
Spectrum of one dimensional p-Laplacian Operator

with indefinite weight

A. Anane1, O. Chakrone1 and M. Moussa2
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Abstract

This paper is concerned with the nonlinear boundary eigenvalue problem

−(|u′|p−2u′)′ = λm|u|p−2u u ∈ I =]a, b[, u(a) = u(b) = 0,

where p > 1, λ is a real parameter, m is an indefinite weight, and a, b are real
numbers. We prove there exists a unique sequence of eigenvalues for this problem.
Each eigenvalue is simple and verifies the strict monotonicity property with respect
to the weight m and the domain I, the k-th eigenfunction, corresponding to the k-th
eigenvalue, has exactly k−1 zeros in (a, b). At the end, we give a simple variational
formulation of eigenvalues.
MSC 2000 35P30.
Key words and phrases: p-Laplacian spectrum, simplicity, isolation, strict mono-
tonicity property, zeros of eigenfunctions, variational formulation.

1 Introduction

The spectrum of the p-Laplacian operator with indefinite weight is defined as the set
σp(−∆p, m) of λ := λ(m, I) for which there exists a nontrivial (weak) solution u ∈ W 1,p

0 (Ω)
of problem

(V.P (m,Ω))

{

−∆pu = λm|u|p−2u in Ω,
u = 0 on ∂Ω,

where p > 1, ∆p : is the p-Laplacian operator, defined by ∆pu := div(|∇u|p−2∇u), in a
bounded domain Ω ⊂ IRN , and m ∈ M(Ω) is an indefinite weight, with

M(Ω) := {m ∈ L∞(Ω)/meas{x ∈ Ω, m(x) > 0} 6= 0}.
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The values λ(m, Ω) for which there exists a nontrivial solution of (V.P (m,Ω)) are called
eigenvalues and the corresponding solutions are the eigenfunctions. We will denote
σ+

p (−∆p, m) the set of all positive eigenvalues, and by σ−
p (−∆p, m) the set of negative

eigenvalues.

For p = 2 (∆p = ∆ Laplacian operator) it is well known (cf [4, 7, 8]) that,

• σ+
2 (−∆, m) = {µk(m, Ω), k = 1, 2, · · ·}, with 0 < µ1(m, Ω) < µ2(m, Ω) ≤ µ3(m, Ω)

≤ · · · → +∞, µk(m, Ω) repeated according to its multiplicity.

• The k-th eigenfunction corresponding to µk(m, Ω), has at most k nodal domains.

• The eigenvalues µk(m, Ω), k ≥ 1, verify the strict monotonicity property (SMP in
brief), i.e if m, m′ ∈ M(Ω), m(x) ≤ m′(x) a.e in Ω and m(x) < m′(x) in some
subset of nonzero measure, then µk(m, Ω) > µk(m

′

, Ω).

• Equivalence between the SMP and the unique continuation one.

For p 6= 2 (nonlinear problem), it is well known that the critical point theory of
Ljusternik-Schnirelmann (cf [15]), provides a sequence of eigenvalues for those problems.
Whether or not this sequence, denoted λk(m, Ω), constitutes the set of all eigenvalues is
an open question when N ≥ 1, m 6≡ 1, and p 6= 2. The principal results for the problem
seems to be given in (cf [1, 2, 3, 5, 6, 9, 10, 11, 12, 13]), where is shown that there exists
a sequence of eigenvalues of (V.P (m,Ω)) given by,

λn(m, Ω) = inf
K∈Bn

max
v∈K

∫

Ω |∇v|p dx
∫

Ω m|v|p dx
(1)

Bn = {K, symmetrical compact, 0 6∈ K, and γ(K) ≥ n }, γ is the genus function, or
equivalently,

1

λn(m, Ω)
= sup

K∈Bn

min
v∈K

∫

Ω m|v|p dx
∫

Ω |∇v|p dx
(2)

which can be written simply,

1

λn(m, Ω)
= sup

K∈An

min
v∈K

∫

Ω
m|v|p dx (3)

An = {K ∩ S, K ∈ Bn}. S is the unit sphere of W 1,p
0 (Ω) endowed with the usual

norm (‖v‖p
1,p =

∫

Ω |∇v|p dx), the equation (2) is the generalized Rayleigh quotient for the
problem (V.P (m,Ω)). The sequence is ordered as 0 < λ1(m, Ω) < λ2(m, Ω) ≤ λ3(m, Ω) ≤
· · · → +∞. The first eigenvalue λ1(m, Ω) is of special importance. We give some of its
properties which will be of interest for us (cf [1]). First, λ1(m, Ω) is given by,

1

λ1(m, Ω)
= sup

v∈S

∫

Ω
m|v|p dx =

∫

Ω
m|φ1|

p dx (4)

φ1 ∈ S is any eigenfunction corresponding to λ1(m, Ω), for this reason λ1(m, Ω) is called
the principal eigenvalue, also we know that λ1(m, Ω) > 0, simple (i.e if v and u are two
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eigenfunctions corresponding to λ1(m, Ω) then v = αu for some α ∈ IR), isolate (i.e there
is no eigenvalue in ]0, a[ for some a > λ1(m, Ω), finally it is the unique eigenvalue which
has an eigenfunction with constant sign. We denote φ1(x) the positive eigenfunction cor-
responding to λ1(m, Ω), φ1(x) verifies the strong maximum principle (cf [17]), ∂φ1

∂n
(x) < 0,

for x in ∂Ω satisfying the interior ball condition.

In [14] Otani considers the case N = 1, m(x) ≡ 1, and proves that , σp(−∆p, 1) =
{µk(m, I), k = 1, 2, · · ·}, the sequence can be ordered as 0 < µ1(m, Ω) < µ2(m, Ω) <
µ3(m, Ω) < · · · → +∞, the k-th eigenfunction has exactly k−1 zeros in I = (a, b). In [10]
Elbert proved the same results in the case N = 1, m(x) ≥ 0 and continuous, the author
gives an asymptotic relation of eigenvalues.

In this paper we consider the general case, N = 1 and m(x) can change sign and is
not necessarily continuous. We prove that σ+

p (−∆p, m) = {λk(m, I), k = 1, 2, · · ·}, the
sequence can be ordered as 0 < λ1(m, Ω) < λ2(m, Ω) < λ3(m, Ω) < · · ·λk(m, I) → +∞
as k → +∞, the k-th eigenfunction has exactly k − 1 zeros in I = (a, b). The eigenvalues
verify the SMP with respect to the weight m and the domain I.

In the next section we denote by: M(I) := {m ∈ L∞(I)/meas{x ∈ I, m(x) > 0} 6= 0},
m/J the restriction of m on J for a subset J of I, Z(u) = {t ∈ I/ u(t) = 0}, a nodal
domain ω of u is a component of I\Z(u), where (u, λ(m, I)) is a solution of (V.P (m,I)).
ũ/ω is the extension, by zero, on I of u/ω

2 Results and technical Lemmas

We first state our main results

Theorem 1 Assume that N=1 (Ω =]a, b[= I), m ∈ M(I) such that m 6≡ 1 and p 6= 2,
we have

1. Every eigenfunction corresponding to the k-th eigenvalue λk(m, I), has exactly k-1
zeros.

2. For every k, λk(m, I) is simple and verifies the strict monotonicity property with
respect to the weight m and the domain I.

3. σ+
p (−∆p, m) = {λk(m, I), k = 1, 2, · · ·}, for any m ∈ M(I). The eigenvalues are

ordered as 0 < λ1(m, Ω) < λ2(m, Ω) < λ3(m, Ω) < · · ·λk(m, I) → +∞ as k → +∞.

Corollary 1 For any integer n, we have the simple variational formulation,

1

λn(m, I)
= sup

F∈Fn

min
F∩S

∫ b

a
m|v|p dx (5)

Fn={F / F is a n dimensional subspace of W 1,p
0 (I)}.
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For the proof of Theorem 1 we need some technical Lemmas.

Lemma 1 Let m, m
′

∈ M(I), m(x) ≤ m′(x), then for any n, λn(m′, I) ≤ λn(m, I)

Proof Making use of equation (2), we obtain immediately λn(m′, I) ≤ λn(m, I).

Lemma 2 Let (u, λ(m, I)) be a solution of (V.P (m,I)), m ∈ M(I), then m/ω ∈ M(ω) for
any nodal domain ω of u.

Proof Let ω be a nodal domain of u and multiply (V.P (m,I)) by ũ/ω so that we obtain

0 <
∫

ω
|u

′

|p dx = λ(m, I)
∫

ω
m|u|p dx . (6)

This completes the proof.

Lemma 3 The restriction of a solution (u, λ(m, I)) of problem (V.P (m,I)), on a nodal
domain ω, is an eigenfunction of problem (V.P (m/ω ,ω)), and we have λ(m, I) = λ1(m/ω, ω).

Proof Let v ∈ W 1,p
0 (ω) and let ṽ be the extension by zero of v on Ω. It is obvious that

ṽ ∈ W 1,p
0 (Ω). Multiply (V.P (m,Ω)) by ṽ

∫

ω
|u′|p−2u′v′ dx = λ(m, I)

∫

ω
m|u|p−2uv dx (7)

for all v ∈ W 1,p
0 (ω). Hence the restriction of u in ω is a solution of problem (V.P (m/ω ,ω))

with constant sign. We then have λ(m, Ω) = λ1(m/ω, ω), ω), which completes the proof.

Lemma 4 Each solution (u, λ(m, I)) of the problem (V.P (m,I)) has a finite number of
zeros.

Proof This Lemma plays an essential role in our work. We start by showing that u has a
finite number of nodal domains. Assume that there exists a sequence Ik, k ≥ 1, of nodal
domains (intervals), Ii ∩ Ij = ∅ for i 6= j. We deduce by Lemmas 3 and 1, respectively,
that

λ(m, I) = λ1(m, Ik) ≥ λ1(C, Ik) =
λ1(1, Ik)

C
=

λ1(1, ]0, 1[)

C(meas(Ik))p
, (8)

where C = ‖m‖∞.

From equation (8) we deduce (meas(Ik)) ≥ (λ1(1,]0,1[)
λ(m,I)C

)
1

p , for all k, so

meas(I) =
∑

k≥1

(meas(Ik)) = +∞.

This yields a contradiction.
Let {I1, I2, · · · Ik} be the nodal domains of u. Put Ii =]ai, bi[, where a ≤ a1 < b1 ≤

a2 < b2 ≤ · · ·ak < bk ≤ b. It is clear that the restriction of u on ]a, b1[ is a nontrivial
eigenfunction with constant sign corresponding to λ(m, I). The maximum principle (cf
[17]) yields u(t) > 0 for all t ∈]a, b1[, so a = a1. By a similar argument we prove that
b1 = a2, b2 = a3, · · · bk = b, which completes the proof.

Lemma 5 (cf [16]) Let u be a solution of problem (V.P (m,Ω)) and u ∈ W 1,p(Ω) ∩ L∞(Ω)
then u ∈ C1,α(Ω) ∩ C1(Ω̄) for some α ∈ (0, 1).
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3 Proof of main results

Proof of Theorem 1
For n = 1, we know that λ1(m, I) is simple, isolate and the corresponding eigenfunction

has constant sign. Hence it has no zero in (a, b) and it remains to prove the SMP.

Proposition 1 λ1(m, I) verifies the strict monotonicity property with respect to weight
m and the domain I. i.e If m, m

′

∈ M(I), m(x) ≤ m′(x) and m(x) < m′(x) in some
subset of I of nonzero measure then,

λ1(m
′, I) < λ1(m, I) (9)

and, if J is a strict sub interval of I such that m/J ∈ M(J) then,

λ1(m, I) < λ1(m/J , J). (10)

Proof Let m, m
′

∈ M(I) as in Proposition 1 and recall that the principal eigenfunction
φ1 ∈ S corresponding to λ1(m, I) has no zero in I; i.e φ1(t) 6= 0 for all t ∈ I. By (3), we
get

1

λ1(m, I)
=

∫

I
m|φ1|

p dx <
∫

I
m

′

|φ1|
p dx ≤ sup

v∈S

∫

I
m

′

|v|p dx =
1

λ1(m′, I)
. (11)

Then inequality (9) is proved. To prove inequality (10), let J be a strict sub interval of
I and m/J ∈ M(J). Let u1 ∈ S be the (principal) positive eigenfunction of (V.P (m,J))
corresponding to λ1(m/J , J), and denote by ũ1 the extension by zero on I. Then

1

λ1(m/J , J)
=

∫

J
m|u1|

p dx =
∫

I
m|ũ1|

p dx < sup
v∈S

∫

I
m|v|p dx =

1

λ1(m, I)
. (12)

The last strict inequality holds from the fact that ũ1 vanishes in I/J so can’t be an
eigenfunction corresponding to the principal eigenvalue λ1(m, I).

For n = 2 we start by proving that λ2(m, I) has a unique zero in (a, b).

Proposition 2 There exists a unique real c2,1 ∈ I, for which we have Z(u) = {c2,1} for
any eigenfunction u corresponding to λ2(m, I). For this reason, we will say that c2,1 is
the zero of λ2(m, I).

Proof Let u be an eigenfunction corresponding to λ2(m, I). u changes sign in I. Consider
I1 =]a, c[ and I2 =]c′, b[ two nodal domains of u, by Lemma 3, λ1(m/I1 , I1) = λ2(m, I) =
λ1(m/I2 , I2). Assume that c < c′, choose d ∈]c, c′[ and put J1 =]a, d[, J2 =]d, b[; hence
J1 ∩ J2 = ∅, and for i = 1, 2, Ii ⊂ Ji strictly, and m/Ji

∈ M(Ji). Making use of Lemma 3,
by (10), we get

λ1(m/J1
, J1) < λ1(m/I1 , I1) = λ2(m, I) (13)

and
λ1(m/J2

, J2) < λ1(m/I2 , I2) = λ2(m, I). (14)

Let φi ∈ S be an eigenfunction corresponding to λ1(m/Ji
, Ji), by (4) we have for i = 1, 2

1

λ1(m, Ji)
=

∫

Ji

m|φi|
p dx (15)
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φ̃i is the extension by zero of φi on I. Consider the two dimensional subspace F =
〈φ̃1, φ̃2〉 and put K2 = F ∩ S ⊂ W 1,p

0 (I). Obviously γ(K2) = 2 and we remark that for
v = αφ̃1 + βφ̃2, ‖v‖1,p = 1 ⇐⇒ |α|p + |β|p = 1. Hence by (3), (13), (14) and (15) we
obtain,

1
λ2(m,I)

≥ min
v∈K2

∫

I
m|v|p dx

= min
v=αφ̃1+βφ̃2∈K2

(|α|p
∫

J1

m|φ1|
p + |β|p

∫

J2

m|φ2|
p)

= |α0|
p
∫

J1
m|φ1|

p + |β0|
p

∫

J2
m|φ2|

p)

= |α0|p

λ1(m/J1
,J1)

+ |α0|p

λ1(m/J2
,J2)

> |α0|p+|β0|p

λ2(m,I)

= 1
λ2(m,I)

,

a contradiction; hence c = c′. On the other hand, let v be another eigenfunction corre-
sponding to λ2(m, I). Denote by d its unique zero in (a, b). Assume, for example, that
c < d. By Lemma 3 and relation (10), we get

λ2(m, I) = λ1(m/]a,d[, ]a, d[) < λ1(m/]a,c[, ]a, c[) = λ2(m, I). (16)

This is a contradiction so c = d. We have proved that every eigenfunction corresponding
to λ2(m, I) has one, and only one, zero in (a, b), and that the zero is the same for all
eigenfunctions, which completes the proof of the Proposition.

Lemma 6 λ2(m, I) is simple, hence λ2(m, I) < λ3(m, I).

Proof Let u and v be two eigenfunctions corresponding to λ2(m, I). By Lemma 3
the restrictions of u and v on ]a, c2,1[ and ]c2,1, b[ are eigenfunctions corresponding to
λ1(m/]a,c2,1[, ]a, c2,1[) and λ1(m/]c2,1,b[, ]c2,1, b[), respectively. Making use of the simplicity
of the first eigenvalue, we get u = αv in ]a, c2,1[ and u = βv in ]c2,1, b[. But both of u and
v are eigenfunctions, so then by Lemma 5, there are C1(I). The maximum principle (cf
[17]) tell us that u′(c2,1) 6= 0, so α = β. Finally, by the simplicity of λ2(m, I) and the
theorem of multiplicity (cf [15]) we conclude that λ2(m, I) < λ3(m, I).

Proposition 3 λ2(m, I) verifies the SMP with respect to the weight m and the domain
I.

Proof Let m, m′ ∈ M(I) such that, m(x) ≤ m′(x) a.e in I and m(x) < m′(x) in
some subset of nonzero measure. Let c2,1 and c′2,1 be the zeros of λ2(m, I) and λ2(m

′

, I)
respectively. We distinguish three cases :

1. c2,1 = c′2,1 = c, then meas({x ∈ I/ m(x) < m
′

(x)∩]a, c[}) 6= 0, or meas({x ∈

I/ m(x) < m
′

(x)∩]c, b[}) 6= 0, by Lemma 3 and (9) we obtain

λ2(m
′, I) = λ1(m

′
/]a,c[, ]a, c[) < λ1(m/]a,c[, ]a, c[) = λ2(m, I), (17)

or
λ2(m

′, I) = λ1(m
′
/]c,b[, ]c, b[) < λ1(m/]c,b[, ]c, b[) = λ2(m, I). (18)
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2. c2,1 < c′2,1, by Lemmas 1, 3 and (10), we get

λ2(m
′, I) = λ1(m

′
/]a,c′

2,1[, ]a, c′2,1[) ≤ λ1(m/]a,c′
2,1[, ]a, c′2,1[)

< λ1(m/]a,c2,1[, ]a, c2,1[) = λ2(m, I).
(19)

3. c′2,1 < c2,1, as before, by Lemmas 1, 3 and (10), we have

λ2(m
′, I) = λ1(m

′
/]c′

2,1,b[, ]c
′
2,1, b[) ≤ λ1(m/]c′

2,1,b[, ]c
′
2,1, b[)

< λ1(m/]c2,1,b[, ]c2,1, b[) = λ2(m, I).
(20)

For the SMP with respect to the domain, put J =]c, d[ a strict sub interval of I with
m/J ∈ M(J), and denote c′2,1 the zero of λ2(m/J , J). As in the SMP with respect to the
weight, three cases are distinguished:

1. c2,1 = c′2,1 = l, then ]c, l[ is a strict sub interval of ]a, l[ or ]l, d[ is a strict sub interval
of ]l, b[. By Lemma 3 and (10), we get

λ2(m, I) = λ1(m/]a,l[, ]a, l[) < λ1(m/]c,l[, ]c, l[) = λ2(m/J , J) (21)

or
λ2(m, I) = λ1(m/]l,b[, ]l, b[) < λ1(m/]l,d[, ]l, d[) = λ2(m/J , J). (22)

2. c2,1 < c′2,1, again by Lemma 3 and (10), we obtain

λ2(m, I) = λ1(m/]c2,1,b[, ]c2,1, b[) < λ1(m/]c′
2,1,d[, ]c

′
2,1, b[) = λ2(m/J , J). (23)

3. c′2,1 < c2,1, for the same reason as in the last case, we get

λ2(m, I) = λ1(m/]a,c2,1[, ]a, c2,1[) < λ1(m/]c,c′
2,1[

, ]c, c2,1[) = λ2(m/J , J). (24)

The proof is complete.

Lemma 7 If any eigenfunction u corresponding to some eigenvalue λ(m, I) is such that
Z(u) = {c} for some real number c, then λ(m, I) = λ2(m, I).

Proof We shall prove that c = c2,1. Assume, for example, that c < c2,1. By Lemma 1
and (10) we get

λ(m, I) = λ1(m/]c,b[, ]c, b[) < λ1(m/]c2,1,b[, ]c2,1, b[) = λ2(m, I). (25)

On the other hand,

λ2(m, I) = λ1(m/]a,c2,1[, ]a, c2,1[) < λ1(m/]a,c[, ]a, c[) = λ(m, I), (26)

a contradiction. Hence, c = c2,1 and λ(m, I) = λ2(m, I). The proof is complete.

For n > 2, we use a recurrence argument. Assume that, for any k, 1 ≤ k ≤ n, that
the following hypothesis:
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1. H.R.1 For any eigenfunction u corresponding to the k-th eigenvalue λk(m, I), there
exists a unique ck,i, 1 ≤ i ≤ k − 1, such that Z(u) = {ck,i, 1 ≤ i ≤ k − 1}.

2. H.R.2 λk(m, I) is simple.

3. H.R.3 λ1(m, I) < λ2(m, I) < · · · < λn+1(m, I).

4. H.R.4 If (u, λ(m, I)) is a solution of (V.P (m,I)) such that Z(u) = {ci, 1 ≤ i ≤ k−1},
then λ(m, I) = λk(m, I).

5. H.R.5 λk(m, I) verifies the SMP with respect to the weight m and the domain I.

Holds, and prove them for n + 1.

Proposition 4 There exists a unique family {cn+1,i, 1 ≤ i ≤ n} such that Z(u) =
{cn+1,i, 1 ≤ i ≤ n}, for any eigenfunction u corresponding to λn+1(m, I).

Proof Let u be an eigenfunction corresponding to λn+1(m, I). By H.R.3 and H.R.4, u
has at least n zeros. According to Lemma 4, we can consider the n + 1 nodal domains
of u, I1 =]a, c1[, I2 =]c1, c2[, ... , In =]cn−1, cn[, In+1 =]c, b[. We shall prove that c = cn.
Remark that the restrictions of u on ]a, ci+1[, 1 ≤ i ≤ n − 1, are eigenfunctions with i
zeros, by H.R.4 λn+1(m, I) = λi(m/]a,ci+1[, ]a, ci+1[). Assume that cn < c, choose d in ]cn, c[
and put, J1 =]a, d[, J2 =]d, b[. Remark that J1 ∩ J2 = ∅, ]a, cn[ is a strict sub interval
of J1 ⊂ I, and ]c, b[ is a strict sub interval of J2 ⊂ I. It is clear that m/Ji

∈ M(Ji) for
i = 1, 2, by H.R.4 and H.R.5. We have

λn(m/J1
, J1) < λn(m/]a,cn[, ]a, cn[) = λn+1(m, I), (27)

and
λ1(m/J2

, J2) < λ1(m/]c,b[, ]c, b[) = λn+1(m, I). (28)

Denote by (φn+1, λ1(m/J2
, J2)) a solution of (V.P (m,J2)), (v, λn(m/J1

, J1)) a solution of

(V.P (m,J1)), φi, 1 ≤ i ≤ n the restrictions of v on Ii, and φ̃i, 1 ≤ i ≤ n, their extensions,

by zero, on I. Let Fn+1 = 〈φ̃1, φ̃2, · · · , φ̃n+1〉 and Kn+1 = Fn+1 ∩S, then γ(Kn+1) = n+1.
We obtain by (3) and the same proof as in Proposition 2

1

λn+1(m, I)
≥ min

Kn+1

∫

I
m|v|p dx >

1

λn+1(m, I)
, (29)

a contradiction, so c = cn. On the other hand, let v be an eigenfunction corresponding
to λn+1(m, I). Denote by d1, d2, · · · , dn the zeros of v. If d1 6= c1, then λn+1(m, I) =
λ1(m/]a,d1[, ]a, d1[) 6= λ1(m/]a,c1[, ]a, c1[) = λn+1(m, I), so d1 = c1, by the same argument
we conclude that di = ci for all 1 ≤ i ≤ n.

Lemma 8 λn+1(m, I) is simple, hence. λn+1(m, I) < λn+2(m, I).
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Proof Let u and v be two eigenfunctions corresponding to λn+1(m, I). The restrictions
of u and v on ]a, cn+1,1[ and ]cn+1,1, b[ respectively, are eigenfunctions corresponding to
λ1(m/]a,cn+1,1[, ]a, cn+1,1[) and λn(m/]cn+1,1,b[, ]cn+1,1, b[). By H.R.2 and H.R.4 we have u =
αv in ]a, cn+1,1[ and u = βv in ]cn+1,1, b[. On the other hand, u and v are C1(I) and
u′(cn+1,1) 6= 0, so α = β. From the simplicity of λn+1(m, I) and theorem of multiplicity
we conclude that λn+1(m, I) < λn+2(m, I).

Proposition 5 λn+1(m, I) verifies the SMP with respect to the weight m and the domain
I.

Proof Let m, m′ ∈ M(I), such that m(x) ≤ m′(x) with m(x) < m′(x) in some subset of
nonzero measure and (c

′

n+1,i)1≤i≤n the zeros of λn+1(m
′

) three cases are distinguished,

1. cn+1,1 = c′n+1,1 = c, one of the subsets is of nonzero measure,

{x ∈ I/ m(x) < m′(x)}∩]a, c[ and {x ∈ I/ m(x) < m′(x)}∩]c, b[.

By Lemma 3 and (9), we have

λn+1(m
′, I) = λ1(m

′
/]a,c[, ]a, c[) < λ1(m/]a,c[, ]a, c[) = λn+1(m, I) (30)

or
λn+1(m

′, I) = λn(m′
/]c,b[, ]c, b[) < λn(m/]c,b[, ]c, b[) = λn+1(m, I). (31)

2. cn+1,1 < c′n+1,1, by Lemmas 1, 3 and (10) we have

λn+1(m
′, I) = λ1(m

′
/]a,c′n+1,1[, ]a, c′n+1,1[)

≤ λ1(m/]a,c′n+1,1[, ]a, c′n+1,1[)

< λ1(m/]a,cn+1,1[, ]a, cn+1,1[) = λn+1(m, I).

(32)

3. c′n,1 < cn,1, from the same reason as before, we get

λn+1(m
′, I) = λn(m

′
/]c′n+1,1,b[, ]c

′
n+1,1, b[)

≤ λn(m/]c′n+1,1,b[, ]c
′
n+1,1[, b)

< λn(m/]cn+1,1,b[, ]cn+1,1, b[) = λn+1(m, I).

(33)

By similar argument as in proof of Proposition 3, we prove the SMP with respect to the
domain I.

Lemma 9 If (u, λ(m, I)) is a solution of (V.P (m,I)) such that Z(u) = {d1, d2, · · ·dn},
then λ(m, I) = λn+1(m, I).

Proof It is sufficient to prove that di = cn+1,i for all 1 ≤ i ≤ n. If cn+1,1 < d1 then, by
Lemma 1, (10), H.R.4 and H.R.5,

λ(m, I) = λ1(m/]a,d1[, ]a, d1[) < λ1(m/]a,cn+1,1[, ]a, cn+1,1[)
= λn+1(m, I)
= λn(m/]cn+1,1,b[, ]cn+1,1, b[)
< λn(m/]d1,b[, ]d1, b[)
= λ(m, I),

(34)
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a contradiction. If d1 < cn+1,1 then, by Lemma 1, (10), H.R.4 and H.R.5,

λn+1(m, I) = λ1(m/]a,cn+1[, ]a, cn+1[) < λ1(m/]a,d1[, ]a, d1[)
= λ(m, I)
= λn(m/]d1,b[, ]d1, b[)
< λn(m/]cn+1,1,b[, ]cn+1, b[)
= λn+1(m, I),

(35)

a contradiction. The proof is then complete, which completes the proof of Theorem 1.

Proof of Corollary 1. Since for F ∈ Fn, the compact F ∩ S ∈ An, by (3) we
have:

sup
F∈Fn

min
v∈F∩S

∫

Ω
m|v|p dx ≤

1

λn(m, Ω)
. (36)

On the other hand, for a n dimensional subspace F of W 1,p
0 (I), the compact set K =

F ∩ S ∈ An. Let u be an eigenfunction corresponding to λn(m, I) and put

F = 〈φ̃1(]a, cn,1[), φ̃1(]cn,1, cn,2[), · · · , φ̃1(]cn1,n, b[)〉,

to conclude F ∩ S ∈ An. By an elementary computation as in Proposition 2, one can
show that

1

λn(m, I)
= min

F∩S

∫

I
m|v|p dx. (37)

Then combine (36) with (37) to get (5). Which completes the proof.

3.1 Remark

The spectrum of p-Laplacian, with indefinite weight, in one dimension, is entirely deter-
mined by the sequence (λn(m, I))n≥1 if m(x) ≥ 0 a.e in I. Therefore, if m(x) < 0 in some
subset J ⊂ I of nonzero measure, replace m by −m; by Theorem 1, since −m ∈ M(I)
we conclude that, the negative spectrum σ−

p (−∆p, m) = −σ+
p (−∆p,−m) of this operator

is constituted by a sequence of eigenvalues λ−n(m, I) = −λn(−m, I). Thus the spectrum
of the operator is,

σp(−∆p, m) = σ+
p (−∆p, m) ∪ σ−

p (−∆p, m).
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