution.

Proof. Were the statement false. Then there exists c2 ∈ (0, c1) such that (1.6)-(1.7) has a

positive solution (φ1(ξ), φ2(ξ)) if c = c2. Clearly, (u(x, t), v(x, t)) = (φ1(x+c2t), ψ1(x+c2t))

also satisfies the following initial value problem





∂u(x,t)
∂t

= ∆u(x, t) + u(x, t) [1 − r − u(x, t) + rv(x, t− τ)] ,

∂v(x,t)
∂t

= ∆v(x, t) + bu(x, t) [1 − v(x, t)] ,

u(x, 0) = φ1(x), v(x, s) = ψ1(x+ cs), s ∈ [−τ, 0].

(3.5)

Because ψ1(x) is positive, we know






∂u(x,t)
∂t

≥ ∆u(x, t) + u(x, t) [1 − r − u(x, t)] ,

u(x, 0) = φ1(x).
(3.6)

By (3.6) and Lemma 2.6, we see that

φ1(x+ c2t) ≥ û(x, t), (3.7)

if û(x, t) satisfies






∂bu(x,t)
∂t

= ∆û(x, t) + û(x, t) [1 − r − û(x, t)] ,

û(x, 0) = φ1(x).

Applying Lemma 2.4, we see that

lim inf
t→∞

inf
−2x=(c1+c2)t

û(x, t) > 0,

which implies a contradiction to (3.7) since

φ1(x+ c2t) → 0 if − 2x = (c1 + c2)t and t→ ∞.

By what we have done, we complete the proof. 2

Summarizing these three lemmas, we obtain the minimal wave speed. Before continuing

the paper, we also make a remark as follows.
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Remark 3.5 Our results also answer the conjecture of Lin and Li [5, Remark 2.4] by

confirming that α = 0.

In Lemmas 3.2-3.3, we obtain the existence of monotone solutions of (1.6)-(1.7). We

now investigate the strict monotonicity of these traveling wavefronts, which is true for any

monotone solutions of (1.6)-(1.7).

Lemma 3.6 Assume that (φ(ξ), ψ(ξ)) is a monotone solution of (1.6)-(1.7). Then

0 < φ(ξ) < 1, 0 < ψ(ξ) < 1, ξ ∈ R.

The lemma is clear from the definition of F, and we omit it here.

Lemma 3.7 Assume that (φ(ξ), ψ(ξ)) is a monotone solution of (1.6)-(1.7). Then φ(ξ), ψ(ξ)

are strict monotone in ξ ∈ R.

Proof. If ψ(ξ) is not strictly monotone, then there exists ξ1 such that ψ′(ξ1) = 0 and

ψ′′(ξ1) ≥ 0. Therefore, we obtain φ(ξ1)(1−ψ(ξ1)) ≤ 0, which is impossible by Lemma 3.6.

Therefore, we obtain the strict monotone of ψ(ξ).

If φ(ξ) is not strict monotone, then there exist ξ2 < ξ3 such that φ(ξ2) = φ(ξ) for

ξ ∈ [ξ2, ξ3]. Moreover, the smoothness and (1.7) implies that there exists a nonempty

interval I ⊂ R such that φ or ψ is strictly monotone and

H1 (φ,ψ) (s + ξ3 − ξ2) > H1 (φ,ψ) (s), s ∈ I. (3.8)

By Lemma 3.6 and (3.8), we see that

F1 (φ,ψ) (ξ2) =
1

γ2(c) − γ1(c)

[∫ ξ2

−∞
eγ1(c)(ξ2−s) +

∫ ∞

ξ2

eγ2(c)(ξ2−s)

]
H1 (φ,ψ) (s)ds

<
1

γ2(c) − γ1(c)

[∫ ξ2

−∞
eγ1(c)(ξ2−s) +

∫ ∞

ξ2

eγ2(c)(ξ2−s)

]
H1 (φ,ψ) (s+ ξ3 − ξ2)ds

=
1

γ2(c) − γ1(c)

[∫ ξ3

−∞
eγ1(c)(ξ3−s) +

∫ ∞

ξ3

eγ2(c)(ξ3−s)

]
H1 (φ,ψ) (s)ds

= F1 (φ,ψ) (ξ3),

which implies a contradiction. The proof is complete. 2
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