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Houari Hammou1, Rabah Labbas2,
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1Laboratoire de Mathématiques Pures et Appliquées
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1 Introduction and hypotheses

Many authors have studied nonlocal boundary value problems: we can first
refer to the pioneering works by T. Carleman [4] and J. D. Tamarkin [19],
see also A. V. Bitsadze and A. A Samarskii [3] who introduce some nonlocal
boundary conditions, to study elliptic problems coming from plasma theory.
The case of a non linear elliptic equation with a nonlocal boundary condition
has been treated by Y. Wang [22]. More bibliographic details on nonlocal
elliptic problems can be found in the monograph of A. L. Skubachevskii [18].
Such nonlocal problems have been also considered in the framework of elliptic
differential-operator equations, studying coerciveness and Fredholmness, see
S. Yakubov [20] and also more recently A. Favini and Y. Yakubov [10],[11],
B. A. Aliev and S. Yakubov [1].

In this work we consider the following second order differential-operator
problem:





u′′ (x) + Au (x) = f (x) , x ∈ [0, 1[
u (0) = u0

u (1) +Hu′ (0) = u1,0,
(1)

where X is a complex Banach space, f ∈ Cθ ([0, 1] ;X) with 0 < θ < 1,
u0, u1,0 are given elements of X, A is a closed linear operator with domain
D (A) not necessarily dense in X and H is a closed linear operator with
domain D (H). Recall that, for any interval J

Cθ (J ;X) =

{
h : J −→ X, sup

x,y∈J,x 6=y

‖h(x) − h(y)‖
|x− y|θ

< +∞
}
.

Our main assumptions on the two operators A and H are

[0,+∞[ ⊂ ρ (A) and sup
λ≥0

∥∥λ (A− λI)−1
∥∥
L(X)

< +∞; (2)

this assumption implies that Q = − (−A)
1
2 , is the infnitesimal generator of

a generalized analytic semigroup on X, see for instance Balakrishnan [2]
for densely defined operators and C. Martinez and M. Sanz [16] otherwise.

D (Q) ⊂ D (H) , (3)

∀ζ ∈ D(H) : A−1Hζ = HA−1ζ, (4)
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0 ∈ ρ (Λ) , (5)

where Λ = −2HQeQ + I − e2Q which is well defined on X and belongs to
L(X), due to (2)-(3). We will see that this operator Λ is in some sense the
”determinant” of Problem (1).

Remark 1

1. Under (2)∼(4) one has, for any ζ ∈ D(H), λ ∈ ρ(A), µ ∈ ρ(Q) and
x ≥ 0 




(λI −A)−1Hζ = H (λI − A)−1 ζ

(µI −Q)−1Hζ = H (µI −Q)−1 ζ
HexQξ = exQHξ.

2. Due to (2), there exists εA > 0, βA ∈
]
0, π

2

[
such that ρ (A) contains a

sectorial domain

SεA,βA
= {z ∈ C\ {0} : |arg (z)| < βA} ∪ B (0, εA) ,

satisfying

∃MβA
> 0 : ∀z ∈ SεA,βA

,
∥∥(A− zI)−1

∥∥
L(X)

≤ MβA

1 + |z| .

Moreover ρ (−A) ⊃ {z ∈ C\ {0} : |arg (z)| > π − βA}, thus, we obtain

ρ
(
(−A)

1
2

)
⊃

{
z ∈ C\ {0} : |arg (z)| > π − βA

2

}
,

and setting βQ =
π + βA

2
we get

ρ (Q) ⊃ {z ∈ C\ {0} : |arg (z)| < βQ} .

We adapt to our situation the definitions of strict and classical solutions
given by E. Sinestrari in [17], Section 2, p. 34:

We first notice that here D(A) is endowed with the graph norm that is

‖φ‖D(A) = ‖φ‖X + ‖Aφ‖X , φ ∈ D(A),
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and then for an interval J , we define C (J ;D(A)) in the following manner

h ∈ C (J ;D(A)) ⇐⇒




h ∈ C (J ;X) ,
h (x) ∈ D(A) for any x ∈ J
Ah ∈ C (J ;X) ,



 .

For example if φ ∈ D(Q)\D(Q) then h = e�φ defined from [0, 1] to X then

h ∈ C ([0, 1] ;X) ∩ C∞ ([0, 1[;X) ∩ C ([0, 1[;D(A)) ,

(see Proposition 2 below).

• a strict solution u of problem (1) is a function u such that

C2 ([0, 1];X) ∩ C ([0, 1];D(A)) ,

and which satisfies (1). This strict solution satisfies the maximal regu-
larity property if

u′′, Au ∈ Cθ ([0, 1] ;X) . (6)

When H = 0, which means that we consider Dirichlet boundary con-
ditions, it is known that, under assumption (2), problem (1) has a strict
solution u if and only if u0, u1,0 ∈ D(A) and

f(0) −Au0, f(1) − Au1,0 ∈ D(A).

Moreover u has the maximal regularity property if and only if u0, u1,0 ∈ D(A)
and f(0) − Au0, f(1) − Au1,0 ∈ DA(θ/2,+∞), see R. Labbas [13].

When H 6= 0, the nonregular boundary condition u (1) +Hu′ (0) = u1,0,
involves in general, a loss of regularity for the solution u at point 1, but we
must also take into account the fact that this nonregular boundary condition
make sense if u is continuous at 1, with u′ continuous at 0. This leads us to
introduce new types of solutions of problem (1):

• a semiclassical solution of problem (1) is a function u such that

u ∈ C ([0, 1] ;X) ∩ C2 ([0, 1[;X) ∩ C ([0, 1[;D(A)) ,

and which satisfies (1); moreover we say that this semiclassical solution
satisfies the maximal regularity property if

{
u ∈ Cθ ([0, 1] ;X) and
u′′, Au ∈ Cθ ([0, b];X) for any b ∈]0, 1[.

(7)
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It is well known that any h ∈ Cθ ([0, 1[;X) can be extended in a function

h̃ ∈ Cθ ([0, 1] ;X), so Cθ ([0, 1[;X) = Cθ ([0, 1] ;X), this explain the
introduction of the spaces Cθ ([0, b];X), b ∈]0, 1[.

• a semistrict solution of problem (1) is a semiclassical solution of prob-

lem (1) satisfying moreover u ∈ C1 ([0, 1] , X) ∩ C
(
[0, 1] , D((−A)

1
2 )

)
.

We will say this semistrict solution satisfies the maximal regularity
property if it satisfies (7) together with

u′, (−A)
1
2 u ∈ Cθ ([0, 1] , X) . (8)

Note that a particular case of Problem (1), that is H = αI, has been
studied by Labbas-Maingot (see [14]). These authors used a direct method
based on the techniques of Dunford integrals to build a representation formula
of the solution.

In this work, a representation formula of problem (1) is found by using
analytic semigroups and fractional operators theory.

This work is organized as follows:
Section 2 is devoted to Problem (1) and contains our main result (The-

orem 13): we first recall classical results on generalized analytic semigroup,
then, under assumptions (2)∼(5), we build a representation formula for the
solution of (1) and study the regularity of this representation. Finally we
consider some particular cases in which our invertibility assumption (5) is
satisfied.

In Section 3 we introduce a spectral parameter ω ≥ 0 which allows us to
apply the results of section 2.

In section 4, a concrete problem is considered to illustrate our results.

2 Study of Problem (1)

2.1 Generalized analytic semigroup

As in [9], section 2 pp. 975-977, we recall here the definition of a generalized
analytic semigroup (see E. Sinestrari [17], A. Lunardi [15]) and some classical
results (see [6], [7] and [17]).

Let L be a linear operator in X such that
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{
ρ(L) ⊃ Sµ,δ =

{
λ ∈ C\ {µ} / |arg(λ− µ)| < π

2
+ δ

}
and

sup
λ∈Sµ,δ

‖(λ− µ) (λI − L)−1‖L(X) < +∞,

for some given µ ∈ R and δ ∈
]
0, π

2

[
. This says exactly that L is the infinites-

imal generator of a generalized analytic semigroup
(
exL

)
x≥0

, ”generalized”
in the sense that L is not supposed to be densely defined.

Proposition 2 Let L is the infinitesimal generator of a generalized analytic
semigroup

(
exL

)
x≥0

.

1. Let ϕ ∈ X. Then the two following assertions are equivalent

(a) e.Lϕ ∈ C ([0, 1] ;X) .

(b) ϕ ∈ D (L).

2. Let θ ∈ ]0, 1[ , g ∈ Cθ ([0, 1] ;X) , ϕ ∈ X. Set

S(x) = exLϕ+

∫ x

0

e(x−s)Lg (s) ds, x ∈ [0, 1] .

Then the two following assertions are equivalent

(a) S ∈ C1 ([0, 1] ;X) ∩ C ([0, 1] ;D (L)) .

(b) ϕ ∈ D (L) and g (0) + Lϕ ∈ D (L).

Let us recall that for an operator P in X satisfying ρ(P ) ⊃ ]0,+∞[ and

∃C > 0, ∀λ > 0,
∥∥(P − λI)−1

∥∥
L(X)

6
C

λ
,

we define the interpolation space DP (θ,+∞) by

DP (θ,+∞) =

{
x ∈ X : sup

t>0

∥∥tθP (P − tI)−1 x
∥∥ < +∞

}
.

Proposition 3 Let θ ∈ ]0, 1[ and L be the infinitesimal generator of a gen-
eralized analytic semigroup

(
exL

)
x≥0

.
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1. Then the two following assertions are equivalent

(a) e.Lϕ ∈ Cθ ([0, 1] ;X) .

(b) ϕ ∈ DL (θ,+∞) .

2. Let g ∈ C ([0, 1] ;X) and ϕ ∈ X. Set

S(x) = exLϕ+

∫ x

0

e(x−s)Lg (s) ds, x ∈ [0, 1] .

Then the two following assertions are equivalent

(a) S ∈ C1,θ ([0, 1] ;X) ∩ Cθ ([0, 1] ;D (L)) .

(b) g ∈ Cθ ([0, 1] ;X) , ϕ ∈ D (L) and g (0) + Lϕ ∈ DL (θ,+∞) .

3. Let g ∈ Cθ ([0, 1] ;X) . Then

L

∫ 1

0

esL (g (s) − g (0)) ds ∈ DL (θ,+∞) .

For these two propositions see, for instance, E. Sinestrari [17].

Notation 4 Let g and h be two given X-valued functions defined on [0, 1]
and θ ∈ ]0, 1[. We write g ≃θ h if g − h ∈ Cθ ([0, 1] ;X).

As a consequence of Proposition 3 we get (see [9] Proposition 8, p. 976):

Proposition 5 Let g ∈ Cθ ([0, 1] ;X) , ϕ ∈ D (L) and set

S (x) = exLϕ+

∫ x

0

e(x−s)Lg (s) ds, x ∈ [0, 1] ;

then
LS (·) ≃θ e

·L (Lϕ+ g (0)) .
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2.2 Representation of the solution

We assume (2)∼(5) and suppose that u is a semiclassical solution of problem
(1). Note that, since u ∈ C ([0, 1[;D(A)) we have u0 = u(0) ∈ D(A). In the
following we assume moreover that u1,0 ∈ D(A).

Lemma 6 One has

u (x) = exQeQϕ0 + e(1−x)QeQϕ1

+exQ (u0 − J0) + Ix (9)

+e(1−x)QΛ−1 (u1,0 −HQu0 + 2HQJ0 − I1) + Jx,

where

Ix =
1

2
Q−1

∫ x

0

e(x−s)Qf (s) ds and Jx =
1

2
Q−1

∫ 1

x

e(s−x)Qf (s) ds, (10)

and
{
ϕ0 = Λ−1HQu0 − Λ−1u1,0 − 2Λ−1HQJ0 + eQΛ−1u0 − eQΛ−1J0 + Λ−1I1

ϕ1 = Λ−1J0 − Λ−1u0.

Proof. As in [5] (see also S. Yakubov and Y Yakubov [21]), we immediately
deduce that u has the representation

u(x) = exQξ0 + e(1−x)Qξ1 + Ix + Jx, x ∈ [0, 1] (11)

where ξ0, ξ1 ∈ X and Ix, Jx satisfy (10).
To obtain the final representation of u, it is enough to find ξ0 and ξ1 by

taking into account the data u0, u1,0, f and A. A formal computation gives

ξ0 = u0 − J0 − eQΛ−1u1,0 + eQΛ−1HQu0 − 2eQΛ−1HQJ0

+eQΛ−1eQu0 − eQΛ−1eQJ0 + eQΛ−1I1,

and

ξ1 = Λ−1u1,0 − Λ−1HQu0 + 2Λ−1HQJ0 − Λ−1eQu0 + Λ−1eQJ0 − Λ−1I1,

from which we deduce (9) by using eQΛ−1 = Λ−1eQ (which is a consequence of
(4)). We need to justify the terms HQu0, HQJ0 in (9) : u0 ∈ D (A) = D (Q2)
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so Qu0 ∈ D (Q) ⊂ D (H), moreover, using Proposition 3, assertion 3, we can
write

QJ0 =
1

2

∫ 1

0

esQ (f (s) − f (0)) ds+
1

2

∫ 1

0

esQf (0) ds

=
1

2
Q−1

(
Q

∫ 1

0

esQ (f (s) − f (0)) ds+ eQf (0) − f (0)

)
,

and thus QJ0 ∈ D (Q) ⊂ D (H).
In order to simplify representation (9) we first show the following Lemma.

Lemma 7

1. There exists W ∈ L (X) such that WQ−1 = Q−1W and

Λ−1 = I −W with W (X) ⊂
+∞⋂

k=1

D
(
Qk

)
.

2. We have




J0 =
1

2
Q−1

∫ 1

0
esQ (f (s) − f (0)) ds+

1

2
Q−2eQf (0) − 1

2
Q−2f (0)

I1 =
1

2
Q−1

∫ 1

0
esQ (f (1 − s) − f (1)) ds+

1

2
Q−2eQf (1) − 1

2
Q−2f (1) .

Proof. For statement 1 we write

Λ = −2HQeQ + I − e2Q = I + V,

where V = −2HQeQ−e2Q ∈ L (X). It is clear that V Q−1 = Q−1V , moreover
since Q generates a generalized analytic semigroup, we have for all m ∈ N

eQ ∈ L (X,D (Qm)) ,

so

V (X) ⊂
+∞⋂

k=1

D
(
Qk

)
,

thus W := Λ−1V ∈ L (X), WQ−1 = Q−1W and W (X) ⊂
+∞⋂
k=1

D
(
Qk

)
.
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We conclude by noting that

(I −W ) Λ = Λ (I −W ) = Λ − V = I.

For statement 2, it is enough to remark that for any g ∈ Cθ ([0, 1] ;X)

∫ 1

0

esQg (s) ds =

∫ 1

0

esQ (g (s) − g (0)) ds+

∫ 1

0

esQg (0) ds

=

∫ 1

0

esQ (g (s) − g (0)) ds+ eQQ−1g (0) −Q−1g (0) .

Now, using (9) and Lemma 7, we can write

u (x) = exQeQϕ0 + e(1−x)QeQϕ1 −
1

2
exQQ−2eQf (0)

−1

2
e(1−x)QΛ−1Q−2eQf (1)

−e(1−x)QW (u1,0 −HQu0 + 2HQJ0 − I1)

−1

2
e(1−x)QQ−2eQf (1) + e(1−x)QHQ−1eQf (0)

+exQ

(
u0 +

1

2
Q−2f (0)

)
+ Ix −

1

2
exQQ−1

∫ 1

0

esQ (f (s) − f (0)) ds

+e(1−x)Q

(
−HQu0 −HQ−1f (0) + u1,0 +

1

2
Q−2f (1)

)
+ Jx

+e(1−x)Q

(
H

∫ 1

0

esQ (f (s) − f (0)) ds

)

−1

2
e(1−x)Q

(
Q−1

∫ 1

0

esQ (f (1 − s) − f (1)) ds

)
.

Setting for ψ ∈ X and g ∈ Cθ ([0, 1] ;X)

S (x, ψ, g) = exQψ +

∫ x

0

e(x−s)Qg (s) ds,

we can rearrange the terms of u to obtain the decomposition

u = uR + v + w, (12)
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with the regular part uR in [0, 1] given by

uR(x) = exQeQϕ0 + e(1−x)QeQϕ1 −
1

2
exQeQQ−2f (0) (13)

−1

2
e(1−x)QeQΛ−1Q−2f (1)

−e(1−x)QW (u1,0 −HQu0 + 2HQJ0 − I1)

−1

2
e(1−x)QeQQ−2f (1) + e(1−x)QeQHQ−1f (0) ,

the terms which gives the behavior near 0

v(x) = S

(
x, u0 +

1

2
Q−2f (0) ,

1

2
Q−1f

)
(14)

−1

2
exQQ−1

∫ 1

0

esQ (f (s) − f (0)) ds,

and the one concerning the nonlocal behavior in 0 and 1

w(x) (15)

= S

(
1 − x,−HQu0 −HQ−1f (0) + u1,0 +

1

2
Q−2f (1) ,

1

2
Q−1f (1 − .)

)

+e(1−x)QH

∫ 1

0

esQ (f (s) − f (0)) ds

−1

2
e(1−x)QQ−1

∫ 1

0

esQ (f (1 − s) − f (1)) ds,

(note that since u0 ∈ D(A) then HQu0 = −HQ−1Au0 is well defined).

2.3 Regularity results

To study the regularity of the solution we need some technical lemmas. First
recall that if g ∈ Cθ ([0, 1] , X) , ϕ ∈ X,κ ∈ DQ (θ,+∞) , ψ ∈ D (Q) , ψ̃ ∈
D (Q2) then 




S (·, ϕ+ κ, g) ≃θ S (·, ϕ, g)
QS (·, ψ +Q−1κ, g) ≃θ QS (·, ψ, g)
Q2S

(
·, ψ̃ +Q−2κ, g

)
≃θ Q

2S
(
·, ψ̃, g

) (16)
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QS (·, ψ, g) ≃θ e
·Q (Qψ + g (0)) , (17)

Ig := Q

∫ 1

0

esQ (g (s) − g (0)) ds ∈ DQ (θ,+∞) (18)

and

e·QQ

∫ 1

0

esQ (g (s) − g (0)) ds ∈ Cθ ([0, 1] ;X) , (19)

(see Propositions 3 and 5).

Lemma 8 Assume (2)∼(5). Let f ∈ Cθ ([0, 1] , X) and u0 ∈ D (A). Then

1. uR, AuR ∈ C∞ ([0, 1] , X) .

2. v ∈ C2 (]0, 1], X) ∩ C (]0, 1], D (A)) .

3. Av ≃θ e
·Q [Au0 − f (0)] and thus

{
Av ∈ C ([0, 1];X) ⇔ Au0 − f (0) ∈ D (A)
Av ∈ Cθ ([0, 1];X) ⇔ Au0 − f (0) ∈ DA (θ/2,+∞) .

Proof.

1. For any ϕ ∈ X we have eQϕ,Wϕ ⊂
+∞⋂
k=1

D
(
Qk

)
from which we deduce

that {
e�QeQϕ, e�QWϕ ∈ C∞ ([0, 1] , X) and

−Q2e.QeQϕ,−Q2e�QWϕ ∈ C∞ ([0, 1] , X) ,

thus uR ∈ C∞ ([0, 1] , X) and AuR = −Q2uR ∈ C∞ ([0, 1] , X).

2. Obvious since for ϕ ∈ X and x > 0 we have exQϕ ⊂
+∞⋂
k=1

D
(
Qk

)
.

3. Since A = −Q2, we have

Av = QS

(
·,−Qu0 −

1

2
Q−1f (0) ,−1

2
f

)
+

1

2
e·QQ

∫ 1

0

esQ (f (s) − f (0)) ds,
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then, by (17) and (19) we get

Av ≃θ QS

(
·,−Qu0 −

1

2
Q−1f (0) ,

1

2
f

)

≃θ e·Q
(
Q

(
−Qu0 −

1

2
Q−1f (0)

)
− 1

2
f (0)

)

≃θ e·Q [Au0 − f (0)] .

Lemma 9 Assume (2)∼(5). Let f ∈ Cθ ([0, 1] , X) and u0, u1,0 ∈ D (A).
Then

1. w ∈ C2 ([0, 1[, X) ∩ C ([0, 1[, D (A)) .

2. w ≃θ e
(1−·)QHQ−1 (Au0 − f (0)) and thus

{
w ∈ C ([0, 1] , X) ⇔ HQ−1 [Au0 − f (0)] ∈ D (A)
w ∈ Cθ ([0, 1] , X) ⇔ HQ−1 [Au0 − f (0)] ∈ DA (θ/2,+∞) .

3. w ([0, 1]) ⊂ D(Q) ⇐⇒ HQ−1 [Au0 − f (0) + If ] ∈ D(Q).

4. Assuming HQ−1 [Au0 − f (0) + If ] ∈ D(Q) we get

Qw ≃θ e
(1−·)QQHQ−1 [Au0 − f (0) + If ] ,

and thus
{
w′, Qw ∈ C ([0, 1] , X) ⇔ QHQ−1 [Au0 − f (0) + If ] ∈ D (A)
w′, Qw ∈ Cθ ([0, 1] , X) ⇔ QHQ−1 [Au0 − f (0) + If ] ∈ DA (θ/2,+∞) .

5. w ([0, 1]) ⊂ D(Q2) ⇐⇒ HQ−1 [Au0 − f (0) + If ] ∈ D(Q2).

6. Assuming HQ−1 [Au0 − f (0) + If ] ∈ D(Q2) we get

Q2w ≃θ e
(1−·)Q (

Q2HQ−1 [Au0 − f (0) + If ] − [Au1,0 − f (1)]
)
,

and thus





Aw ∈ C ([0, 1] , X) if and only if

Q2HQ−1 [Au0 − f (0) + If ] − [Au1,0 − f (1)] ∈ D (A)

Aw ∈ Cθ ([0, 1] , X) if and only if
Q2HQ−1 [Au0 − f (0) + If ] − [Au1,0 − f (1)] ∈ DA (θ/2,+∞) .
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Proof. Setting f̃ = f(1 − ·) and noting that HQ−1 ∈ L(X) we have

w(x) = S

(
1 − x, ψ0,

1

2
Q−1f̃

)
,

where

ψ0 = HQ−1Au0 −HQ−1f (0) + u1,0 +
1

2
Q−2f (1) +HQ−1

If − 1

2
Q−2

I ef .

= HQ−1 [Au0 − f (0) + If ] + u1,0 +
1

2
Q−2f (1) − 1

2
Q−2

I ef .

1. Obvious, since for ϕ ∈ X and x ∈ [0, 1[ we have e(1−x)Qϕ ⊂
+∞⋂
k=1

D
(
Qk

)
.

2. Due to (18), ψ0 = HQ−1 [Au0 − f (0)]+ κ0 with κ0 ∈ DQ (θ,+∞). So,
From (16), we get

w ≃θ S

(
1 − ·, HQ−1 [Au0 − f (0)] ,

1

2
Q−1f̃

)

≃θ QS

(
1 − ·, Q−1HQ−1 [Au0 − f (0)] ,

1

2
Q−2f̃

)
,

which gives, in virtue of (17)

w ≃θ e(1−·)Q
(
HQ−1 [Au0 − f (0)] +

1

2
Q−2f̃ (0)

)
.

≃θ e(1−·)QHQ−1 [Au0 − f (0)] .

3. w ([0, 1[) ⊂ D(Q). Moreover w(1) ∈ D(Q) if and only if

ψ0 = HQ−1 [Au0 − f (0) + If ] + u1,0 +
1

2
Q−2f (1) − 1

2
Q−2

I ef ∈ D(Q),

so
w(1) ∈ D(Q) ⇔ HQ−1 [Au0 − f (0) + If ] ∈ D(Q).

4. From (16), (17) and (19), we get

Qw ≃θ QS

(
1 − ·, HQ−1 [Au0 − f (0) + If ] ,

1

2
Q−1f̃

)

≃θ e(1−·)Q
(
QHQ−1 [Au0 − f (0) + If ] +

1

2
Q−1f̃ (0)

)

≃θ e(1−·)QQHQ−1 [Au0 − f (0) + If ] ,

(20)
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Morerover for g ∈ Cθ ([0, 1] , X) , ψ ∈ D (Q) we have

S ′ (·, ψ, g) = QS (·, ψ, g) + g,

so here {
Qw ∈ C ([0, 1] , X) ⇔ w′ ∈ C ([0, 1] , X)

Qw ∈ Cθ ([0, 1] , X) ⇔ w′ ∈ Cθ ([0, 1] , X) .

Then (20) furnishes the desired equivalences.

5. See statement 3.

6. From (16), (17) and (19), we get

Q2w ≃θ Q2S

(
1 − ·, ψ0,

1

2
Q−1f̃

)

≃θ QS

(
1 − ·, Qψ0,

1

2
f̃

)

≃θ e(1−·)Q (Q2HQ−1 [Au0 − f (0) + If ] − [Au1,0 − f (1)]) ,

since

Q (Qψ0) +
1

2
f̃(0)

= Q2HQ−1 [Au0 − f (0) + If ]

+Q2u1,0 +
1

2
f (1) − 1

2
I ef +

1

2
f̃(0)

= Q2HQ−1 [Au0 − f (0) + If ] − [Au1,0 − f (1)] − 1

2
I ef .

Lemma 10 Assume (2)∼(5). Let f ∈ Cθ ([0, 1] , X) and u0, u1,0 ∈ D (A).

1. If H ∈ L(X) then Qw ≃θ e
(1−·)QH [Au0 − f (0)] .

2. If H ∈ L(X) with H(X) ⊂ D(Q) then QH ∈ L(X) and

Q2w ≃θ e
(1−·)Q (QH [Au0 − f (0)] − [Au1,0 − f (1)]) .

Proof.
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1. HereHQ−1 [Au0 − f (0) + If ] = Q−1H [Au0 − f (0) + If ] ∈ D(Q) then,
from Lemma 9, statement 4, we deduce

Qw ≃θ e(1−·)QQHQ−1 [Au0 − f (0) + If ]
≃θ e(1−·)QH [Au0 − f (0) + If ] ,

but, from (18), e(1−·)QHIf = He(1−·)Q
If ∈ Cθ ([0, 1] ;X) which gives

the result.

2. Since if QH ∈ L(X) then

HQ−1 [Au0 − f (0) + If ] = Q−2QH [Au0 − f (0) + If ] ∈ D(Q2),

and from Lemma 9, statement 6, we deduce

Q2w ≃θ e(1−·)Q (Q2HQ−1 [Au0 − f (0) + If ] − [Au1,0 − f (1)])
≃θ e(1−·)Q (QH [Au0 − f (0) + If ] − [Au1,0 − f (1)])

but, from (18), e(1−·)QQHIf = QHe(1−·)Q
If ∈ Cθ ([0, 1] ;X) which

gives the result.

These two last cases correspond, for example, to operators H = αI and
H = −αQ−1 (α ∈ C\ {0} ,Reα ≥ 0) which are studied in subsection 2.5.

Lemma 11 Assume (2)∼(5) and let u0, u1,0 ∈ D (A).

1. If f ∈ Cθ ([0, 1] , D(Q)) then

w ([0, 1]) ⊂ D(Q) ⇐⇒ HQ−1Au0 ∈ D(Q),

and when HQ−1Au0 ∈ D(Q) we have

Qw ≃θ e
(1−·)QQHQ−1 [Au0 − f (0)] .

2. If f ∈ Cθ ([0, 1] , D(Q2)) then

w ([0, 1]) ⊂ D(Q2) ⇐⇒ HQ−1Au0 ∈ D(Q2),

and when HQ−1Au0 ∈ D(Q2) we have

Q2w ≃θ e
(1−·)Q (

Q2HQ−1 [Au0 − f (0)] − [Au1,0 − f (1)]
)
.
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Proof.

1. Here f(0) ∈ D(Q) and

QIf = Q

∫ 1

0

esQ (Qf (s) −Qf (0)) ds ∈ DQ (θ,+∞) ,

then, from Lemma 9, statement 3, we get

w ([0, 1]) ⊂ D(Q) ⇔ HQ−1 [Au0 − f (0) + If ] ∈ D(Q)
⇔ HQ−1Au0 −Q−1HQ−1 [Qf (0) +QIf ] ∈ D(Q)
⇔ HQ−1Au0 ∈ D(Q).

Now when HQ−1Au0 ∈ D(Q), Lemma 9, statement 4, furnish

Qw ≃θ e
(1−·)QQHQ−1 [Au0 − f (0) + If ] ,

and we conclude noting that

e(1−·)QQHQ−1
If = HQ−1e(1−·)QQIf ∈ Cθ ([0, 1] ;X) .

2. Here f(0) ∈ D(Q2) and

Q2
If = Q

∫ 1

0

esQ
(
Q2f (s) −Q2f (0)

)
ds ∈ DQ (θ,+∞) ,

then, from Lemma 9, statement 5, we get

w ([0, 1]) ⊂ D(Q2) ⇔ HQ−1 [Au0 − f (0) + If ] ∈ D(Q2)
⇔ HQ−1Au0 ∈ D(Q2).

Now, when HQ−1Au0 ∈ D(Q2), Lemma 9, statement 6, furnish

Q2w ≃θ e
(1−·)Q (

Q2HQ−1 [Au0 − f (0)] +Q2HQ−1
If − [Au1,0 − f (1)]

)
,

and we conclude noting that

e(1−·)QQ2HQ−1
If = HQ−1e(1−·)QQ2

If ∈ Cθ ([0, 1] ;X) .

By similar arguments, we can also prove the following Lemma.

Lemma 12 Assume (2)∼(5) and u0, u10 ∈ D (A). If H ∈ L(X) and f ∈
Cθ ([0, 1] , D(Q)) then

w ([0, 1]) ⊂ D(Q2) ⇐⇒ HAu0 ∈ D(Q),

and when HAu0 ∈ D(Q) we have

Q2w ≃θ e
(1−·)Q (QH [Au0 − f (0)] − [Au1,0 − f (1)]) .
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2.4 Main results

Theorem 13 Assume (2)∼(5), suppose that u0, u1,0 ∈ D (A) and

f ∈ Cθ ([0, 1] , X) with θ ∈ ]0, 1[ .

Then:

1. there exists a semiclassical solution u of problem (1) if and only if

Au0 − f (0) ∈ D (A),

2. there exists a semiclassical solution u of problem (1) having the maximal
regularity property (7) if and only if

Au0 − f (0) ∈ DA (θ/2,+∞) ,

3. there exists a semistrict solution u of problem (1) if and only if





Au0 − f (0) ∈ D (A)
HQ−1 [Au0 − f (0) + If ] ∈ D(Q) and

QHQ−1 [Au0 − f (0) + If ] ∈ D (A),

4. there exists a semistrict solution u of problem (1) having the maximal
regularity property (7)-(8) if and only if





Au0 − f (0) ∈ DA (θ/2,+∞)
HQ−1 [Au0 − f (0) + If ] ∈ D (Q) and
QHQ−1 [Au0 − f (0) + If ] ∈ DA (θ/2,+∞) ,

5. there exists a strict solution u of problem (1) if and only if




Au0 − f (0) ∈ D (A)
HQ−1 [Au0 − f (0) + If ] ∈ D(A) and

Q2HQ−1 [Au0 − f (0) + If ] − [Au1,0 − f (1)] ∈ D (A).

6. there exists a strict solution u of problem (1) having the maximal reg-
ularity property (6) if and only if





Au0 − f (0) ∈ DA (θ/2,+∞)
HQ−1 [Au0 − f (0) + If ] ∈ D(A) and
Q2HQ−1 [Au0 − f (0) + If ] − [Au1,0 − f (1)] ∈ DA (θ/2,+∞) .
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Moreover, in the 6 cases u is unique and given by u = uR + v + w where
uR, v, w are defined in (13),(14) and (15).

Proof. For statements 1 and 2, we first remark that, from subsection 2.2,
if there is a semiclassical solution u of problem (1) then u is uniquely deter-
mined by u = uR + v + w. We conclude by applying Lemmas 8 and 9 and
noting that, since u′′ + Au = f , then

{
Au ∈ C ([0, 1] , X) ⇔ u′′ ∈ C ([0, 1] , X)
Au ∈ Cθ ([0, 1] , X) ⇔ u′′ ∈ Cθ ([0, 1] , X) .

Statements 3∼6 are similarly proved.
We now study some situations where more regularity is given on H or f

which allow us to drop the conditions on If .

Corollary 14 Assume (2)∼(5). Let f ∈ Cθ ([0, 1] , X) and u0, u1,0 ∈ D (A).

1. Suppose that H ∈ L(X) then: there exists a semistrict solution u of
problem (1) if and only if

Au0 − f (0) ∈ D (A).

2. Suppose that H ∈ L(X) with H(X) ⊂ D(Q) then: there exists a strict
solution u of problem (1) if and only if

{
Au0 − f (0) ∈ D (A) and

QH [Au0 − f (0)] − [Au1,0 − f (1)] ∈ D (A).

3. Suppose that f ∈ Cθ ([0, 1] , D(Q)) then: there exists a semistrict solu-
tion u of problem (1) if and only if

Au0 ∈ D(QHQ−1) ∩D (A) and QHQ−1 [Au0 − f (0)] ∈ D (A).

4. Suppose that f ∈ Cθ ([0, 1] , D(Q2)) then: there exists a strict solution
u of problem (1) if and only if

{
Au0 ∈ D(Q2HQ−1) ∩D (A) and

Q2HQ−1 [Au0 − f (0)] − [Au1,0 − f (1)] ∈ D (A).
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5. Suppose that H ∈ L(X) and f ∈ Cθ ([0, 1] , D(Q)) then: there exists a
unique strict solution u of problem (1) if and only if

Au0 ∈ D (A)∩D(QH) and [Au1,0 − f (1)]−QH [Au0 − f (0)] ∈ D (A).

Proof. For statement 1 and 2, we apply Lemmas 8 and 10, noting that

[
Au0 − f (0) ∈ D (A) and H [Au0 − f (0)] ∈ D (A)

]
⇐⇒

[
Au0 − f (0) ∈ D (A)

]
.

For statement 3, we use Lemmas 8, 11 and also the fact that

f(0) ∈ D(Q) ⊂ D (A),

which gives

[
Au0 − f (0) ∈ D (A) and HQ−1Au0 ∈ D(Q2)

]
⇐⇒ Au0 ∈ D(QHQ−1)∩D (A).

Statement 4 and 5 are similarly treated.
In the previous corollary, we will obtain, in each case, maximal regularity

for the solution u if we replace D (A) by DA (θ/2,+∞).

2.5 Particular case for Problem (1)

We first study the particular case H = αI, α ∈ C\ {0} ,Reα ≥ 0 that is





u′′ (x) + Au (x) = f (x) , x ∈ ]0, 1[
u (0) = u0

αu′ (0) + u (1) = u1,0.
(21)

The main difficulty is assumption (5) and we need some results of functional
calculus.

Here, our main assumption on A is

{
A is a closed linear operator in X, σ(A) ⊂] −∞, 0[ and

for any θ ∈]0, π[, sup
λ∈Sθ

∥∥λ (A− λI)−1
∥∥
L(X)

< +∞, (22)

where Sθ := {z ∈ C\{0} : |arg z| < θ}. Since H = αI then

Λ = I − 2αQeQ − e2Q,
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and we have to study the functions F,G defined by

{
F (z) = 1 +G(z)
G(z) = 2αze−z − e−2z, z ∈ C.

First we fix ε0 > 0 such that B(0, 4ε2
0) ⊂ ρ(A).

Lemma 15 Setting S = Sπ/4, we get:

1. F,G are holomorphic on a neighborhood of S.

2. x > 0 implies |F (x)| > 0.

3. lim
Re z→+∞, z∈S

2αze−z + e−2z = 0 and then

(a) there exists x0 > 0 such that z ∈ S and Re z > x0 imply

2 ≥ |F (z)| ≥ 1/2.

(b) F is bounded on S.

4. There exists θ0 ∈]0, π/4[ such that F (z) does not vanish on

Σ0 = {z ∈ C : Re z ≥ ε0 and |arg(z)| ≤ θ0} ,

and min
z∈Σ0

|F (z)| = r > 0.

Proof.

1. It is obvious

2. We have, for x > 0

ReF (x) =
(
1 − e−2x

)
+ 2 (Reα) xe−x > 0.

3. We just write for z ∈ S

∣∣2αze−z + e−2z
∣∣ ≤ 2 |α| |z| e−Re z + e−2Re z

≤ 2
√

2 |α| (Re z) e−Re z + e−2Re z.
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4. We have |F (z)| ≥ 1/2 for any

z ∈ Σ1 = {z ∈ C : Re z ≥ x0 and |arg(z)| < π/4} .

Moreover F is holomorphic on a neighborhood of

Σ2 = {z ∈ C : ε0 ≥ Re z ≥ x0 and |arg(z)| ≤ π/4} ,

so, on Σ2, F has at most a finite number of zeros (which are not on
the real axis, see statement 2). Thus, we can find θ0 ∈]0, π/4], small
enough such that F does not vanishes on

Σ2 = {z ∈ C : ε0 ≥ Re z ≥ x0 and |arg(z)| ≤ θ0} .

Moreover

min
z∈Σ0

|F (z)| = min

(
min
z∈Σ2

|F (z)| , 1/2
)
> 0.

Now we set for z ∈ Σ0

Ψ(z) =
G(z)

1 +G(z)
.

Lemma 16 Under assumption (22), the operator Λ = I − 2αQeQ − e2Q is
boundedly invertible and Λ−1 = I − Ψ(−Q).

Proof. Choose θ ∈]0, θ0[ such that σ (−Q) ⊂ Sθ\B(0, 2ε0). Note that G
is holomorphic and bounded in a neighborhood of Sθ\B(0, 2ε0). Moreover
there exists σ > 0 such that

|Ψ(z)| = O
(
|z|−σ)

when z → +∞, z ∈ Sθ\B(0, 2ε0).

So we can define Ψ(−Q) and also G(−Q) (see for instance [12], subsection
2.5.1, p. 45, together with Remark 2.5.1 and fig. 6, p. 46).

We have also Λ = I +G(−Q) and

(I − Ψ(−Q)) Λ = (1 − Ψ) (−Q) ◦ (1 +G) (−Q)

= [(1 − Ψ) (1 +G)] (−Q)

=

(
1 − G

1 +G

)
(1 +G) (−Q)

= 1 (−Q)

= I.
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Similarly Λ (I − Ψ(−Q)) = I.
If we assume (22), f ∈ Cθ ([0, 1] , X) , u0, u1,0 ∈ D (A) and consider H =

αI (α ∈ C\ {0} ,Reα ≥ 0) then, due to the previous Lemma assumptions
(2)∼(5) are satisfied and we can apply Propositions 2, 3 and Corollary 14,
statement 1, to obtain:

Theorem 17 Under (22), we suppose that u0, u1,0 ∈ D (A) and

f ∈ Cθ ([0, 1] , X) with θ ∈ ]0, 1[ .

Then:

1. there exists a unique semistrict solution u of problem (21) if and only
if Au0 − f (0) ∈ D (A),

2. there exists a unique semistrict solution u of problem (21) having (7)-
(8) if and only if Au0 − f (0) ∈ DA (θ/2,+∞).

3. there exists a unique strict solution u of problem (21) if and only if





Au0 − f (0) ∈ D (A),
Au0 − f (0) + If ∈ D(Q) and

αQ [Au0 − f (0) + If ] − [Au1,0 − f (1)] ∈ D (A).

Remark 18 Let α ∈ C\ {0} ,Reα ≥ 0.

1. By the same techniques we can consider H = −αQ under hypothesis
(22), study functions F̃ , G̃ defined by

F̃ (z) = 1 + G̃(z), G̃(z) = −2αz2e−z − e−2z

and thus prove that Λ = I + 2αQ2eQ − e2Q is boundedly invertible with

Λ−1 = I − G̃

1 + G̃
(−Q),

then (2)∼(5) will be satisfied and we can apply Theorem 13.
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2. Notice that we can also solve the Problem




u′′ (x) + Au (x) = f (x) , x ∈ [0, 1[
u (0) = u0

−αu′ (0) +Qu (1) = u1,0,
(23)

since second boundary condition can be written

−αQ−1u′ (0) + u (1) = Q−1u1,0,

here H = −αQ−1, Λ = I + 2αeQ − e2Q ∈ L(X) and, assuming (22),
we can apply Corollary 10 statement 2.

3 Problem with a spectral parameter

In order to provide results for general H satisfying (5), we will consider some
large positive number ω and the problem





u′′ (x) + Au (x) − ωu(x) = f (x) , x ∈ [0, 1]
u (0) = u0

u (1) +Hu′ (0) = u1,0.
(24)

3.1 Study of Problem (24)

We consider some fixed ω0 ≥ 0 and we set, for ω ≥ ω0

Aω = A− ωI,

then Problem (24) is Problem (1) with A replaced by Aω.
Our main assumptions on the operators are
{
Aω0 is a closed linear operator in X, [0,+∞[ ⊂ ρ (Aω0) and

sup
λ>0

∥∥λ (Aω0 − λI)−1
∥∥

L(X)
< +∞, (25)

this assumption implies that Qω0 = − (−Aω0)
1
2 , is the infnitesimal generator

of a generalized analytic semigroup on X.

∀ζ ∈ D(H) : A−1
ω0
Hζ = HA−1

ω0
ζ, (26)

D (Qω0) ⊂ D (H) . (27)
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Remark 19

1. Assumption (25) implies that for any ω ≥ ω0





Aω is a closed linear operator in X,
[ω0 − ω,+∞[ ⊂ ρ (Aω) and

sup
λ>ω0−ω

∥∥(λ+ ω − ω0) (Aω − λI)−1
∥∥
L(X)

< +∞.
(28)

but

sup
λ>0

∥∥λ (Aω − λI)−1
∥∥
L(X)

≤ sup
λ>ω0−ω

∥∥(λ+ ω − ω0) (Aω − λI)−1
∥∥
L(X)

,

so, for any ω ≥ ω0, Qω = − (−Aω)
1
2 , is the infnitesimal generator of a

generalized analytic semigroup on X. Note that

c0 = sup
λ>ω0−ω

∥∥(λ+ ω − ω0) (Aω − λI)−1
∥∥
L(X)

= sup
λ>0

∥∥λ (Aω0 − λI)−1
∥∥
L(X)

,

and then c0 does not depend of ω.

2. Assumption (26) implies that ω ≥ ω0

∀λ > ω0 − ω, ∀ζ ∈ D(H), (λI −Aω)−1Hζ = H (λI −Aω)−1 ζ,

Lemma 20 Assume (25) ∼ (27), then there exists ω∗ ≥ ω0 such that,
for ω > ω∗, the operator Λω = −2HQωe

Qω + I − e2Qω has a bounded in-
verse.

Proof. We can write Λω = I − Tω with Tω = 2HQωe
Qω + e2Qω . Thus,

to show that the operator Λω has a bounded inverse, it is enough to have
‖Tω‖L(X) < 1.

By using Lemma p. 103 in G. Dore and S. Yakubov [8], we have

{
∃c > 0 et k > 0 :∥∥Q3

ωe
Qω

∥∥
L(X)

≤ ce−k
√

ω and
∥∥e2Qω

∥∥
L(X)

≤ ce−k
√

ω.
(29)
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Moreover

∥∥Q2
ω0
Q−2

ω

∥∥
L(X)

=
∥∥Aω0A

−1
ω

∥∥
L(X)

=
∥∥(A− ω0I) (A− ωI)−1

∥∥
L(X)

=
∥∥(A− ωI − (ω0 − ω) I) (A− ωI)−1

∥∥
L(X)

=
∥∥I − (ω0 − ω) (A− ωI)−1

∥∥
L(X)

≤ 1 + c0,

and, since HQ−2
ω0

is bounded, then

‖Tω‖L(X) =
∥∥2HQ−2

ω0
Q2

ω0
Q−2

ω Q3
ωe

Qω + e2Qω
∥∥
L(X)

≤ 2
∥∥HQ−2

ω0

∥∥
L(X)

∥∥Q2
ω0
Q−2

ω

∥∥
L(X)

∥∥Q3
ωe

2Qω
∥∥
L(X)

+
∥∥e2Qω

∥∥
L(X)

≤ 2
∥∥HQ−2

ω0

∥∥
L(X)

(1 + c0)
∥∥Q3

ωe
2Qω

∥∥
L(X)

+
∥∥e2Qω

∥∥
L(X)

,

and due to (29) there exists ω∗ ≥ ω0 such that for ω ≥ ω∗

‖Tω‖
L(X)

< 1.

We can now solve Problem (24)

Theorem 21 Assume (25)∼(27), suppose that u0, u1,0 ∈ D (A) and

f ∈ Cθ ([0, 1] , X) with θ ∈ ]0, 1[ .

For any ω > ω∗

1. there exists a semiclassical solution uω of problem (1) if and only if

Au0 − f (0) ∈ D (A),

2. there exists a semistrict solution uω of problem (1) if and only if





Au0 − f (0) ∈ D (A)
HQ−1

ω [Au0 − f (0) + If ] ∈ D(Q) and

QωHQ
−1
ω [Au0 − f (0) + If ] ∈ D (A),
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3. a strict solution uω of problem (1) if and only if




Au0 − f (0) ∈ D (A)
HQ−1

ω [Aωu0 − f (0) + If ] ∈ D(A) and

Q2
ωHQ

−1
ω [Aωu0 − f (0) + If ] − [Aωu1,0 − f (1)] ∈ D (A).

Moreover, in the 3 cases u is unique and given by uω = uω,R + vω + wω

where uω,R, vω, wω are defined as in (13),(14) and (15) with A,Q,Λ replaced
respectively by Aω, Qω,Λω.

Proof. Let ω > ω∗. Notice that if we replace A by.Aω then Problem
(24) corresponds to Problem (1), assumptions (25) ∼ (27) correspond to
(2) ∼ (5), indeed due to Lemma 20, hypotheses (25) ∼ (27) implie (5).
Then, it is enough to apply Theorem 13 with A replaced by Aω noting that
D (Aω) = D (A), D(Qω) = D(Q) and

Aωu0 − f (0) ∈ D (Aω) ⇐⇒ Au0 − f (0) ∈ D (A).

Remark 22 In Theorem 21, we will obtain, in each case, maximal regularity
for the solution uω if we replace D (A) by DA (θ/2,+∞).

3.2 Particular case for Problem (24)

We consider here H = α (Qω0)
β with α ∈ C\ {0} and β ∈] − ∞, 1]. So

Problem (24) becomes





u′′ (x) + Au (x) − ωu (x) = f (x) , x ∈ ]0, 1[
u (0) = u0

u (1) + α (Qω0)
β u′ (0) = u1,0.

(30)

If we assume (25) then (26), (27) are satisfied and we can apply Theorem
21 (moreover H ∈ L(X) if β ∈] − 1, 0] and H ∈ L(X) with H(X) ⊂ D(Q)
for β ∈] −∞,−1]. In these cases we can apply Corollary 10). For example
if β = 0 we get the following abstract problem





u′′ (x) + Au (x) − ωu (x) = f (x) , x ∈ ]0, 1[
u (0) = u0

u (1) + αu′ (0) = u1,0,
(31)

and the result:
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Theorem 23 Under (25), we suppose that u0, u1,0 ∈ D (A) and

f ∈ Cθ ([0, 1] , X) with θ ∈ ]0, 1[ .

We have that for any ω > ω∗

1. there exists a semistrict solution uω of problem (31) if and only if

Au0 − f (0) ∈ D (A)

2. there exists a strict solution uω of problem (31) if and only if





Au0 − f (0) ∈ D (A),
Au0 − f (0) + If ∈ D(Q) and

αQω [Aωu0 − f (0) + If ] − [Aωu1,0 − f (1)] ∈ D (A).

4 Example

Let M be the linear operator in X = C ([0, 1]) defined by

{
D (M) = {v ∈ C2 ([0, 1]) : v (0) = v (1) = 0}
Mv = v′′, v ∈ D (M) ,

and for a fixed c > 0 set

A = −M2 − cI and H = M. (32)

A satisfies (22) and thus (2). Moreover, from (32) we deduce (3) ∼ (4).
Here Q = −

√
M2 + cI and setting

G(z) = 2α
√
z2 − cze−z − e−2z,

we prove, as in subsection 2.5, that

Λ = I − 2MQeQ − e2Q

= I + 2M
√
M2 + cIe−

√
M2+cI − e−2

√
M2+cI

= I +G(−Q),
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is boundedly invertible and so (5) is verified. We can then apply Theorem
13 to Problem





u′′ (x) + Au (x) = f (x) , x ∈ [0, 1[
u (0) = u0

u (1) +Mu′ (0) = u1,0,
(33)

Since
{
D (A) = {v ∈ C4 ([0, 1]) : v (0) = v (1) = v′′ (0) = v′′ (1) = 0}
Av = −v(4) − cv, v ∈ D (A) ,

we can thus deal with the following PDE’s nonlocal Problem





∂2u

∂x2
(x, y) − ∂4u

∂y4
(x, y) − cu (x, y) = f (x, y) , (x, y) ∈ (0, 1) × (0, 1)

u (x, 0) = u (x, 1) =
∂2u

∂y2
(x, 0) =

∂2u

∂y2
(x, 1) = 0, x ∈ (0, 1)

u (0, y) = u0 (y) , y ∈ (0, 1)

u (1, y) +
∂3u

∂y2∂x
(0, y) = u1,0 (y) , y ∈ (0, 1) .

(34)
D (A) is not dense in X = C ([0, 1]) since

D (A) = D (M) = {v ∈ C ([0, 1]) : v (0) = v (1) = 0} .

and for θ ∈ ]0, 1[

DA (θ/2,+∞) =
{
v ∈ Cθ ([0, 1]) : v (0) = v (1) = 0

}
.

By applying Theorem 13 we obtain:

Theorem 24 For any f ∈ Cθ ([0, 1] , X) , θ ∈ ]0, 1[ and u0, u1,0 ∈ C4 ([0, 1]) ,
such that {

u0 (0) = u0 (1) = u′′0 (0) = u′′0 (1) = 0
u0,1 (0) = u1,0 (1) = u′′1,0 (0) = u′′1,0 (1) = 0

,

we have
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1. If u0 (.) + f (0, .) ∈ C ([0, 1]) and

u
(4)
0 (0) + f (0, 0) = u

(4)
0 (1) + f (0, 1) = 0,

then there exists a unique semiclassical solution u of problem (34).

2. If u
(4)
0 (.) + f (0, .) ∈ Cθ ([0, 1]) and

u
(4)
0 (0) + f (0, 0) = u

(4)
0 (1) + f (0, 1) = 0,

then the unique semiclassical solution u of problem (34) has the maxi-
mal regularity property (7).

Acknowledgements. Authors are thankful to the referee for useful
remarks and simplification in the construction of the representation formula.
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