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Abstract. In this paper we generalize a result obtained in [15] concerning
uniform boundedness and so global existence of solutions for reaction-diffusion
systems with a general full matrix of diffusion coefficients satisfying a balance
law. Our techniques are based on invariant regions and Lyapunov functional
methods. The nonlinearity of the reaction term which we take positive in an
invariant region has been supposed to be polynomial or of weak exponential
growth..

1. INTRODUCTION

We consider the following reaction-diffusion system

(1.1)
∂u

∂t
− a∆u − b∆v = −σf(u, v) in R+ × Ω,

(1.2)
∂v

∂t
− c∆u − d∆v = ρf(u, v) in R+ × Ω,

with the boundary conditions

(1.3)
∂u

∂η
=

∂v

∂η
= 0 on R+ × ∂Ω,

and the initial data

(1.4) u(0, x) = u0(x), v(0, x) = v0(x) in Ω,

where Ω is an open bounded domain of class C1 in Rn, with boundary ∂Ω, and
∂

∂η
denotes the outward normal derivative on ∂Ω, σ and ρ are positive constants.

The constants a, b, c and d are supposed to be positive and
(

b + c)2 ≤ 4ad
)

which
reflects the parabolicity of the system and implies at the same time that the matrix
of diffusion

A =

(

a b
c d

)
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is positive definite; that is the eigenvalues λ1 and λ2 (λ1 < λ2) of its transposed
are positive. The initial data are assumed to be in the following region

Σ =



















{

(u0, v0) ∈ IR2 such that µ2v0 ≤ u0 ≤ µ1v0

}

, when − µ2 ≤
σ

ρ

{

(u0, v0) ∈ IR2 such that
1

µ2

u0 ≤ v0 ≤
1

µ1

u0

}

when − µ2 >
σ

ρ
.

Where

µ1 ≡
a − λ1

c
> 0 > µ2 ≡

a − λ2

c
, i = 1, 2

and

a = min {a, d}

The function f(r, s) is continuously differentiable, nonnegative on Σ with

(1.5)















f(µ2s, s) = 0, for all s ≥ 0, when − µ2 ≤
σ

ρ
and

f(r, 1
µ

1

r) = 0, for all r ≥ 0, when − µ2 >
σ

ρ
,

and

(1.6)















lim
s→+∞

[

log(1+f(r,s))
s

]

= 0, for any r ≥ 0, when − µ2 <
σ

ρ
,

and

lim
r→+∞

[

log(1+f(r,s))
r

]

= 0, for all s ≥ 0, when − µ2 >
σ

ρ
.

The limit (1.6) is not only valid for functions f polynomially bounded but it also

valid for functions with exponential growth as f(u, v) = ue
√

v or f(u, v) = ueεv

(see remark 3.3). For the diagonal case (i.e. when b = c = 0) and when σ = ρ = 1,
N. Alikakos [1] established global existence and L∞-bounds of solutions for positive

initial data for f(u, v) = uvβ and 1 < β < (n+2)
n

and K. Masuda [17] showed that
solutions to this system exist globally for every β > 1 and converge to a constant
vector as t → +∞. A. Haraux and A. Youkana [6] have generalized the method
of K.Masuda to nonlinearities uF (v) satisfying (1.6). Recently S. Kouachi and A.
Youkana [14] have generalized the method of A. Haraux and A. Youkana to the
triangular case, i.e. when b = 0 and the limit (1.6) is a small number strictly
positive, hypothesis that is in fact, weaker than the last one. This article is a
continuation of [15] where a = d. In that article the calculations was relatively
simple since the system can be regarded as a perturbation of the simple and trivial
case where b = c = 0; for which nonnegative solutions exist globally in time.

The components u(t, x) and v(t, x) represent either chemical concentrations or
biological population densities and system (1.1)-(1.2) is a mathematical model de-
scribing various chemical and biological phenomena ( see E. L. Cussler [2], P. L.
Garcia-Ybarra and P. Clavin [4], S. R. De Groot and P. Mazur [5], J. Jorne [9], J.
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S. Kirkaldy [13], A. I. Lee and J. M. Hill [16] and J. Savchik, b. Changs and H.
Rabitz[19].

It is well known that, to establish a global existence of unique solutions for
(1.1)-(1.3), usual techniques based on Lyapunov functionals which need invariant
regions( see M. Kirane and S. Kouachi [11], [12] and S. Kouachi and A. Youkana
[14] ) are not directly applicable. For this purpose we construct invariant regions.

2. EXISTENCE.

2.1. Local existence. The usual norms in spaces Lp(Ω), L∞(Ω) and C
(

Ω
)

are
respectively denoted by :

‖u‖
p

p =
1

|Ω|

∫

Ω

|u(x)|
p
dx,

‖u‖∞ = max
x∈Ω

|u(x)| .

For any initial data in C
(

Ω
)

or Lp(Ω), p ∈ (1, +∞); local existence and uniqueness
of solutions to the initial value problem (1)-(4) follow from the basic existence
theory for abstract semilinear differential equations (see A. Friedman [3], D. Henry
[7] and Pazy [18]). The solutions are classical on ]0, T ∗[ , where T ∗ denotes the
eventual blowing-up time in L∞(Ω).

2.2. Invariant regions.

Proposition 1. Suppose that the function f is nonnegative on the region Σ and that
the condition (1.5) is satisfied, then for any (u0, v0) in Σ the solution (u(t, .), v(t, .))
of the problem (1.1)-(1.4) remains in Σ for any time and there exists a positive
constant M such that

(2.1)















‖u − µ2v‖∞ ≤ M,when − µ2 <
σ

ρ
and

‖u − µ1v‖∞ ≤ M, when − µ2 >
σ

ρ
.

Proof. One starts with the case where −µ2 <
σ

ρ
:

Multiplying equation (1.2) one time through by µ1 and subtracting equation
(1.1) and another time by −µ2 and adding equation (1.1) we get

∂(µ1v − u)

∂t
− ∆ [(µ1c − a)u + (µ1d − b)v] = (ρµ1 + σ)f

∂(−µ2v + u)

∂t
− ∆ [(−µ2c + a)u + (−µ2d + b)v] = −(ρµ2 + σ)f.

Then if we assume without loss that a ≤ d, using the fact that λ1 and λ2 are the
eingenvalues of At which implies that

µic − a = −λi and µid − b = λiµi, i = 1, 2,
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we get

(2.2)
∂w

∂t
− λ2∆w = −(ρµ2 + σ)F (w, z)

(2.3)
∂z

∂t
− λ1∆z = (ρµ1 + σ)F (w, z)

with the boundary conditions

(2.4)
∂w

∂η
=

∂z

∂η
= 0 on ]0, T ∗[ × ∂Ω ,

and the initial data

(2.5) w(0, x) = w0(x), z(0, x) = z0(x) in Ω,

where

(2.6) w(t, x) = (u − µ2v) (t, x) and z(t, x) = (−u + µ1v) (t, x)

for any (t, x) in ]0, T ∗[ × Ω, and

F (w, z) = f(u, v).

Now, it suffices to prove that the region
{

(w0, z0) ∈ IR2 such that w0 ≥ 0, z0 ≥ 0
}

= IR+ × IR+,

is invariant for system (2.2)-(2.3) and w(t, x) is uniformly bounded in ]0, T ∗[ × Ω.
Since, from (1.5), F (0, z) = f(µ2v, v) = 0 for all z ≥ 0 and all v ≥ 0, then
w(t, x) ≥ 0 for all (t, x) ∈ ]0, T ∗[×Ω, thanks to the invariant region’s method ( see
Smoller [20] ) and because F (w, z) ≥ 0 for all (w, z) in IR+×IR+ and z0(x) ≥ 0 in
Ω, we can deduce by the same method applied to equation (2.3), that

z(t, x) = (−u + µ1v) (t, x) ≥ 0 in ]0, T ∗[ × Ω;

then Σ is an invariant region for the system (1.1)-(1.3).

At the end, to show that w(t, x) is uniformly bounded on ]0, T ∗[×Ω, since −µ2 <
σ

ρ
,

it is sufficient to apply the maximum’s principle directly to equation (2.2).

For the case −µ2 >
σ

ρ
, the same reasoning with equations

(2.2)
′ ∂w

∂t
− λ1∆w = −(ρµ1 + σ)F (w, z)

(2.3)
′ ∂z

∂t
− λ2∆z = −(ρµ2 + σ)F (w, z),

with the same boundary condition (2.4) implies the invariance of IR+ × IR+ and
the uniform boundedness of w(t, x) on ]0, T ∗[ × Ω, where in this case we take

(2.6)
′

w(t, x) = (u − µ1v) (t, x) and z(t, x) = (u − µ2v) (t, x),
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for all (t, x) in ]0, T ∗[ × Ω.

Once, invariant regions are constructed, one can apply Lyapunov technique and
establish global existence of unique solutions for (1.1)-(1.4).

2.3. Global existence. As the determinant of the linear algebraic system (2.6) or

(2.6)
′

, with regard to variables u and v, is different from zero, then to prove global
existence of solutions of problem (1.1)-(1.4) reduced to proving it for problem (2.2)-
(2.5). For this purpose, it is well known that (see Henry [7]) it suffices to derive a
uniform estimate of ‖F (w, z)‖p on [0, T ∗[ for some p > n/2.

The main result and in some sense the heart of the paper is:

Theorem 2. Let (w(t, .), z(t, .)) be any solution of system (2.2)-(2.3) (respectively

(2.2)
′

−(2.3)
′

) with initial data in IR+ × IR+and boundary conditions (2.4), then
the functional

(2.7) t −→ L(t) =

∫

Ω

(M − w(t, x))−γ expβz(t, x)dx

is nonincreasing on [0, T ∗[, for all positive constants β and γ such that

(2.8) βµM < γ <
4λ1λ2

(λ1 − λ2)2
,

and all M satisfying

(2.9) ‖w0‖∞ < M,

where µ =
(ρµ1 + σ)

(ρµ2 + σ)
(respectively µ = −

(ρµ2 + σ)

(ρµ1 + σ)
) and where w(t, x) and z(t, x)

are given by (2.6) (respectively (2.6)
′

).

Proof. Let’s demonstrate the theorem in the case −µ2 <
σ

ρ
.

Differentiating L with respect to t yields:

·
L(t) =

∫

Ω

[

γ
(

(M -w)-γ-1eβz
) ∂w

∂t
+

(

β(M -w)-γeβz
) ∂z

∂t

]

dx

=

∫

Ω

(

γ(M -w)-γ-1eβz
)

(λ2∆w − (ρµ2 + σ)F (w, z)) dx +

∫

Ω

(

β(M -w)-γeβz
)

(λ1∆z + (ρµ1 + σ)F (w, z)) dx
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=

∫

Ω

[

γλ2(M -w)-γ-1eβz∆w + βλ1(M -w)-γeβz∆z
]

dx

+

∫

Ω

[

(ρµ1 + σ)β(M -w)-γ − (ρµ2 + σ)γ(M -w)-γ-1
]

eβzF (w, z)dx

= I + J.
By simple use of Green’s formula, we get

I = -

∫

Ω

T (∇w,∇z)(M − w)-γ-2eβzdx,

where

T (∇w,∇z) = λ2γ(γ + 1) |∇w|
2
+

β(M − w)(λ1 + λ2)γ∇w∇z +

λ1β
2(M − w)2 |∇z|

2
.

The discriminant of T is given by:

D =
[

((λ1 + λ2)γ)
2
− 4λ2λ1γ(γ + 1)

]

β2(M − w)2

=
(

(λ1 − λ2)
2γ2 − 4λ1λ2γ

)

β2(M − w)2.

D < 0, if

γ > 0 and (λ1 − λ2)
2γ − 4λ1λ2 < 0.

Theses last two inequalities can be written as follows:

0 < γ <
4λ1λ2

(λ1 − λ2)2
.

Using the following inequality

ξ1x
2 + ξ2xy + ξ3y

2 ≤ -

(

ξ2
2-4ξ1ξ3

)

2

[

y2

4ξ1

+
x2

4ξ3

]

for all (x, y) ∈ R2,

where ξ1 and ξ3 are two negative constants and ξ2 ∈ R, we can show that

I ≤ -

∫

Ω

(

m1 |∇w|2 + m2 |∇z|2
)

(M -w)-γ-2eβzdx,

where the positive constants m1 and m2 are given by:
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m1 =

(

4λ1λ2-γ (λ1-λ2)
2
)

γ

8λ1

m2 =

(

4λ1λ2-γ (λ1-λ2)
2
)

β2(M − ‖w0‖∞)2

8λ2(γ + 1)
.

For the second integral, we have

J =

∫

Ω

(βM(ρµ1 + σ) − γ(ρµ2 + σ)) (M -w)-γ-1eβzF (w, z)dx,

if we choose

β <
(ρµ2 + σ)γ

(ρµ1 + σ)M
,

then

J ≤ −C(β, γ, µ1, µ2, M)

∫

Ω

(M − w)-γ-1eβzF (w, z)dx,

where C(β, γ, µ1, µ2, M) is a positive constant.
Hence,

·
L(t) ≤ -

∫

Ω

(

m1 |∇w|2 + m2 |∇z|2
)

(M -w)-γ-2eβzdx

-C(β, γ, µ1, µ2, M)

∫

Ω

(M -w)-γ-1eβzF (w, z)dx ≤ 0.

Concerning the case −µ2 >
σ

ρ
, the same reasoning with equations (2.2)

′

and

(2.3)
′

implies that the functional given by (2.7) is nonincreasing on [0, T ∗[, for all

positive constants β, γ and M satisfying (2.8)
′

and (2.9).
Theorem 2.2 is completely proved.

Corollary 3. Suppose that the function f(r, s) is continuously differentiable, non-
negative on ⊀ and satisfying conditions (1.5) and (1.6) .Then all solutions of (1.1)-
(1.3) with initial data in Σ are global in time and uniformly bounded on (0, +∞)×Ω.

Proof. Let us take −µ2 <
σ

ρ
, as it has been mentioned in the beginning of section

1.3; it suffices to derive a uniform estimate of ‖F (w, z)‖p on [0, T ∗[ for some p > n/2.

Since, for u and v in Σ, w ≥ 0 and z ≥ 0, and as w+z = (µ1−µ2)v with w uniformly
bounded on [0, T ∗[ × Ω by M and µ1 > µ2, then (1.6) is equivalent to

lim
s→+∞

[

log (1 + F (r, s))

s

]

= 0, for all r ≥ 0.
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As F is continuous on R+ × R+, then

lim
s→+∞

[

log (1 + F (r, s))

s

]

= 0,

uniformly for r ∈ [0, M ] and we can choose positive constants α and C such that:

(2.10) 1 + F (r, s) ≤ Ceαs, for all s ≥ 0 and for all r ∈ [0, M ] ,

and

α <
8λ1λ2(ρµ2 + σ)

n(λ1 − λ2)2(ρµ1 + σ) ‖w0‖∞
,

then we can choose p > n/2 such that

(2.11) pα <
4λ1λ2(ρµ2 + σ)

(λ1 − λ2)2(ρµ1 + σ) ‖w0‖∞
.

Set β = pα, hence

(2.12) β ‖w0‖∞ <
4λ1λ2(ρµ2 + σ)

(λ1 − λ2)2(ρµ1 + σ)
,

thus we can choose γ and M such that (2.8) and (2.9) are satisfied. Using Theorem
2.2 we get,

eβz(t,.) =
(

eαz(t,.)
)p

∈ L∞ (

[0, T ∗[ ; L1 (Ω)
)

,

therefore

eαz(t,.) ∈ L∞ ([0, T ∗[ ; Lp (Ω)) ,

and from (2.10) we deduce that

f(u(t, .), v(t, .)) ≡ F (w(t, .), z(t, .)) ∈ L∞ ([0, T ∗[ ; Lp (Ω)) , for some p > n/2.

By the preliminary remarks, we conclude that the solution is global and uniformly
bounded on [0, +∞[× Ω.

For the case −µ2 >
σ

ρ
, the same reasoning with w and z given by (2.6)

′

and

using the limit (1.6) we deduce the same result.

3. Remarks and comments

Remark 1. In the case when −µ2 =
σ

ρ
and initial data given in Σ ( defined in the

case when −µ2 >
σ

ρ
) we have global existence of solutions of problem (1.1)-(1.4)

without any condition on the constants or on the growth of the function f to part
EJQTDE, 2003 No. 4, p. 8



its positivity and f(r, 1
µ

1

r) = 0, for all r ≥ 0. To verify this, it suffices to apply the

maximum principle directly to equations (2.2)
′

−(2.3)
′

.

Remark 2. when the condition f(r, 1
µ

1

r) = 0, for all r ≥ 0 is not satisfied, then by

application of the comparison’s principle to equation (2.3), blow up in finite time

can occur in the case where −µ2 =
σ

ρ
, especially when the reaction term satisfies

an inequality of the form:

|f(u, v)| ≥ C1 |u|
α1 + C2 |v|

α2 ,

where C1, C2, α1 and α2 are positive constants such that

C2
1 + C2

2 6= 0, α1 > 1 and α2 > 1.

Remark 3. One showed the global existence for functions f(u, v) of polynomial
growth (condition 1.6), but our results remain applicable for functions of exponen-
tial growth (but small) while replacing the condition 1.6 by:






















lim
s→+∞

[

log(1+f(r,s))
s

]

<
8λ1λ2(ρµ2 + σ)

n(λ1 − λ2)2(ρµ1 + σ) ‖w0‖∞
, for any r ≥ 0,when − µ2 <

σ

ρ
,

and

lim
r→+∞

[

log(1+f(r,s))
r

]

<
−8λ1λ2(ρµ1 + σ)

n(λ1 − λ2)2(ρµ2 + σ) ‖w0‖∞
, for any s ≥ 0,when − µ2 >

σ

ρ
.

Remark 4. If λ1 = λ2 or −µ2 =
σ

ρ
we have global existence for any exponential

growth.
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