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Abstract

In this paper we prove the uniqueness of bounded solutions to a viscous
diffusion equation based on approximate Holmgren’s approach.
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1 Introduction

We consider the uniqueness of bounded solutions to the following viscous diffusion
equation in one dimension of the form

ou 9 10%u 0?A(u)  OB(u)
7 ailaE) = Tt et @heer (1)
with the initial and boundary condition
u(0,t) = u(1,t) =0, te[0,T], (1.2)
u(z,0) = uo(z), z € [0,1], (1.3)

where A > 0 is the viscosity coefficient, Qr = (0,1) x (0,7T), A(s), B(s) € C}(R),
A
A(s) > —p, 0<u< oT is a constant, and f is a function only of x and ¢.
If A =0, then the equation (1.1) becomes
ou  9?A(u)  0B(u)

ot a2 + oz +/ (1.4)

In the case that A’(s) > 0, the equation (1.4) is the one dimensional form of the well-
known nonlinear diffusion equation, which is degenerate at the points where A’(u) = 0
and has been studied extensively. In particular, the discussion of the uniqueness of
solutions can be found in many papers, see for example [1], [3]-[7]. While if A’(s)

EJQTDE, 2003 No. 17, p. 1



is permitted to change sign, (1.4) is called the forward—backward nonlinear diffusion
equation.

For the case of A > 0, Cohen and Pego [10] considered the equation (1.1) with
B(s) =0 and f = 0, namely

ou 0Au

— —A——=AA 1.5

A = Ad), (15)
where A(s) has no monotonicity. Their interests center on the steady state solution for
the equation (1.5), and the uniqueness of the solution of the Neumann initial-boundary
value problem and the Dirichlet initial-boundary value problem of the linear case of
the equation (1.5),

— —A— =alAu (1.6)

have been discussed by Chen, Gurtin [11] and Ting, Showalter [12].

In this paper, we establish the uniqueness of the solutions to the initial-boundary
problem of the equation (1.1) by using an approximate Holmgren’s approach. It is
worth recalling the work of [1] concerning related parabolic problems (1.4). Due to
the degeneracy, the problem (1.1)—(1.3) admits only weak solutions in general. So our
result is concerned with the generalized solutions to the problem (1.1)—(1.3).

Definition 1.1 A function u(z,t) € L>*(Qr) is called a generalized solution of
the boundary value problem (1.1)-(1.8) if for any test function ¢ € C>®(Qr) with
©(0,t) = p(1,t) = p(x,T) = 0, the following integral equality holds

// i (am2 )de d”// @ *B(U)%+ﬁp)daxdt
+/O uo(x )( (z,())—/\%)dzzo.

Our main result is the following theorem.
Theorem 1.1 Assume that ug(x) € L>(0,1), A(s), B(s) € CY(R) with A’(s) > —pu,

A
0<u< oT is a constant, then the initial-boundary value problem (1.1)-(1.8) has at

most one generalized solution in the sense of Definition 1.1.

2 Preliminaries

Let uy, ug € L*°(Qr) be solutions of the boundary value problem (1.1)—(1.3). By the
definition of generalized solutions, we have

830 a 0%p ~0%p Pp  ~0p
- A A2 0% B9 gpdr =
//T u =) (G A g(Gar) + Agyr gy — B Jdedi =0,
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where

1
A= Auy,up) = / A (Quy + (1 = 0)uz)dl + p,
0

1

B = Blur,us) = / B (0ur + (1 — 0)us)do.
0

For small n > 0, let 5 ~

Ay = (n+A)"Y2B on Qr.

Since A(s) € CY(R), A'(s) > —p and u1, us € L>®(Q7), there must be constants
L > 0,K > 0, such that

A(uy) — A(uz)

Up — U2

A= +p>L,
[Ag| < K.
Let A. and An,e be a C°° approximation of A and Ay respectively, such that
lim A, = a.e. in Qr,

lim A, e = Ay, a.e. in Qr,

Denote ~ B
By = /\n,E(U + AE)I/Q-

For given g € C§° (Qr), consider the approximate adjoint problem

dp 0 0% 2O PP o Op

ot E(@)—F(nﬁ-fle)@—ﬂ@_&m%—g’ (2'1)
0(0,8) = p(1,1) =0, (2.2)
(@, T) = 0. (23)

It is easily to see that the solution to the problem (2.1)—(2.3) is in C'* from the
smooth of g in (2.1).

Lemma 2.1 The solution ¢ of the problem (2.1)-(2.3) satisfies

//T (2—5)2dxdt <on . (2.4)

Here and in the sequel, we use C' to denote a universal constant, indenpent of 1 and
€, which may take different value on different occasions.
Proof.  Denote
1 92
¢
d(t) = —)2dx,
0= G
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and assume

D(ty) = D(t).
(t0) = max o(1)

//to(n—i—A )(gxf) dxdt < Cnp~1,

2

First we show

(2.5)

0
where QtTO = (0,1) x (to,T). Multiply (2.1) by 8—;20’ integrate it over QtTO by parts

and use (2.2), (2.3), we have

L [t (dp(,to) ’
2
L G (8_2) s
fo ox
2
f// 5 awa@d dt = // fdxdt
Qto 0 Gm

Noticing 1 < A/(2T) and |\,.c| < K, then the Young’s inequality yields

[yt 30 (5) w

e X
82 o4 —1

Using (2.2) and the Young’s inequality again, it gives

¢ .9
//Q?(%) dxdt = // o (paxQ ? dwdt
Sa//Qto(n+/1€) (a—mf) dxdt + Ca~'n™?

(2.6)

(2.7)

(2.8)

for any a > 0. Substituting this into (2.7) and choosing & > 0 small enough, we

obtain (2.5).
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n (2.6), the first term and the forth term are nonnegative, by using (2.5) and
(2.8), it follows

%A(I)(to) [ et

g// Aw(n+A )1/2‘9‘Pa 2 dw dt+// ‘szdt
QP

// _(p dmdt—i—C// )2dxdt + Cn~!
_4 fo Ox? o

Furthermore,

d(ty) < Cn~t. (2.9)

2

0
we multiply (2.1) by a—f again, integrate it over Qr by parts and use (2.2), (2.3),
x

then
1 [t (9p(,0) 9%p(x,0) 2 ’
5/0 ( o > o +2/0 (=52 )dzu/o el
~ Oy §?
+// (n+A.) (a—‘p) drdt — // e a""afd vt
//Tga$2dxdt
‘We obtain

Jf o (52

) i
<3 /], 04 <a—@

> da dt+C// (gi) dadt

+ puTd(ty) + Cn~
Noticing the fact that
// V2dxdt = // ga—dxdt
T T
<a// (n+ A.) O d:cdt—&—Cofl -1 (2.10)
- - ox?

and (2.9), we get

//T S") dedt < Oy, (2.11)

the above inequality and (2.10) yields (2.4). The proof is completed.
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3 Proof of Theorem 1.1

Given g € C§°(Qr). Let ¢ be a solution of (2.1)-(2.3). Then

// (u1 — ug)gdxdt
// _ 9 )\2(82_@)
() at ot 02
0%y 0%y

5 _ 9y
+ 0+ Aa)@ THEe T Bmf%)dmdt'

As indicated above, from the definition of generalized solutions, we have

Cu)(28 00 Py, 5P D0 500y,
//Tul un) (7 ~ Mg (gge) + Aggz ~ s ~ B, )dodt =0,

// (u1 — ug)gdadt
~ - 0%
:// U(Ulfuz dxdt+// up — u2)(Ae A)a ddt

- //T(ul — u2)(By,e — B)‘;—idzdt. (3.1)

Now we are ready to estimate all terms on the right side of (3.1).
First, from Lemma 2.1

| //T(u1 ) (A. — fl)%dmdt‘
<C <//T(/L - A)2dxdt> <//T dxdt>1/2
cnt (//T(AE - A)2dxdt> "

li i %% — 0 3.2
tim [~ o) (A — )5 Eeat =0 (32)

‘// (ur — u2)(Bye —B)%dmdt‘
1/2 1/2
<c( // By — B)*dudt) // Jdadt)
<on2( // B,.-B dasdt)

Thus

Hence

We also have
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Since lim Ay e = A, = (n+ A)~'2B ae. in Q7. Thus
E—

lim // (uy — u2)(By.e — B)g—idzdt =0. (3.3)

e—0

Using Lemma 2.1 again, we have

(up — u2) &dxdt
’ - Ox?
<o ff, Gran)”

S 077_1/2.

So
82
}// n(ur — uQ)a—xfdmdt} < Cnl/Q. (3.4)

Combining (3.1)—(3.4) we finally obtain

’// (ug — ug)gdxdt’ < Cnl/Q,
T

Il o~ wp)gdadt =0

by letting n — 0. So the uniqueness of solutions to the problem (1.1)—(1.3) follows
from the arbitrariness of g. The proof is completed.

which implies that
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