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1 Introduction

Recently there is increasing interest in the existence of positive solutions of boundary value prob-
lems (BVP) for differential equations on the half lines, see the references [1-9, 12-38]. It is observed
that fixed point theorems have been useful in establishing the existence of positive solutions. To
apply a fixed point theorem, one needs a Banach space, a cone, and a completely continuous op-
erator. A brief survey of the Banach spaces, cones and operators used in the literature is given

below.
The Banach spaces used in the literature include

e (C0,00) = {z:[0,00) — R : z is continuous on [0,00) and lim;_. x(t) exists} with the norm
]l = supsefo,o0) [2(2)] (see [6, 13]);

e C0,00) = {x: [0,00) — IR : &, 2" are continuous on [0,00) and limy_o x(t), limy_o 2'(t)

exist} with the norm ||z||; = max{supte[opo) lz(t)], suPsefo,00) |ac'(t)|} (see [12, 15]);

e C'0,00) = {z:[0,00) = R : z,2’ are continuous on [0,00) and lim; e ”15(—3, limy 00 2/ (1)

exist} with the norm |[z| = max {Supte[O,oo) ‘”f(—JfZl, SUP¢e(0,00) |ac'(t)|} (see [14, 16, 36));
e weighted Banach spaces (with weights u, v : [0,00) — (0,00)) such as
— Cy[0,00) = {x :[0,00) — IR : x is continuous on [0, 00) and lim_, % exists} with

the norm ||z, = Sup;e(o,o0) 1oy (see [17, 18, 19, 20, 26, 31, 32]); and
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— C},[0,00) = {2 :[0,00) = R : 2,2’ are continuous on [0,00) and lim;_ %,
lz(®)]

limy—.oc v(t)a’ (t) exist} with the norm |||y, = max{supte[oﬁoo) Tret  SUPief0,00)

Ttu(t)’
lo(t)a’ ()|} (see [33, 34, 35)).

For the construction of a suitable cone, in the literature two methods have been used, one is
by using the Green’s function of the corresponding boundary value problem [9, 13, 29, 30], while
the other is by using the concavity property of the solutions [12, 14, 17, 18, 20].

To define an appropriate operator, in [9, 13, 29] the nonlinear operator is defined by using
the Green’s function, whereas in [12, 14, 17, 18, 20, 30] the boundary condition z'(c0) = 0 is
instrumental in transforming the boundary value problem into an integral equation which leads to

the definition of the nonlinear operator.

On the fixed point theorems used in the literature, in [21, 32] the method of upper and lower
solutions or Tychonoff fixed point theorem has been used to establish the existence of bounded
solutions of boundary value problems for second order differential equations on the half line. Yan
[31] has applied the Leray-Schauder theorem and the fixed point index theory to establish the

existence of multiple nonnegative unbounded solutions of the boundary value problem

[p(t)xl(t)]/ + f(ta x(t)) =0, te (0’ OO),

Motivated by the above mentioned papers, in this paper we consider the following non-homogeneous
boundary value problem for the differential equation on the half line whose boundary conditions

are of integral form

()" ()] + f (¢, 2(t)) = 0, € (0,00),
x(0) = /OOO g(s)z(s)ds + a, (1.1)

Jim ¢~ (p(1))a (1) = b.

Note that here we do not have the boundary condition z'(c0) = 0 as in [12, 14, 17, 18, 20, 30].
In (1.1) it is assumed that a,b > 0, g : [0,00) — [0,00) is continuous with [;* g(s)ds < 1,
f:(0,00) x [0,00) — [0,00), p: [0,00) — (0,00) is continuous (may be singular at ¢t = 0), and
é(x) = |x|7 %22 with ¢ > 1 is called one dimensional Laplacian. The inverse function of ¢ is
¢~ (z) = |z|7 "2z where 1/q+1/¢ = 1. We say x : [0,00) — (0,00) is a positive solution of (1.1)
if z € C0,0), [pé(a’)] € L1(0,00) and x satisfies (1.1). We shall establish existence results
for at least three bounded positive solutions of (1.1) by applying the Leggett-Williams fixed point
theorem. In our derivation, the Banach space involved is motivated by [31], but the cone needed
has to be very technically constructed — this is so since the boundary value problem involves the

!

nonlinear operator [p¢(z’)]’ and the possible solutions are not concave if p #Z 1, hence the cone

cannot be constructed by using the concavity of x or even the Green’s function.
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We also consider the following boundary value problem

(' (1)) + f(t,2(t) =0, 1€ (0,00),
£(0) = / " g(s)a(s)ds, 12)

lim 2/(t) =0

t—o0

where g : [0,00) — [0,00) is continuous with [ g(s)ds < 1, f : (0,00) X IR — [0,00), and & :
R — R is a pseudo sup-multiplicative function (see Definition 2.2). Note that the one dimensional
Laplacian ¢ is a special case of a pseudo sup-multiplicative function. We say x : [0, 00) — (0, 00)
is a positive solution of (1.2) if z € C'[0,00), [®(z)]’ satisfies [;° @~ ([7[®(2/)] (u)du) ds < oo

S
and z satisfies (1.2). We shall establish sufficient conditions for the existence of bounded positive

solutions of (1.2) by using Schauder fixed point theorem.

Our results improve and complement the work of [5-9, 12-14, 17-20, 22-33, 37, 38]. The paper
is organized as follows. Section 2 contains some background definitions and the Leggett-Williams
fixed point theorem. The results for (1.1) and (1.2) are given in sections 3 and 4 respectively.

Finally, in section 5 we present some examples to illustrate the results obtained.

2 Preliminaries

In this section, we present some background definitions and results.

Definition 2.1. The function f : (0,00) x IR — IR is called a Carathéodory function if
(i) for each u € R, ¢t — f(t,u) is measurable on (0, c0);
(i) for a.e. t € (0,00), u — f(¢t,u) is continuous on RR;

(iii) for each r > 0, there exists B, € L'(0, 0c0) satisfying By.(t) > 0, t € (0,00) and [, By(s)ds <
oo such that |u| < r implies

|f(t,u)| < B(t), a.e.te(0,00).

Definition 2.2. An odd homeomorphism ® of the real line IR onto itself is called a pseudo sup-
multiplicative function if there exists a homeomorphism w of [0, c0) onto itself which supports ® in
the sense that for all v1,vs > 0 we have

D(v1v2) > wlvy)P(v2).

w is called the supporting function of ®. (Note that in [10] pseudo sup-multiplicative function is

also known as sup-multiplicative-like function.)

Remark 2.1. Note that any sup-multiplicative function is a pseudo sup-multiplicative function.
Also any function of the form

k
D(u) := ch|u|ju, uelR
=0
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is pseudo sup-multiplicative, provided that c¢; > 0. Here a supporting function is defined by
w(u) == min{u**1 u}, u > 0.

Remark 2.2. It is clear that a pseudo sup-multiplicative function ® and any corresponding
supporting function w are increasing functions vanishing at zero, moreover their inverses ® ! and

v respectively are increasing and for all vy, v, > 0 we have

O vyve) < v(v1) P (va).

Let X be a real Banach space. The nonempty convex closed subset P of X is called a cone in
Xif(i)ar e Pand x+y € Pforall z,y € P and a > 0; (ii) z € X and —z € X imply z = 0.
A map ¢ : P — [0,00) is a nonnegative continuous concave (convez) functional map provided 1 is

nonnegative, continuous and satisfies
Wtz + (1 - t)y) > (<) () + (L - t)(y) forall e,y € P, t € [0,1].

An operator T : X — X is completely continuous if it is continuous and maps bounded sets into
pre-compact sets.

Let ¥ be a nonnegative functional on a cone P of a real Banach space X. We define the sets

P.={yeP: |yl<r},
P(;a,b) ={y e P: a<y(y), |yl <b}.

Theorem 2.1. [11] (Leggett-Williams Fixed-Point Theorem) Let A < B < D < C be positive
numbers, T': Pc — P¢ be a completely continuous operator, and v be a nonnegative continuous
concave functional on P such that 1(y) < ||y|| for all y € Pc. Suppose that

(E1) {y € P(¢; B,D) | ¢(y) > B} # 0 and ¢(Ty) > B for y € P(¢; B, D);
(E2) |Ty|| < A for y € P with ||ly|| < 4;
(E3) ¢(Ty) > B for y € P(y; B,C) with | Ty|| > D.

Then T has at least three fixed points y1, y2 and y3 such that ||y1]] < A, ¥(y2) > B and |lys|]| > A
with ¢¥(ys3) < B.

3 Bounded Positive Solutions of BVP (1.1)

In this section we shall establish the existence of at least three bounded positive solutions of BVP

(1.1). For easy referencing, we list the conditions needed as follows:

(A1) p:[0,00) — (0,00) is continuous and satisfies

/ooo ¢ (ﬁ) ds < 0, /Ooo 9(s) /0 ¢! <]ﬁ> duds < oo;
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(A2) f:(0,00) x [0,00) — [0, 00) is a Carathéodory function with f(¢,0) # 0 on each subinterval

of [0, ).
T:Tt:/qﬁ_ (—)ds
D=0 G
Choose k (> 1) large enough such that

/Okgb*l <$>d57<%> <1

Mz/qul (ﬁ ds 1+f000¢_11( - )ds-

We denote

Let

p(s)
It is clear that

1

® 1 1
0<,U</ ¢1<@ ds 1k 1 < 1.
0 p 1+ fy o1 (G5) ds
Let the Banach space
X = {x € C°[0,00) : there exists the limt tlim x(t)} (3.1)
be equipped with the norm
lz]| = sup |z(t)| for x € X. (3.2)
t€[0,00)

Define the cone P in X by

P=<xeX: :z(t) >0on [0,00), z(t) is non-decresing on [0,00), min z(t)>p sup x(t)p.
te1/k,k] t€[0,00)
(3.3)

Define the functional ¢ : P — IR by

— mi P. 4
Y(y) tel[rll/lg,k]y(t)’ ye (3.4)

It is easy to see that 1 is a nonnegative continuous concave functional on P such that ¢ (y) < ||y||
for ally € P.

Now, to study (1.1), for x € X we consider the following boundary value problem

Py ()" + f(t,x(t) =0, € (0,00),

v = [ " g()y(s)ds +a, (3.5)
Jim ¢~ (p(t))y'(t) = b.

Lemma 3.1. Suppose that (A1) and (A2) hold and y is a solution of (3.5) for z € X. Then, y

can be expressed as

W0 = e [0 [0 (o0 s [ A sty s

+/Ot 6! (}%qﬁ(b) + ]% /:o f(u,x(u))du) ds + %.
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Proof. Since z € X is a solution of BVP (3.5) and f is a Carathéodory function, we get

Amﬂ&M®MS<W-

Hence

Integrating gives

y(t) = y(0) —l—/o ot (%qﬁ(b) + ﬁ /OO f(u,x(u))du) ds, t > 0. (3.6)

The boundary conditions in (3.5) imply that

y(0) = y(0) /()Oog(s)ds+/ooog(t) /Ot Pt (}%qﬁ(b)—k}%/fe f(u,x(u))du) dsdt + a.

It follows that

fooo g9(t) f(f ot (p(s)¢ p(s) f fu, z(uw))d )dsdt+a
I '

Substituting (3.7) into (3.6) completes the proof. O

y(0) = (3.7)

Lemma 3.2. Suppose that (Al) and (A2) hold and y is a solution of (3.5) for € X. Then
y'(t) > 0 for all ¢ € [0,00), y(t) > 0 for all ¢ € (0,00) and y(t) is concave with respect to 7 on

[0, 00), where
! 1
T /o ¢t (Iﬁ) ds.

Proof. First, we shall prove that y’ is positive on [0,00). Since y is a solution of (3.5), (A2)
implies that [p(t)¢(y'(¢))]" <0 for all ¢ € [0, 00). Then

o(b) —p(t)p(y'(t)) <0, t€[0,00).

Since b > 0, we have p(t)¢(y'(t)) > 0. Thus y/(t) > 0 for all ¢ € [0, 00).
Next, we shall prove that y(t) > 0 for ¢ € [0, 00). Since y/(t) > 0 for all ¢ € [0, 00), it suffices to
show that y(0) > 0. The boundary conditions in (3.5) imply that

wn=Amaamww+azmmAmagw.

Since [} g(s)ds < 1, we get y(0) > 0. Hence, y(t) > 0 for ¢ € [0,00). It follows from (A2) that
y(t) > Ofor all t € (0, 00).

Finally, we shall prove that y is concave with respect to 7 on [0,00). From (Al) we have

fO (p(s )ds <o0. SoT € C( {0 fO (p(s )ds)) and
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Thus

dy dydr dy , _ 1
dt drdt dr p(t)
It follows that p i )
LA S — )

drdt y—1 (ﬁ) -
o () = (%)
e ()] - () 75
#y _ [0 ()]
() E

Since [p(t)d(y' ()] <0, ¢'(y) > 0 (y > 0) and < > 0, we obtain 4 d— < 0. Hence y(t) is concave
with respect to 7 on [0, 00). The proof is complete. O

Moreover, since
we get

So
d?y [

Define the nonlinear operator T': P — X by

1 [oe] t
(Tz)(t) = W/ g(t)/o o (ﬂ / flu,z( ))du) dsdt o
o ety [ St ”d“) T g6
Lemma 3.3. Suppose that (A1) and (A2) hold. We have the following:
(i) For z € P, T'x satisfies
[p@)o(Tx) ()] + f (¢, 2(t)) = 0, t € (0,00),
N 9(s s)ds +a, (3.10)
0
lim ¢~ (p(t))(T)'(t) = b;

t—o0
(ii) Tz € P for each z € P;

(iii) « is a bounded positive solution of BVP (1.1) if and only if z is a solution of the operator

equation x = Tz in P.

Proof. The proofs of (i) and (iii) follow from the definition of T and are omitted.

To show (ii), we note from (i) that Tz is a solution of (3.5). Then, Lemma 3.2 implies that
(Tz)(t) > 0 and (Tz)'(t) > 0 for all ¢t € [0,00), and (Tz)(t) is concave with respect to T =
fg ot (p(s)) ds. To complete the proof of TP C P, it suffices to prove that

min (Tx)(t) > su Tx)(t). 3.11
i, (T2)(0) 2 e s (T2)() (3.11)
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Since r € X and f is a Carathéodory function, there exist » > 0 and B, € L'(0,00) such that
lz]| <rand 0 < f(t,2(t)) < B.(t) for t € [0,00). Then,

0 = e [T o0 [ ot (o0 + s [ st dsa
+/Ot 6! (}%qﬁ(b) + %/m f(u,x(u))du) ds+ — o foﬁg(s)ds

< Tlg(s)ds / g / e (ﬁ) dsdt ¢ (¢(b>+ / N Br<u>du)
o () oo (o0 [ B )+ gt

< 00.

S0 SupPye(,00) (T)(t) exists. We shall consider two cases.

First, suppose (T'z)(t) achieves its maximum at o € [0, 00). Noting that

< )

and the inverse function of 7 = 7(¢) is denoted by t = ¢(7), one sees for t € [1/k, k] that

(Tz)(t) (Tz)(1/k)
= (Ta) (t(7(1/F)))

= L-7(/k)+7(0) (/) r(1/k)
R (Tz)<t< L+7(0) 1—7(1/kz>+r<a—>+1+T<a>7(")>)'

v

Noting that 7(1/k) < 1 and (T'z)(¢) is concave with respect to 7, we find for ¢ € [1/k, k],

a0 > R (¢ () ) T T (1)
T ™ (100)

- [ o () e e

[ ()

= p sup (Tz)(t).
t€[0,00)

Y

v

ds sup (Tz)(t)
L4 [ o (L)ds €00,00)
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Next, suppose (T'z)(t) achieves its maximum at co. Choose ¢’ € [0,00). Similar to the above
discussion, we get for ¢t € [1/k, k| that

(Tz)(t) = p(Tz)(o").

Let 0/ — oo, we get for ¢t € [1/k, k] that

(T)(t) > p sup (Tx)(0).
te[0,00)

We have shown that (3.11) holds in both cases. Hence Tx € P. O

Lemma 3.4. T : P — P is completely continuous.

Proof. It is easy to verify that T : P — P is well defined. We shall prove that T" is continuous
and maps bounded sets into pre-compact sets.

Let x, — xo as n — oo in P, then there exists ro such that sup,,> [|zn|| < 0. Set

BTO (t) = sSup f(tau)
|u|€[0,70]

Then, we have
| 15 mn(e) = flsaolds <2 [ By (s
0 0
Therefore by the Lebesgue dominated convergence theorem, we obtain

/OO fu, 2y (u))du — /Oo f(u,zo(u))du uniformly as n — oc.
t t

For any € > 0, since, for all n,

/ flu,zn(u))du < (b / B, (u)du = r,

and ¢! is uniformly continuous on [0, r], we see that there exists § > 0 such that x,y € [0,7] and
|z — y| < 6 implies

07! (@) — o7 (y)| < e
So for this § > 0, there exists N > 0 such that

‘b+/too £, 2 (u))du — (b+/toof(u,z0(u))du)‘ <8, n>N, telo,o0).

Then for n > N, we have

’qb_l (b+/too f(u,xn(u))du) — ¢! (b+/too f(u,mo(u))du)’ <e

EJQTDE, 2012 No. 23, p. 9



Thus, we get for t € [0,00) and n > N that

0 < |[(Tan) = (To)] (1)

m/omg“)/o[w(% +—/f” )

IN

p(s) (s) dsdt
+/ot 2 <$¢(b) + ﬁ /:o f(u,xn(u))du>
— ¢! (}%Qﬁ(b) + p(l 3 /:0 f(u xo(u))du) ds

IN

m/jg(t) /Ot ¢~ (ﬁ)edsdt + /Ot ¢! <$) eds
< [t oo o (gl [ () ]

It follows that
[(Txy) — (Tzo)|| — 0

uniformly as n — oo. So, T' is continuous.
Let 2 be any bounded subset of P. First, we shall prove that T is bounded. Since (Q is
bounded, there exists r > 0 such that x| < r for all x € . Denote

B.(t)= sup f(t u).
lul€[0,7]
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Obviously, we have

0 < (Tx)(t)

o 6 (o0 + o [ (i) dsa
e (o g [ st ok s
ey o0 () ot o0+ [ )
e () e (o [ monn) 4
e o0 () ot o0+ [ )
e[ G e (oo [ miome) +

< oQ.

IN

IN

So T} is bounded.
Next, since

oy =o () ot (o0 + [ stustuan).

we find for any N € (0,00) and #1,t2 € [0, N],

(Ta)(t) — (Ta)(ta)] < / Ty (s)ds

- |/ o (5i5) o (o0 + [ stwntunan) as
/tt ! (}%) ds| ¢! (¢(b)+/ooo Br(u)du)

— 0 uniformly as t; — t5

IN

for all z € Q. So {(Tz)(t) : € Q} is equicontinuous on any compact interval of [0, 00).
Finally, we shall prove that {(Tz)(¢) : © € Q} is equiconvergent at infinity. Since

0< b /fux )du < ¢(b) /B

and fooo ot ( L )) ds < 00, we know there exists N > 0 such that

p(s
e ()

< t1,to > N.

¢~ (r)’
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It follows that

[(Tz)(t1) = (T2)(t2)] <

[ el e [ 0o

d)ff(?ﬂ) (b_l(r) = ¢ t1,t2 > N.

So {(Tz)(t) : x € Q} is equiconvergent at infinity. By using Theorem 2.5 in [23], we obtain that

{(Tz)(t) : © € Q} is pre-compact. Hence, T : P — P is completely continuous. O

For positive numbers eq, es, and C, let M, M; and L be defined by

(1- fooo g(s)ds) C'—a

M=C|¢|—= — = S ¢(b)1 ;o (312)
(fo 9() Jy 7= dsdt + (1= f;~ g(s)ds) [, st)

(1- fooo g(s)ds) ey —a ) ] -
YA PY K — )ew)| . 6w
l (fo g(t) fo stdt + (1 — fo g(s)ds) fo 7¢,1(p(s))ds

and

-1

p(l+kea (1= f" g(s)ds) —a | oI (3.14)

0o 1/k
(l—fo g(s)ds) 0 7¢,1(1p(8))ds

L=p(k—1es ¢

Theorem 3.1. Suppose that (Al) and (A2) hold and there exist constants e, es and C such that
O0<er<p(l+klea<(l4+klea<C, LC>Mp(l+k)ez>0

and

(C1) f(t,x) < M(l%t) for t € (0,00) and z € [0, C];

(C2) f(t,2) < 573z for t € (0,00) and x € [0, e4];

(C3) f(t,2) > B2 for t € [1/k, K] and @ € [u(1 + k)ea, (1 + k)ea).

Then, BVP (1.1) has at least three bounded positive solutions z1, x2 and x3 satisfying

sup x1(t) <ep, min ws(t) > u(l + k)es
s [0,00) 1) ey 22(t) > 1+ )
and

sup z3(t) >e1, min z3(t) < pu(l+ k)es.

t€[0,00) © te[1/k,k] () (

Proof. We shall apply Theorem 2.1 with 7', P and 1 defined in (3.9), (3.3) and (3.4) respectively.
To recap, a fixed point of T' is a solution of (1.1) (Lemma 3.3), T : P — P is completely continuous
(Lemma 3.4), and v is a nonnegative continuous concave functional on the cone P with 9 (y) < ||y||
for all y € P. Further, corresponding to Theorem 2.1, we choose

D=(1+k)ea, B=p(l+k)ea, A=e.
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Then 0 < A < B < D < C. We divide the remainder of the proof into four steps.
Step 1. We shall prove that T(Pc) C Pc. Let x € Pc, then [|z| < C, so
0<az(t) <C, te0,00).

It follows from (C1) that

ft2(0) < 37 £ € 0n20)
We find
[Tzl = sup (Tz)(t)
te[0,00)
LT et (00 + p(s) f F(u, 2(u))du) ddt
- 1—J3"g
1 1 e a
o (e @/s f<“v$<“>>d“> R T
< Jo~ 9t Jy o™ (p(ls )det 67" (0(0) + Jo~ f(u,x(u))du)
- 1-— fooo g(s)ds
1 o a
<@) ds ¢~ (d)(b) Jr/o f(u,z(u))du) + T ™ oo fooo s
< lo” s ‘[0 - (p(ls )det o ( )+ 00w 1+u)2 )
- 1— [y g(s)d
1 > C a
+ (p(—s) o (¢(b) +/0 M(1+u)? du) - 1- fooo g(s)ds

[ e I o () ] o (o)

a
+ —F = o
1— [, g(s)ds

= C

where the last equality follows from the definition of M in (3.12). Hence, Tz € Pc. This shows
that T(Pc) C Pc.

Step 2. We shall show that (E1) of Theorem 2.1 holds, i.e.,
{y € P(¢; B, D) [ (y) > B} ={y € P(¢; u(1 + k)ez, (1 + k)ea) [ ¥(y) > (1l + k)ea} # 0

and Y(Ty) > B = p(1 + k)eg for y € P(y; (1 + k)ea, (1 + k)ez).
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To prove that {y € P(¢; u(1 + k)ea, (1 + k)ea) | ¥(y) > u(l + k)ea} # 0, we choose A > 0 and

let

j=}
> =

3

o[ ) e

A t

Y

1
’ k

It is easy to see that

i t) =\
i Yo(t) = A,

and

sup yo(t) <A\
te[0,00)

Since p < 1, we get minse(i/k k) Yo(t) > [15UPse(g 00y Yo(t). It is easy to see that yo € {y €

P(; B, D) | ¢(y) > B} if A € (B, D).
Next, let y € P(v; u(1+ k)esa, (1 + k)ez), then ¥(y) > u(1 + k)es and |ly|| < (1 + k)es. So

min y(t) > p(l+klez, sup y(t) < (1+ ke
te[1/k, k] te[0,00)

Hence,
p(l+k)es <y(t) < (1+k)es, t € [1/k, k]

It follows from (C3) that

ftyt) > % t € [1/k, k).
We find
W(Ty) = oin (Ty)(t)
= (Ty) (%)
1 00 t
= W/o g(t)/O o (maﬁ / flu,y(u ))du) dsdt
ko ) - .
+ | ¢ <@¢(b) + @/S f(u,y(u))du) ds + W

l/k 1 k a
2 — u,y(u))du | ds + ——s——
- <p<s 53 Ju )d TS g(s)ds

1/k 1 L S 1 k (1 + k)eg " #
§ 4 <p(s )d - <¢ 1/k (1+U)2d >+1—fooog(s)ds
_ M (L . u(k — ey a
B <p(5 ) ds 67 <¢ L > + 1-— fooo g(s)ds
= B
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where the last equality follows from the definition of L in (3.14). This completes the proof of step
2.

Step 3. We shall prove that (E2) of Theorem 2.1 holds, i.e., | Ty|| < A for y € P with ||y|| < A.
Let y € P with ||y|| < A = ey, then
sup y(t) < er.

te[0,00)
It follows from (C2) that
€1
tylt) < ———— ¢ 0 .
f(7y())—M1(1+t)23 E[;OO)
We find
[Tyl = sup (Ty)(t)
te[0,00)

57 9@ Jy 07 (5500) + 55 I F(w, y(w)du ) dsdt
= sup 59
e l0me) 1= [ g(s)ds

-/ T (ﬁaﬁ(b) = b, y(u))du> 4

I 9 ft ¢! (p(ls)) dsdt ¢! (qﬁ(b) + ]\3_11)
1- fooo g(s)ds

ofe Ga)ee (0 5) =

= 61

where the last equality follows from the definition of My in (3.13). Thus, |Ty| < ey for y € P
with ||y|| < e;. This completes the proof of step 3.

Step 4. We shall show that (E3) of Theorem 2.1 holds, i.e., ¥(Ty) > B for y € P(y; B,C)
with || Tyl > D. Let y € P(¢; B,C) = P(¢; u(1 + k)ea, C) with [|Ty|| > D = (1 + k)ea, then

sup (Ty)(t) > (1 +k)ex and |ly[|= sup y(t) <C.
t€[0,00) t€[0,00)

Noting T'y € P, we get

$(Ty) = min (Ty)(t) > p sup (Ty)(t) > p(l+k)es = B.
te[l/k,k] te[0,00)

This completes the proof of step 4.

We have shown that all the conditions of Theorem 2.1 are satisfied. Hence, by Theorem 2.1
the operator T has three fixed points z1, z2 and x5 € Po such that

lz1]]| < A, ¥(x2) > B, |zs| > A with ¢(z3) < B,
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i.e., x1,Ts and x3 satisfy

sup z1(t) <er, min xa(t) > p(l+ k)es (3.15)
te[0,00) te1/k,k]
and
sup xz3(t) >ei;, min x3(t) < p(l + k)es. 3.16
o 3(t) > e mn 3(t) < p(l+ ke (3.16)

Hence, BVP (1.1) has at least three positive solutions z1, 2 and z3 satisfying (3.15) and (3.16).
It is easy to see that x;, @ and x3 are bounded positive solutions since x1, z2, 23 € P, imply that

sup x;(t) < C, i=1,2,3.
t€[0,00)

The proof is complete. (]

Let
, t€(0,1),

L
Vit
g t>1

-1

For positive numbers e, es, and C, let M, M; and L be defined by

(1- fOOO g(s)ds) C —a

-1
M =3C ¢< — - = = ) —¢(b)1 , (317)
Jo 9 Jy mdwt + (1= [y~ g(s)ds) [y md‘s

(1- fooo g(s)ds)er —a ) ] -
M1 = 361 ¢ s 7 1 s >0 1 — ¢(b) 5 (318)
[ (fo g(t) fo mdsdt + (1 — fo g(s)ds) fo st

and

—1

— )| . (3.19)

1 1 p(1+k)ex (1= [° g(s)ds) —a
L=u <3 - = — ) ez | @ >~ O1 1
(1 =[5 g()ds) Jy"" Gortagayys

Theorem 3.2. Suppose that (Al) and (A2) hold and there exist constants e, ez and C such that
O<er<p(l+klea<(l4+klea<C, LC>Mp(l+k)ex>0

and

(D1) f(t,x) < C}pw(t) for t € [0,00) and z € [0, C);

(D2) f(t,z) < elj\ﬁft) for ¢ € [0,00) and x € [0, e1];
(D3) f(t, ) > LAkt for ¢ [1/k, k] and @ € [u(1 + k)ea, (1 + k)ea).

Then, BVP (1.1) has at least three bounded positive solutions x1, 22 and x3 satisfying

sup x1(t) <ep, min ws(t) > u(l + k)es
te[0,00) 0 te[1/k,k] ®) ( )
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and
t) > eq, i t) < u(l + k)es.
B S

Proof. The proof is similar to that of Theorem 3.1 and is omitted. (]

Remark 3.1. In (C1) and (C2) of Theorem 3.1, it is easy to see that f is bounded on (0, c0) x [0, C]
or (0,00)%10, e1]. However, in (D1) and (D2) of Theorem 3.2, f may be unbounded on (0, 00) %[0, C]
or (0,00) x [0, e1], i.e., f may be singular at t = 0 since () is singular at t = 0.

4 Bounded Positive Solutions of BVP (1.2)

In this section we shall establish the existence of at least one bounded positive solution of BVP
(1.2).

Remark 4.1. In [18, 19, 20, 37], the authors study the existence of multiple positive solutions

z(t)

0,00) Tt < 00) of the multi-point boundary value problem for differential equation

(such that sup,¢,
on the half line
[p(" @) + f(t,x(t)) = 0, ¢ €(0,00),

m

z(0) = Zaix(éi),

lim z'(¢) = 0.

t—o0

Here, ¢ is an increasing homeomorphism and positive homomorphism satisfying:
(i) o(x) < @(y) for all x < y;
(ii) ¢ is a continuous bijection with ¢(0) = 0 and its inverse function is also continuous;
(iil) ¢(xy) = ¢(x)P(y) for all x,y € [0,00) or for all z,y € R.

Note that if ¢ satisfies (i)—(iii) and is differentiable at ¢ = 1 with ¢’(1) > 0, one actually gets

é(x) = |9 %z for some ¢ > 1, i.e., ¢ is an one dimensional Laplacian. In fact, we have

9w+ A2) — 6()

Az—0 Az
60 8) o)
= lim
Ax—0 Ax
_ lim ¢(x)¢ (1 + %) - ¢(‘T)¢(1) — ¢($) ¢/(1)
Az—0 Ax x ’
So |p(x)| = |z|?M. Since ¢/(1) > 0, it is easy to see that there exists ¢ > 1 such that
¢(x) = |x|97 22, i.e., ¢ is an one dimensional Laplacian. Hence, it will be interesting to con-

sider a more general ¢ which is an increasing homeomorphism, indeed the ® in (1.2) is the more

general case.

For easy referencing, we list the conditions needed as follows:
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(A3) f(t,0) £ 0 on each subinterval of [0,00), ¢ — f(¢t,u) is measurable and v — f(t,u) is

continuous, and for each r > 0 there exists B, € L'(0, c0) such that
f(t,z) < B(t), for allt € (0,00) and |z| < r, / ot (/ BT(u)du) ds < o0;
0 s

(A4) @ : R — IR is a pseudo sup-multiplicative function with supporting function w (the inverse
of w is v), ® maps [0, c0) into [0, 00), and there exists a constant g > 0 such that |[®~!(z) —
o1 (y)| < p® (|2 — y|) for all @,y > 0

(A5), there exist positive number o > 0 and positive functions ; (i = 1,2) such that

/Oooq>1 </:o1/)i(u)du> ds <oo (i=1,2)

[f(t,2) =1 (D] < ¥2()@(|2|7), ¢ € (0,00), x € R.

and

Theorem 4.1. Suppose that (A3) and (A4) hold. Then, BVP (1.2) has at least one bounded
positive solution if (A5), holds for

(i) o > 1 and

[oll=(o = )7 e v ([ au)du) ds
o T T es

Yo(t) = W/Omg(t) /Ot ot (/m wl(u)du) dsdt

+/Ot o1 </m wl(u)du> ds, or

where

(i) 0 €(0,1), or

(iii) o =1 and
plo v (e ¥o(u)du) ds

~ <1
1 —fo g(s)ds

Proof. Let the Banach space X and its norm be defined as in (3.1) and (3.2). Define the nonlinear
operator T' by

00 = g o0 [0 ([ st st ) s

+/0t > ( | f<u,w<u>>du) ds.

We have the following (the proofs are similar to those of Lemmas 3.3 and 3.4):

(4.1)
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(i) For z € X, Tz satisfies

[@((T)' (1)) + f (£,2(t)) = 0, t € (0,00),

(ii) T : X — X is well defined;

(iii) z is a bounded positive solution of BVP (1.2) if and only if = is a solution of the operator
equation z = Tz in X;

(iv) T: X — X is completely continuous.

Let

Yo(t) = w /OOO q(t) /Ot o1 (/OO wl(u)du) dsdt + /thrl (/Oo wl(u)du) ds

It is easy to show that g € X. Let > 0 and define M, = {z € X : ||l — ¢ < r}.
Since ® is a pseudo sup-multiplicative function, from Remark 2.2 we have

O (v1v2) < v(v1)® ™ (v9) for all vy, ve > 0.

For x € M, using (A4) and (A5), we find
[Tz — 4ol = sup

t€]0,00) T /Oo 9(1) /Ot o </:o f(%x(u))du) dsdt

/ </ flu,z(u du)ds
s [ o ([ o)

- /t 3! </°° wl(u)du> ds
= ow fo—/oog(t) /Ot [@1 (/m f(u,x(u))du) — 3! </°O wl(u)du>} dsdt

A () (Lomlll
gt [0 I ([ o) o ([ o)

+/O°° ‘@1 (/oo f(u,z(u))du) — 3! </°o wl(u)du) ds

IN

dsdt
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< gm0 [ et (1) - vl ) ds
+Amu¢l(LmUWwW»—¢NMWOd8
o [ [ oo
b [T o ([T vatw)p(eu ) as
< % Ia @1< [ vatpeelyan ) ds
s [T ([T wmwael)an) as
< 111[3"0 I (/ va(wan) s o+ [ ([ vatwda) as ol
. “f°ool(ff:o OLDLLIPTE
s’”?i%;ﬁgzwﬁﬂx—%WHwﬂf
¢ T e

Case (i). o > 1. Let r =19 = |L_“1”. By assumption,

ro ol e =17t pfy v (o de(u)du) ds
(ro + [|%ol)” o N 1= [ g(s)ds
Then, for x € M,, we have
[Tz — 3ol < wh” v . 1/)2( ) u) de (ro + [[%ol)” < ro.
1=Jyg

Hence, we have a bounded subset M,, C X such that T'(M,,) C M,,. Then, Schauder fixed point

theorem implies that T has a fixed point « € M,,. Hence, z is a bounded solution of BVP (1.2).

Case (ii). o € (0,1). Choose r > 0 sufficiently large such that

1 fo (f )du) ds

e (r+ wol)” < r

Then, for x € M, we have

o v ([ w2 (u)du) ds
1- fooo g( )d

1Tz — 3ol < (r+leol)” <r
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So T(M,) C M, and Schauder fixed point theorem implies that T has a fixed point € M,.. This
x is a bounded solution of BVP (1.2).

Case (iii). o = 1. We choose

J&cv f;c Yo (u)du)ds
s e
- 1— 78 s l/(f;o wg(u)du)ds ’
1—[5° g(s)ds
Then, for x € M, we have
v ([ w2 (u)du) ds
[ T2 — thol| < Undv) ) (r+ lleboll) <7

1-— fooo g(s)ds

Hence, as in earlier cases we conclude that 7" has a fixed point x € M,., which is a bounded solution
of BVP (1.2).

Now, we shall prove that x is a positive solution of BVP (1.2). Since x satisfies (1.2), then

[@(z' (1)) + f(t,z(t) =0, z(0)= /OOO g(s)z(s)ds, lim z'(t) = 0.

t—o0

By f:(0,00) xIR — [0, 00) and the definition of ®, we see that 2’ is decreasing on (0, 00). Together
with lim; o 2’ (t) = 0 we can see that z'(t) > 0 for all t € (0, 00). Hence

z(0) = /000 g(s)z(s)ds > x(0) /000 g(s)ds.

It follows that 2(0) > 0 since [~ g(s)ds < 1. So z(t) > 0 for all ¢ € [0,00). If there exists to > 0
such that z(tg) = 0, together with the increasing property on x, then x(t) = 0 on [0, t¢]. Since ® is
odd, then ®(0) = 0. Hence 0 = [®(z/(¢))]’ = —f(¢,0) = 0 on [0,%p]. This contradicts (A3). Thus
x is a positive solution of BVP (1.2). The proof is complete. O

5 Examples

To illustrate the usefulness of our main results, we present some examples that our results can

readily apply, whereas the known results in the literature are not applicable.

Example 5.1. Consider the following boundary value problem

[ (O] + £t 2(t) = 0, 1€ (0,00),

1 [ _.
z(0) = 5/ e *x(s)ds + 2, (5.1)
0
lim e*/3 2/ (t) = 1,

t—o0
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where f is defined by

¢ 1
¢ -
f(t2) 05010 T ael @
1483 — 273
fo(l') = 52773, T € [0,10],
1483 — 273
foled = 579w
, 3 L\3
p—10 |404[303 (1— e ) x 104 — 16| — 404 x 128 (1~ e~ )
_ 3
100 =10 594 (1—e*ﬁ)
83(102 x 10% — 4)3 — 483
10,1
T .z € [10,100],
. 3 L \3
404 [303 (1 - e—m) % 10% — 16} — 404 x 123 (1 - e—m)
folz) = —3
594 (1—6*W)
83(102 x 10* — 4)* — 277 1
100,102 x 1
55 , @ € [100,102 x 104],
1 3 1 3
404 {303 (1 - e—m) % 10% — 16} — 404 x 123 (1 —e—m)
fo(z) =

1 3
594 (1 . e*m)

83(102 x 10% — 4)3 — 483
2 x 273

] em7102><104, x > 102 x 10%.

Corresponding to BVP (1.1), we have ¢(z) = 23, p(t) = €, g(t) =
Then, ¢~1(z) = x3. It is easy to see that (A1) and (A2) hold.

Choose k = 100, e; = 10, e; = 10000 and C = 102 x 10%. By direct computation we obtain
from (3.12)(3.14)

te7!, a=2and b =1.

%_ 1 1 3 1
=, ¢1(@)d81+fgo¢1(1)dszi(” *)

p(s)

273 x 102 x 10*

M =
83(102 x 101 — 4)3 — 273"
272 x 10
M, = L
! 483 — 273
1 4
297 (1 — e ) x 104
L = .

3
4 {303 (1 _ e*ﬁ) % 104 — 16} 4% 123 (1 —e*ﬁ)
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and
O<er<p(l+klea<(l4+klea<C, LC>Mu(l+k)ez > 0.

On the other hand, D = (1 + k)ez, B = pu(1 + k)ea, A = e; and we see from the definition of f
that

o f(t.x) < FURAG AT Lo for £ >0 and @ € [0,102 x 104

o f(t,x) < 4832;3273 (14_%)2 for t > 0 and z € [0, 10];

404 [303(1-{%) ><104—16] ?_404x12° (1-(%)3

o f(t,x) > for t € [0.01,100] and z €

100, 1010000] .

1
297(1753*50)3 (1+1)%

It is easy to see that (C1)—(C3) hold. Hence, Theorem 3.1 implies that BVP (5.1) has at least
three bounded positive solutions x1,z2 and x3 such that
sup x1(t) < 10, min  xq(t) > 2520.80
te[0,00) t€[0.01,100]

and

sup x3(t) > 10, min x3(t) < 2520.80.
t€[0,00) [0.01,100]

Remark 5.1. It is easy to see that Example 5.1 cannot be covered by the theorems in [5-9, 12-14,
17-20, 22-33, 37, 38]. Further, it is evident from Example 5.1 that (i) there is a large number of
functions that satisfy the conditions of Theorem 3.1, and (ii) the conditions of Theorem 3.1 are

easy to check.

Example 5.2. Consider the following boundary value problem

OO+ 0P 0] + ()

1 3
e o o] <0 e

T 3o 2
()7 + .

lim 2'(t) =0,

t—o0

where £ > 0, 0 > 0 and A > 2 are constants, and 17 is nonnegative and satisfies

/OOO 27! (/:O ¢1(U)dU) ds < oo.

Corresponding to BVP (1.2), we have ®(z) = a3 + Z|z°z, f(t,2) = ¢1(t) + Ae 2D (|2|7),
g(t) = %e‘t. It is easy to see that ® is a pseudo sup-multiplicative function and the supporting
function of ® is w(z) = min{z®, z} for = > 0.

It is easy to show that (A3) holds and (A5), holds with 15 () = Ae ™2 and 11 (¢) given in (5.2).
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The inverse function of @ is

B [V SENIESerIN
o (z) = 6
Lk a./_1+\/61—12357 2 <0.

—1+yTHT2ay _ 1+ TF 12_ x> 1,
-1+ /T+12y 1+\/1+12$ \/_506[01]

the supporting function of ®~!

Since

) x>,
V(@) = { 9z, € [0,1]. (5:3)

It is well known that a? — b? < (a — b)P for all p € (0,1] and a > b > 0. Then, for z,y > 0,
without loss of generality > y, we have

' (z) — 27 (y)
_ L lEVIETZE o1 VTR
_ e T

ki/\/1+12z\/1+12y

27 (@) — 27 (y)]

IN

6

3/ /12(x — y)
6

\(S/iki/_l—i— \/1—g12(1:—y)
= VB (a—y)).

Hence, (A4) holds with v defined by (5.3) and u = v/2.
Note that

Ot Tl ST
L= [ g(s)ds 1-3

= 2\/_k:/ <5e )ds
- sz[/% %\/>-5d5+ A{’/ge%sdsl

= 3V2k ({/;Jr 1
Also, we have

Yo(t) = W/Ow g(t) /Otﬂbl (/:O 1/;1(u)du> dsdt+/ooo o1 </:O wl(u)du) ds

By Theorem 4.1, we conclude that BVP (5.2) has at least one positive solution if

IN

k

IN
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(i) o > 1 and

o'~ > 3V2k

A
211
i3

or

(i) o €(0,1), or

(iii) a=1and3€/§k[3 §+1} <1

Remark 5.2. Suppose 91 (t) = e~ in Example 5.2. Then, we have

bolt) = W | a0 [ 5 ([ wrtwan) asa
+/Ooo o </°o wl(u)du> ds
- a0 et ([T e asa
[ ([
L

kl - fooo g(s)ds

oo [ _ £/ —3s
+k/ \3/ 1+ 16+46 ds.
0

Since
§/1+m€/ de—3s _afe® et
6 6(1+v1t+ded —V 3 U3

we get

o Ces Ce® 3k
< 2k t ——dsdt + k/ —ds = ——.
ool < 2k o) [T [ =

Hence, from Theorem 4.1 we conclude that BVP (5.2) (when v (t) = e~3!) has at least one positive

solution if o > 1 and .
-0 __1\o—1
f/g 1 < (2 (o177
2 23 o°
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