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MULTIPLICITY RESULTS FOR A CLASS OF p(x)-KIRCHHOFF TYPE

EQUATIONS WITH COMBINED NONLINEARITIES

NGUYEN THANH CHUNG

Abstract. Using the mountain pass theorem combined with the Ekeland variational prin-

ciple, we obtain at least two distinct, non-trivial weak solutions for a class of p(x)-Kirchhoff

type equations with combined nonlinearities. We also show that the similar results can be

obtained in the case when the domain has cylindrical symmetry.

1. Introduction

Let Ω ⊂ R
N , N ≥ 3, be a bounded regular domain. In this paper, we are interested in the

multiplicity of solutions for the p(x)-Kirchhoff type equation




−M

(∫
Ω

1
p(x) |∇u|

p(x)dx
)

div
(
|∇u|p(x)−2∇u

)
= λf(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where M : R
+ → R is a continuous function, p ∈ C+(Ω) and f : Ω×R → R is a Carathéodory

function, satisfying some certain conditions, λ is a parameter.

Since the first equation in (1.1) contains an integral over Ω, it is no longer a pointwise

identity; therefore it is often called nonlocal problem. Problem (1.1) is related to the stationary

version of the Kirchhoff equation

ρ
∂2u

∂t2
−

(P0

h
+
E

2L

∫ L

0

∣∣∣
∂u

∂x

∣∣∣
2
dx

)∂2u

∂x2
= 0 (1.2)

presented by Kirchhoff in 1883, see [15]. This equation is an extension of the classical D’Alembert’s

wave equation by considering the effects of the changes in the length of the string during the

vibrations. The parameters in (1.2) have the following meanings: L is the length of the string,

h is the area of the cross-section, E is the Young modulus of the material, ρ is the mass density,

and P0 is the initial tension.

In recent years, elliptic problems involving p-Kirchhoff type operators have been studied in

many papers, we refer to [2, 3, 4, 17, 18, 21, 22], in which the authors have used different

methods to get the existence of solutions for (1.1) in the case when p(x) = p is a constant.

If p : Ω → R is a continuous function, problem (1.1) has been firstly studied by varia-

tional methods in [7, 8]. The p(x)-Laplacian possesses more complicated nonlinearities than
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p-Laplacian, for example it is not homogeneous. The study of differential equations and varia-

tional problems involving p(x)-growth conditions is a consequence of their applications. Mate-

rials requiring such more advanced theory have been studied experimentally since the middle

of the last century. In [7], the authors studied problem (1.1) in the special case M(t) = a+ bt.

By means of a direct variational approach and the theory of the variable exponent Sobolev

spaces, they established in [7] the existence of infinitely many distinct positive solutions whose

W 1,p(x)(Ω)-norms and L∞-norms tend to zero under suitable hypotheses about nonlinearity.

In [8], the authors considered the problem in the case when M : R
+ → R is a continuous and

non-descreasing function, satisfying the following conditions:

(M′

1
) There exists M0 > 0 such that M(t) ≥M0 for all t ≥ 0;

(M′

2
) There exists θ ∈ (0, 1) such that M̂(t) ≥ (1 − θ)M(t)t for all t ≥ 0, where M̂(t) =

∫ t

0 M(s)ds.

Regarding the nonlinearity, they required f to verify the Ambrosetti-Rabinowitz type condi-

tion, i.e., there exist µ > p+

1−θ
and T > 0 such that

0 < µF (x, t) ≤ f(x, t)t for all t ≥ T and a.e. x ∈ Ω. (1.3)

Using the mountain pass theorem in [1], the authors obtained at least one weak solution for

(1.1). Also in [8], the authors considered the case when f verifies the condition

f(x, t) ≥ C|t|γ(x)−1, t→ 0, (1.4)

where p+ < γ− ≤ γ+ < p−

1−θ
. Using the fountain theorem and the dual fountain theorem,

the authors obtained a sequence of weak solutions {±um} with negative energy. In [5, 6], the

authors studied the multiplicity of solutions for problem (1.1) using the condition (M′

1
) and

the three critical points theorem by B. Ricceri.

Motivated by the papers [7, 8] and the ideas introduced in [10], the goal of this paper is

to study the multiplicity of weak solutions for problem (1.1) with combined nonlinearities.

More exactly, we assume that M : R
+ → R

+ is a continuous function satisfying the following

conditions:

(M1) There exist m2 ≥ m1 > 0, δ2 ≥ δ1 > 1 such that

m1t
δ1−1 ≤M(t) ≤ m2t

δ2−1

for all t ∈ R
+;

(M2) For all t ∈ R
+, it holds that

M̂(t) ≥M(t)t

where M̂(t) =
∫ t

0 M(s)ds.
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Using the mountain pass theorem and the Ekeland variational principle, we prove that problem

(1.1) has at least two distinct, non-trivial weak solutions under suitable conditions on the

nonlinear term f . It should be noticed that we do not require the condition (M′

1
) as in

[5, 6, 7, 8], for example (M′

1
) is not satisfied when M(t) = tδ−1 for δ > 1, t > 0. We also

show that the similar result can be established in the case when the domain Ω has cylindrical

symmetry. This comes from the ideas introduced by W. Wang [23], and developed by J. Gao

et al. [13, 14]. Due to the special structure of the domain, we can get the solutions of problem

(1.1) with critical and supercritical gowth. In this situation, problem (1.1) is called a Hénon

type problem.

In this paper, we consider the problem (1.1) in the particular case

f(x, u) = λ
(
a(x)|u|α(x)−2u+ b(x)|u|β(x)−2u

)
,

where p, α, β ∈ C(Ω) with

1 < α− ≤ α+ < δ1p
− < δ2p

+ < β− ≤ β+ < min

{
N,

Np−

N − p−

}
, (1.5)

with δ1, δ2 are given by the hypothesis (M1) and the following conditions hold:

(A) a : Ω → R, satisfies a ∈ Lα0(x)(Ω) and α0 ∈ C+(Ω), such that Np(x)
Np(x)−α(x)(N−p(x)) <

α0(x) <
p(x)

p(x)−α(x) for all x ∈ Ω;

(B) b : Ω → R, satisfies b ∈ Lβ0(x)(Ω) and β0 ∈ C+(Ω), such that p(x)
p(x)−β(x) < β0(x) <

p(x)
Np(x)−β(x)(N−p(x)) for all x ∈ Ω.

Then problem (1.1) becomes





−M

(∫
Ω

1
p(x) |∇u|

p(x)dx
)

div
(
|∇u|p(x)−2∇u

)
= λ

(
a(x)|u|α(x)−2u+ b(x)|u|β(x)−2u

)
in Ω,

u = 0 on ∂Ω.

(1.6)

Definition 1.1. We say that u ∈ X = W
1,p(x)
0 (Ω) is a weak solution of problem (1.6) if and

only if

M

(∫

Ω

1

p(x)
|∇u|p(x)dx

)∫

Ω
|∇u|p(x)−2∇u · ∇vdx

− λ

∫

Ω
a(x)|u|α(x)−2uvdx− λ

∫

Ω
b(x)|u|β(x)−2uvdx = 0

for any v ∈ X.

The first result of this paper can be described as follows.
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Theorem 1.2. Assume that the conditions (1.5) and (M1)-(M2), (A), (B) are satisfied, then

there exists λ∗ > 0 such that for any λ ∈ (0, λ∗), problem (1.6) has at least two distinct,

non-trivial weak solutions.

Next, we consider the domain Ω = Ω1 × Ω2 ⊂ R
N , Ω1 ⊂ R

m (m ≥ 1) a bounded regular

domain, and Ω2 ⊂ R
k (k ≥ 2) a ball of radius R, centered at the origin. In this case, we

assume that c : Ω → R is a non-negative Hölder continuous function, satisfying the following

conditions

(C1) c : Ω → R is radially symmetric with respect to x2 ∈ Ω2, and satisfying c(x1, 0) = 0;

(C2) lc > 0, where

lc = sup

{
λ > 0 :

|c(x)|

|x2|λ
<∞, x ∈ Ω

}
.

More precisely, we consider the following p(x)-Kirchhoff type problem





−M

(∫
Ω

1
p(x) |∇u|

p(x)dx
)

div
(
|∇u|p(x)−2∇u

)
= λ

(
a(x)|u|α(x)−2u+ c(x)|u|γ(x)−2u

)
in Ω,

u = 0 on ∂Ω,

(1.7)

where the function c verifies the conditions (C1) and (C2), and p, a, α, γ : Ω → R are con-

tinuous functions, p, γ ∈ S(Ω) := {u : Ω → R : u is real measurable function and u(x1, x2) =

u(x1, |x2|)}, satisfying

1 < α− ≤ α+ < δ1p
− < δ2p

+ < γ− ≤ γ+ < min

{
N,

Np−

N − p−

}
+ τ, (1.8)

with δ1, δ2 are given by the hypothesis (M1) and τ is a positive real number defined by

Proposition 2.4.

Due to the cylindrical symmetry of the domain Ω, we can deal with problem (1.1) in the

supercritical case. To this purpose, we introduce the following space

Xs = W
1,p(x)
0,s (Ω) = W

1,p(x)
0 (Ω) ∩ S(Ω) =

{
u ∈W

1,p(x)
0 (Ω) : u(x1, x2) = u(x1, |x2|)

}
,

which is a closed subspace of W
1,p(x)
0 (Ω).

Definition 1.3. We say that u ∈ Xs is a weak solution of problem (1.7) if and only if

M

(∫

Ω

1

p(x)
|∇u|p(x)dx

)∫

Ω
|∇u|p(x)−2∇u · ∇vdx

− λ

∫

Ω
a(x)|u|α(x)−2uvdx− λ

∫

Ω
c(x)|u|γ(x)−2uvdx = 0

for any v ∈ Xs.
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Our result concerning problem (1.7) can be described as follows.

Theorem 1.4. Assume that the conditions (1.8) and (M1)-(M2), (A), (C1), (C2) are sat-

isfied, then there exists λ∗∗ > 0 such that for any λ ∈ (0, λ∗∗), problem (1.7) has at least two

distinct, non-trivial weak solutions.

2. Preliminaries

We recall in what follows some definitions and basic properties of the generalized Lebesgue-

Sobolev spaces Lp(x) (Ω) and W 1,p(x) (Ω) where Ω is an open subset of R
N . In that context,

we refer to the book of Musielak [20] and the papers of Kováčik and Rákosńık [16] and Fan et

al. [11, 12]. Set

C+(Ω) := {h : h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u : a measurable real-valued function such that

∫

Ω
|u(x)|p(x)dx <∞

}
.

We recall the following so-called Luxemburg norm on this space defined by the formula

|u|p(x) = inf

{
µ > 0 :

∫

Ω

∣∣∣∣
u(x)

µ

∣∣∣∣
p(x)

dx ≤ 1

}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many respects: they

are Banach spaces, the Hölder inequality holds, they are reflexive if and only if 1 < p− ≤ p+ <

∞ and continuous functions are dense if p+ <∞. The inclusion between Lebesgue spaces also

generalizes naturally: if 0 < |Ω| < ∞ and p1, p2 are variable exponents so that p1(x) ≤ p2(x)

a.e. x ∈ Ω then there exists the continuous embedding Lp2(x)(Ω) →֒ Lp1(x)(Ω). We denote by

Lp′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1
p(x) + 1

p′(x) = 1. For any u ∈ Lp(x)(Ω) and

v ∈ Lp′(x)(Ω) the Hölder inequality

∣∣∣
∫

Ω
uvdx

∣∣∣ ≤
( 1

p−
+

1

(p′)−

)
|u|p(x)|v|p′(x)

holds true.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the

modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω) → R defined by

ρp(x)(u) =

∫

Ω
|u|p(x) dx.
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Proposition 2.1 (see [12]). If u ∈ Lp(x)(Ω) and p+ <∞ then the following relations hold

|u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x) (2.1)

provided |u|p(x) > 1 while

|u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x) (2.2)

provided |u|p(x) < 1 and

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0. (2.3)

Proposition 2.2 (see [19]). Let p and q be measurable functions such that p ∈ L∞(Ω) and

1 ≤ p(x)q(x) ≤ ∞ for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u 6= 0. Then the following relations hold

|u|p
+

p(x)q(x) ≤
∣∣∣|u|p(x)

∣∣∣
q(x)

≤ |u|p
−

p(x)q(x) (2.4)

provided |u|p(x) ≤ 1 while

|u|p
−

p(x)q(x) ≤
∣∣∣|u|p(x)

∣∣∣
q(x)

≤ |u|p
+

p(x)q(x) (2.5)

provided |u|p(x) ≥ 1. In particular, if p(x) = p is a constant, then
∣∣∣|u|p

∣∣∣
q(x)

= |u|p
pq(x). (2.6)

Next, we define the space W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) under the norm

‖u‖ = |∇u|p(x).

Proposition 2.3 (see [12]). The space
(
W

1,p(x)
0 (Ω), ‖.‖

)
is a separable and Banach space.

Moreover, if q ∈ C+(Ω) and q(x) < p∗(x) for all x ∈ Ω then the embedding W
1,p(x)
0 (Ω) →֒

Lq(x)(Ω) is compact and continuous, where p∗(x) = Np(x)
N−p(x) if p(x) < N or p∗(x) = ∞ if

p(x) > N .

Now, we consider the weighted variable exponent Lebesgue spaces. Let σ : Ω → R be a

measurable real function such that σ(x) > 0 for a.e. x ∈ Ω. We define

L
p(x)
σ(x)(Ω) :=

{
u : Ω → R : u is a measurable function such that

∫

Ω
σ(x)|u(x)|p(x)dx <∞

}

with the norm

|u|p(x),σ(x) = inf

{
µ > 0 :

∫

Ω
σ(x)

∣∣∣
u(x)

µ

∣∣∣
p(x)

dx ≤ 1

}
.

The space L
p(x)
σ(x)(Ω) endowed with the above norm is a Banach space which has similar proper-

ties with the usual variable exponent Lebesgue spaces. In [13], the authors proved the following

result which helps us in proving Theorem 1.4.

EJQTDE, 2012 No. 42, p. 6



Proposition 2.4 (see [13, Theorem 4.1]). Let Ω = Ω1 × Ω2 ⊂ R
N , where Ω1 ⊂ R

m, m ≥ 1

is a bounded regular domain, and Ω2 ⊂ R
k, (k ≥ 2) is a ball of radius R, centered at the

origin. Assume that p, γ : Ω are continuous functions, p(x) < N for all x ∈ Ω, p, γ ∈ S(Ω),

the function c : Ω → R satisfies the conditions (C1) and (C2). Then, there exists a positive

constant τ = τ(c, p,m, k) such that the embedding Xs = W
1,p(x)
0,s (Ω) into Lγ(x)(Ω, c(x)) is

compact and continuous with p(x) < γ(x) < p∗(x) + τ for all x ∈ Ω.

3. Proofs of the main results

Problems (1.6) and (1.7) will be studied using variational methods. We first prove Theorem

1.2 in details, the proof of Theorem 1.4 is similar. Let us associate with problem (1.6) the

functional energy J1 : X := W
1,p(x)
0 (Ω) → R defined by

J1(u) = Φ(u) − λΨ1(u), (3.1)

where

Φ(u) = M̂

(∫

Ω

1

p(x)
|∇u|p(x)dx

)
, Ψ1(u) =

∫

Ω

a(x)

α(x)
|u|α(x)dx+

∫

Ω

b(x)

β(x)
|u|β(x)dx, (3.2)

where M̂(t) =
∫ t

0 M(s)ds. The functional J1 associated with problem (1.6) is well defined and

of C1 class on X. Moreover, we have

J ′

1(u)(v) = M

(∫

Ω

1

p(x)
|∇u|p(x)dx

)∫

Ω
|∇u|p(x)−2∇u · ∇vdx

− λ

∫

Ω
a(x)|u|α(x)−2uvdx− λ

∫

Ω
b(x)|u|β(x)−2uvdx

= Φ′(u)(v) − λΨ′

1(u)(v)

for all u, v ∈ X. Thus, weak solutions of problem (1.1) are exactly the ciritical points of the

functional J . Due to the conditions (M1) and (1.5), we can show that J1 is weakly lower

semi-continuous in X. The following lemma plays an important role in our arguments.

Lemma 3.1. The following assertions hold:

(i) There exist λ∗ > 0 and ρ, r > 0 such that for any λ ∈ (0, λ∗), we have

J1(u) ≥ r, ∀u ∈ X with ‖u‖ = ρ;

(ii) There exists ϕ ∈ X, ϕ 6= 0, such that

lim
t→∞

J1(tϕ) = −∞;

(iii) There exists ψ ∈ X such that ψ ≥ 0, ψ 6= 0 and

J1(tψ) < 0

for all t > 0 small enough.
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Proof. (i) By (1.5) and the conditions (A) and (B), the embeddings from X to the weighted

spaces Lα(x)(Ω, a(x)) and Lβ(x)(Ω, b(x)) are compact, see [19, Theorems 2.7, 2.8]. Then, there

exist two positive constants c1 and c2 such that
∫

Ω
a(x)|u|α(x)dx ≤ c1

(
‖u‖α+

+ ‖u‖α−

)
(3.3)

and ∫

Ω
b(x)|u|β(x)dx ≤ c2

(
‖u‖β+

+ ‖u‖β−

)
(3.4)

for all u ∈ X. Hence, for any u ∈ X with ‖u‖ = 1, we get

J1(u) = M̂

(∫

Ω

1

p(x)
|∇u|p(x)dx

)
− λ

∫

Ω

a(x)

α(x)
|u|α(x)dx− λ

∫

Ω

b(x)

β(x)
|u|β(x)dx

≥
m1

δ1

( ∫

Ω

1

p(x)
|∇u|p(x)dx

)δ1
− λ

1

α+

∫

Ω
a(x)|u|α(x)dx− λ

1

β+

∫

Ω
b(x)|u|β(x)dx

≥
m1

δ1(p+)δ1
− λ

2c1
α−

− λ
2c2
β−

.

(3.5)

By (3.5), there exists λ∗ > 0 such that for any λ ∈ (0, λ∗) we get J1(u) ≥ r > 0 for all u ∈ X

with ‖u‖ = 1.

(ii) Let ϕ ∈ C∞

0 , ϕ 6= 0 and t > 1. By (M1), there exists c3 > 0 such that

J1(tϕ) = M̂

(∫

Ω

1

p(x)
|∇tϕ|p(x)dx

)
− λ

∫

Ω

a(x)

α(x)
|tϕ|α(x)dx− λ

∫

Ω

b(x)

β(x)
|tϕ|β(x)dx

≤
m2

δ2

(∫

Ω

1

p(x)
|∇tϕ|p(x)dx

)δ2
− λ

tβ
−

β+

∫

Ω
b(x)|ϕ|β(x)dx

≤
m2

δ2(p−)δ2
tδ2p+

( ∫

Ω
|∇ϕ|p(x)dx

)δ2
− λ

tβ
−

β+

∫

Ω
b(x)|ϕ|β(x)dx

Since δ2p
+ < β−, we get limt→∞ J1(tϕ) = −∞ as t→ ∞.

(iii) Let ψ ∈ C∞

0 (Ω), ψ ≥ 0, ψ 6= 0, t ∈ (0, 1). By (M1), we have

J1(tψ) = M̂

(∫

Ω

1

p(x)
|∇tψ|p(x)dx

)
− λ

∫

Ω

a(x)

α(x)
|tψ|α(x)dx− λ

∫

Ω

b(x)

β(x)
|tψ|β(x)dx

≤
m2

δ2

(∫

Ω

1

p(x)
|∇tψ|p(x)dx

)δ2
− λ

tα
+

α+

∫

Ω
a(x)|ψ|α(x)dx

≤
m2

δ2(p−)δ2
tδ2p−

( ∫

Ω
|∇ψ|p(x)dx

)δ2
− λ

tα
+

α+

∫

Ω
a(x)|ψ|α(x)dx < 0

for all t < δ
1

δ2p−−α+ with

0 < δ < min





1,
λδ2(p

−)δ2
∫
Ω a(x)|ψ|

α(x)dx

m2α+
( ∫

Ω |∇ψ|p(x)dx
)δ2





.

The proof of Lemma 3.1 is complete. �
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Lemma 3.2. The functional J1 satisfies the Palais-Smale condition in X.

Proof. Let {um} ⊂ X be a sequence such that

J1(um) → c > 0, J ′

1(um) → 0 in X∗, (3.6)

where X∗ is the dual space of X.

We first prove that {um} is bounded in X. Indeed, we assume the contrary. Then, passing

eventually to a subsequence, still denoted by {um}, we may assume that ‖um‖ → ∞ as m→ ∞.

Thus we may consider that ‖um‖ > 1 for any m. Using (M1), (M2) we deduce from (3.6) that

c+ 1 + ‖um‖ ≥ J1(um) −
1

β−
J ′

1(um)(um)

= M̂

(∫

Ω

1

p(x)
|∇um|p(x)dx

)
− λ

∫

Ω

a(x)

α(x)
|um|α(x)dx− λ

∫

Ω

b(x)

β(x)
|um|β(x)dx

−
1

β−
M

(∫

Ω

1

p(x)
|∇um|p(x)dx

)∫

Ω
|∇um|p(x)dx

+
λ

β−

∫

Ω
a(x)|um|α(x)dx+

λ

β−

∫

Ω
b(x)|um|β(x)dx

≥
( 1

p+
−

1

β−

)
M

(∫

Ω

1

p(x)
|∇um|p(x)dx

) ∫

Ω
|∇um|p(x)dx+ λ

( 1

β−
−

1

α−

)∫

Ω
a(x)|um|α(x)dx

≥
β− − p+

(p+)δ1β−

(∫

Ω
|∇um|p(x)dx

)δ1
+ λ

( 1

β−
−

1

α−

)∫

Ω
a(x)|um|α(x)dx

≥
β− − p+

(p+)δ1β−
‖um‖δ1p− − λ

( 1

α−
−

1

β−

)(
‖um‖α+

+ ‖um‖α−

)
.

Since α− < α+ < δ1p
− and β− > δ2p

+ > p+, the sequence {um} is bounded in X. Thus,

there exists u ∈ X such that passing to a subsequence, still denoted by {um}, it converges

weakly to u in X. Then {‖um − u‖} is bounded. By (1.5) and the conditions (A) and (B),

the embeddings from X to the weighted spaces Lα(x)(Ω, a(x)) and Lβ(x)(Ω, b(x)) are compact.

Then, using the Hölder inequalities, Propositions 2.1-2.3, we have

∣∣∣
∫

Ω
a(x)|um|α(x)−2um(um − u)dx

∣∣∣ ≤
∫

Ω
a(x)|um|α(x)−1|um − u|dx

≤ c3

∣∣∣
(
a(x)|um|α(x)

)α(x)−1
α(x)

∣∣∣
α′(x)

|um − u|a(x),α(x)

≤ c4

∣∣∣a(x)|um|α(x)
∣∣∣

α+
−1

α+

L1(Ω)
|um − u|a(x),α(x)

≤ c5|um|
α+

−1
α+

a(x),α(x)|um − u|a(x),α(x)

≤ c6‖um‖
α+

−1
α+ |um − u|a(x),α(x),

(3.7)
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which tends to 0 as m → ∞, 1
α(x) + 1

α′(x) = 1 for a.e. x ∈ Ω, ci, i = 3, 4, 5, 6 are positive

constants.

Similarly, we get

lim
m→∞

∫

Ω
b(x)|um|β(x)−2um(um − u)dx = 0. (3.8)

On the other hand, by (3.6), we have

lim
m→∞

J ′

1(um)(um − u) = 0. (3.9)

From (3.7), (3.8) and (3.9), we get

lim
m→∞

Φ′(um)(um − u) = 0. (3.10)

Since {um} is bounded in X, passing to a subsequence, if necessary, we may assume that
∫

Ω

1

p(x)
|∇um|p(x)dx→ t0 ≥ 0 as m→ ∞.

If t0 = 0 then {um} converges strongly to u = 0 in X and the proof is finished. If t0 > 0 then

since the function M is continuous, we get

M
( ∫

Ω

1

p(x)
|∇um|p(x)dx

)
→M(t0) as m→ ∞.

Thus, by (M1), for sufficiently large m, we have

0 < c7 ≤M
( ∫

Ω

1

p(x)
|∇um|p(x)dx

)
≤ c8. (3.11)

From (3.10), (3.11), it follows that

lim
m→∞

∫

Ω
|∇um|p(x)−2(∇um −∇u)dx = 0.

Thus, {um} converges strongly to u in X and the functional J1 satisfies the Palais-Smale

condition. �

Proof Theorem 1.2. By Lemmas 3.1 and 3.2, all assumptions of the mountain pass theorem

in [1] are satisfied. Then we deduce u1 as a non-trivial critical point of the functional J with

J1(u1) = c and thus a non-trivial weak solution of problem (1.6).

We now prove that there exists a second weak solution u2 ∈ X such that u2 6= u1. Indeed,

by (3.5), the functional J is bounded from below on the unit ball B1(0).

Applying the Ekeland variational principle in [9] to the functional J1 : B1(0) → R, it follows

that there exists uǫ ∈ B1(0) such that

J1(uǫ) < inf
u∈B1(0)

J1(u) + ǫ,

J1(uǫ) < J1(u) + ǫ‖u− uǫ‖, u 6= uǫ.
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By Lemma 3.1, we have

inf
u∈∂B1(0)

J1(u) ≥ r > 0 and inf
u∈B1(0)

J1(u) < 0.

Let us choose ǫ > 0 such that

0 < ǫ < inf
u∈∂B1(0)

J1(u) − inf
u∈B1(0)

J1(u).

Then, J1(uǫ) < infu∈∂B1(0) J1(u) and thus, uǫ ∈ B1(0).

Now, we define the functional I1 : B1(0) → R by I1(u) = J1(u) + ǫ‖u− uǫ‖. It is clear that

uǫ is a minimum point of I1 and thus

I1(uǫ + tv) − I1(uǫ)

t
≥ 0

for all t > 0 small enough and all v ∈ B1(0). The above information shows that

J1(uǫ + tv) − J1(uǫ)

t
+ ǫ‖v‖ ≥ 0.

Letting t → 0+, we deduce that
〈
J ′

1(uǫ), v
〉
≥ −ǫ‖v‖.

It should be noticed that −v also belongs to B1(0), so replacing v by −v, we get

〈
J ′

1(uǫ),−v
〉
≥ −ǫ‖ − v‖

or
〈
J ′

1(uǫ), v
〉
≤ ǫ‖v‖,

which helps us to deduce that ‖J ′

1(uǫ)‖X∗ ≤ ǫ.

Therefore, there exists a sequence {um} ⊂ B1(0) such that

J1(um) → c = inf
u∈B1(0)

J1(u) < 0 and J ′

1(um) → 0 in X∗ as m→ ∞. (3.12)

From Lemma 3.2, the sequence {um} converges strongly to u2 as m → ∞. Moreover, since

J1 ∈ C1(X,R), by (3.12) it follows that J1(u2) = c and J ′

1(u2) = 0. Thus, u2 is a non-trivial

weak solution of problem (1.6).

Finally, we point out the fact that u1 6= u2 since J1(u1) = c > 0 > c = J1(u2). The proof of

Theorem 1.2 is complete. �

Proof of Theorem 1.4. With the similar argument of the proof of Theorem 1.2, we associate

with problem (1.7) the energy functional J2 : Xs = W
1,p(x)
0,s (Ω) → R defined by

J2(u) = Φ(u) − λΨ2(u), (3.13)
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where

Φ(u) = M̂

(∫

Ω

1

p(x)
|∇u|p(x)dx

)
, Ψ2(u) =

∫

Ω

a(x)

α(x)
|u|α(x)dx+

∫

Ω

c(x)

γ(x)
|u|γ(x)dx, (3.14)

where M̂(t) =
∫ t

0 M(s)ds. Then functional J2 is well defined and of C1 class on Xs. Moreover,

we have

J ′

2(u)(v) = M

(∫

Ω

1

p(x)
|∇u|p(x)dx

)∫

Ω
|∇u|p(x)−2∇u · ∇vdx

− λ

∫

Ω
a(x)|u|α(x)−2uvdx− λ

∫

Ω
c(x)|u|γ(x)−2uvdx

= Φ′(u)(v) − λΨ′

2(u)(v)

for all u, v ∈ Xs. Thus, weak solutions of problem (1.1) are exactly the ciritical points of the

functional J2.

From the proof of Theorem 1.2 and Proposition 2.4, using the mountain pass theorem

combined with the Ekeland variational principle, we can prove that problem (1.7) has at least

two distinct non-trivial weak solutions in Xs. �
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