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Abstract

In this work, we are mainly concerned with the existence of stationary solutions for the gen-
eralized Kadomtsev-Petviashvili equation in bounded domain in R"

o d _ .
551 y) + - f(ulz,y)) = D;'Ayu(z,y), in Q,

D3 tulaq = 0, uloq = 0,

where 2 € R" is a bounded domain with smooth boundary 9€2. We utilize critical point theory
to establish our main results.
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1 Introduction

In this work, we shall investigate the stationary solutions for the generalized Kadomtsev-Petviashvili

equation in bounded domain in R™

3 o B .
5@ )+ 5 fula.y) = D Ayu(a.y), in "

Dy tulog =0, ulog =0,

JY) +

where D th(z,vy) f (s,y)ds denotes the inverse operator, (z,y) := (¥,91,...,yn_1) € R X

R n>2 A, = F + —2 4+ 622 . In this paper, we utilize variational methods and some
e y; Oys 4 ’

critical point theroems to study the stationary solutions for the generalized Kadomtsev-Petviashvili

equation (1.1).
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Kadomtsev-Petviashvili equation and its generalization appear in many physical progress, for ex-

ample, see [1-11] and references therein. Generally, it reads

) 9 ) B
a’LU(t,SC,]J) + %w(t,x,y) + %f(w(ta z, y)) - Dm Ayw(tv'rvy)a (12)

where (t,z,y) = (t,2,91,...,Yn—1) E RF x R x R""! ' n>2 D! and A, are as in (1.1). A solitary
wave is a solution of the form

w(t,x,y) = ulx — ct,y),

where ¢ > 0 is fixed. Substituting in (1.2), we have,
—ClUy + Uggr + (f(0)r = Dy ' Ayu,

or

(—Ugze + Dy *uyy + cu— f(u)), = 0. (1.3)

In [1] and [2], by virtue of the constrained minimization method, De Bouard and Saut obtained the
existence and nonexistence of solitary waves in the cases where power nonlinearities f(u) = u?, p =
m/n, m,n are relatively prime, n is odd. In [3,4], Zou et al. established the existence of nontrivial
solitary waves of problem (1.3) by a linking theorem. Wang and Willem [5] obtained multiple solitary
waves for the generalized Kadomtsev-Petviashvili equation (1.2) in one-dimensional spaces by the
Lyusternik-Schnirelman category theory. In [6], Liang and Su considered that the case that the non-
constant weight function for generalized Kadomtsev-Petviashvili equation, see [6, the problem (P)
and the assumption (Q)]. In [7-9], Xuan dealt with the case where N > 2 and f(u) satisfies some
superlinear conditions. Their main tool in [6-9] is the famous mountain pass theorem.

We also note Fountain and Dual Fountain theorems were established by Bartsch and Willem
[12,13], and both theorems are effective tools for studying the existence of infinitely many large
energy solutions and small energy solutions. For more details of recent development in the direction,
we refer the reader to [14-19] and references cited therein. Meanwhile, Zou [20] established some
variant fountain theorems and many people utilized these theorems to study nonlinear problems, for
instance, see [21-27] and references therein.

It should be remarked that Chen and Tang [14] investigated the fractional boundary value problem

of the following form

d /1 1
— <§ oD P/ (1) + 3 tDTBu’(t)> + VF(t,u(t)) =0, ae. t € [0,T),

u(0) = u(T) = 0.
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In this paper, they adopted Fountain and Dual Fountain theorems to obtain the existence of infi-
nite solutions under some adequate conditions. It is no doubt that the results in the literature are
significantly improved.

In [21], by virtue of the variant fountain theorem established in [20], Sun considered the sublinear

Schrodinger-Maxwell equations

{—Au+V($)u+¢u = f(z,u), nR? (1.4)

—A¢p = u?, lim|g| 4o #(x) =0, in R3.

In that paper, his aim is to study the existence of infinitely many solutions for (1.4) when f(z,u)
satisfies sublinear in u at infinity, see [21, (H2) of Theorem 1.1]. Motivated by paper [21], we also
utilize the variant fountain theorem by [20] to investigate that the existence of infinitely many solutions

for (1.1) with the nonlinearity f growing sublinearly in u, see Theorem 3.4 in Section 3.

2 Preliminaries

For 2 € R™ is a bounded domain with smooth boundary 02 on Y := {g; : g € C§°(Q)}, we define

the inner product

(u,v) := / [ugvy + Dy 'Vyu- D;'Vyo] dV, (2.1)
Q
where V,, 1= (6%1, R ﬁ), dV = dzdy, and the corresponding norm

1

| = </Q [u2 + | D51V uf?] dv) C (2.2)

A function u : © — R belongs to X, if there exists {um }5°_; C Y such that
(1) up, — wae on Q, (2) [|u; —ugl| — 0, as j, k — oo.

Note that the space X with inner product (2.1) and norm (2.2) is a Hilbert space, see [6, Defi-

2(2n—1)

5.5~ > 2 is as critical as the critical

nition| and [7, P12 and P13]. We know the exponent p :=

Sobolev exponent p* := %, i.e., there exists a constant C' > 0 such that the estimate

3
fullzrey <€ ([ [+ 10290 av ) 23
R
holds for all u € C§°(R™).
From the interpolation theorem, the boundedness of 2 and estimate (2.3), there is an embedding
theorem about X as follows
Lemma 2.1(see [7, Lemma 1]) The embedding from the space (X, | - ||) into the space (LP(2), | - |l)

is compact for 1 < p < p.
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By Lemma 2.1, there exists 7, > 0 such that
lullp < 7pllull, p € [1,D), Vu € X, (2.4)

where [[ull, := ([, [u[?dV)?

In what follows, we shall establish the energy functional for problem (1.1). Note that we can
rewrite (1.1) in the following form (see [7, (3) of Page 12]):

92

a 2

D; u|aQ =0, ’u|aQ =0.

u(z,y) + D Ayu(z, y) = f(u(z,y)), in Q, 25)

For each v € X, multiply the both sides of the above equation in (2.5) by v(x,y) and integrate over

) to obtain

/( aa ue, y>) v(@y)dV + /Q<D;2Ayu<w,y>)v<w,y>dV= / F(u, y)o(a, y)av,

and then we obtain by Green formula and integration by parts,

[ et gootenaV + [ D2V e D ota )V = [ fute oty

Therefore, on X, define a functional ¢ as

o) =5 / i+ D7 9,uP] 4V = [ PV = 5 ul® = 9w, (2.6)

where F(u) := [ f(s)ds, ¥(u) := [, F(
For the nonlinearity f, we always assume that it satisfies the following conditions:

(H1) f € C(R,R), f(0) =0, and for some 1 <p <p= 2(22::31), ¢o > 0, there holds

|fw)] < co(L+ [u[P™H). (2.7)

Lemma 2.2 Let (H1) holds. Then ¢ € C'(X,R). Moreover,
_ / FludV, (2.8)
Q

(@/(u)’v) = (u,v) — (\I//(u)a v) = (u,v) — /Q f(u)odV, (2.9)

for all u,v € X, and critical points of ¢ on X are weak solutions of (1.1).

Proof. We first verify (2.8) by definition. For any given u € X, define an associated linear operator

J(u): X — R as follows:

(J(u),v) = /Qf(u)vdV, Yu e X.
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Note that (H1) leads to f € L9(2), where p~! 4+ ¢~! = 1. Indeed, for any u € X, Lemma 2.1 enables

us to find u € LP(Q), ie., [, |u[PdV < co. Hence,

/|f|@dv</ leo(1 + [u[P~1)[FETdV < (2¢8) 7T /(1+|u|p)dV<oo (2.10)

By (H1), (2.10), Lemma 2.1 and the Holder inequality, there holds

v)| < /Q|f(u)v|dV < </Q|f|qu)q (/ﬂ |v|pdV>p <7 </Q|f|qu)q [lv]| < 00, Vv e X.

This shows that J(u) is bounded. Combining (H1), (2.6), (2.8), Lemma 2.1 and the mean value

theorem, by Holder inequality, we have,

W (u+v) = ¥(u) = (J(u), )| =

/Q (F(u+v) — F(u) — f(u)v]dV’

|+ 00) vdV‘ </|fu+9v (u)|qdv>%</9|v|pdv)% (2.11)

(/ [t 60) - <u>|de) loll

where 0 = 0(z,y) € (0,1). Note that

(/Q|f(u+9v) f(u)|qu>}1 < (/an(uwvnu |f(u)|q]dV>q oo, Vu,veX  (212)

by (H1) and (2.10). Together with (2.11) and (2.12), Lebesgue’s dominated convergence theorem

implies that
(W (u+v) = ¥(u) — (J(u),v)|
[[]

Then by the definition of Fréchet derivatives, (2.8) holds.

— 0, asv—0.

)

Next we prove that U’ is weakly continuous. Suppose that u, — ug in X, then f(u,) — f(uo) in
L1(Q) by (H1), (2.10) and (2.12). By Holder inequality and Lemma 2.1, we get,

19" (un) = W' (uo)l| x+ = sup 109" (un) = W' (uo), )|

llvll=

< (- ) ([

<7 (/ |f (un) U0)|qu> — 0, as n — oo.

This shows that W' is weakly continuous. Consequently, ¥’ is continuous. Therefore ¥ € C*(X,R).
Due to the form of ¢’ in (2.9), ¢’ is also continuous and hence ¢ € C*(X,R). Furthermore, ¥’ is
compact by the weak continuity of ¥’ since X is a Hilbert space.

As we have mentioned, we will utilize the critical point theory to prove our main results. Let us
collect some definitions and lemmas that will be used below. One can refer to [10,28,29] for more

details.
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Definition 2.1 Let X be a real Banach space, D an open subset of X. Suppose that a functional
¢ : D — R is Fréchet differentiable on D. If ug € D and the Fréchet derivative satisfies ¢'(ug) = 0,
then we say that wug is a critical point of the functional ¢ and ¢(ug) is a critical value of .

Let C'(X,R) denote the set of functionals that are Fréchet differentiable and their Fréchet deriva-
tives are continuous on X.
Definition 2.2 Let X be a real Banach space and ¢ € C1(X,R). We say that ¢ satisfies the Palais-
Smale condition ((PS) condition for short) if for every sequence {u,,} C X such that ¢(u,,) is bounded
and ¢’ (u,) — 0 as m — oo, there exists a subsequence of {u,,} which is convergent in X.
Definition 2.3 Let X be a real Banach space, ¢ € C*(X,R) and ¢ € R. We say that ¢ satisfies (PS).
condition if the existence of a sequence {u,,} C X such that ¢(u,,) — ¢ and ¢’ (u,,) — 0 as m — oo
lead to c¢ is a critical value of .
Remark 2.1 It is clear that the (PS) condition implies the (PS). condition for each ¢ € R.
Lemma 2.3(see [28, Theorem 1.2]) Suppose X is a reflexive Banach space with norm | - ||, and
let M C X be a weakly closed subset of X. Assume ¢ : M — R U {+o0} is coercive and weak
(sequentially) lower semi-continuous on M with respect to X, i.e., suppose the following conditions
are fulfilled:
(1) p(u) — oo as |lu|| — oo, u e M.

(2) For any u € M, any sequence {u,,} in M such that u,, — u weakly in X, there holds:

o(u) < liminf o(u,,).

m—0o0

Then ¢ is bounded from below on M and attains its infimum in M.

Lemma 2.4(see [29, Theorem 9.12]) Let X be an infinite dimensional real Banach space. Let ¢ €
C1(X,R) be an even functional which satisfies the (PS) condition, and ¢(0) = 0. Suppose that
X = Q1 P Q2, where @ is infinite dimensional, and ¢ satisfies that

(i) there exists o > 0 and p > 0 such that ¢(u) > « for all u € Q2 with ||ul| = p,

(ii) For any finite dimensional subspace W C X, there is R = R(W) such that ¢(u) < 0 on W\ Bgy).
Then ¢ has an unbounded sequence of critical values.

As X is a separable Hilbert space, there exist (see [30]) {e,}72; C X and {f,}52; C X* such that
frnlem) = 6pm, X =5pan{e, :n=1,2...} and X* =gspan” {f,:n=1,2...}. For j,k € N, denote
X, = span{e;}, Y} = @le X; and Zj, := m Clearly, X = m with dimX; < oo for
all j € N.

Lemma 2.5(see [12]) Let X be defined above. Suppose that

(A1) ¢ € C(X,R) is an even functional.
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If for every k € N, there exist pg > 7 > 0 such that
(A2) ag = max,cy, |u|=p, ©(u) < 0.
(A3) by = infuez, juf=r, P(u) — 00 as k — oo.
(A4) ¢ satisfies the (PS). condition for all ¢ > 0.
Then ¢ has an unbounded sequence of critical values.
In the following, we shall introduce variant fountain theorems by Zou [20]. Let X and the subspace

X4, Y3 and Zy, are defined above. Consider the following C!-functional ¢y : X — R defined by
oa(u) = A(u) — AB(u), X €[1,2]. (2.13)

The following variant fountain theorem was established in [20].

Lemma 2.6 If the functional o) satisfies

(T1) vx maps bounded sets to bounded sets uniformly for A € [1,2]. Moreover, p)(—u) = @i (u) for
all (A, u) € [1,2] x X,

(T2) B(u) > 0; B(u) — oo as |Ju|| — oo on any finite dimensional subspace of X,

(T3) There exist py, > ri > 0 such that

arp(\) = inf oa(u) >0>bp(\) ;= max  @x(u), YA€ [1,2],
u€ Z, ||lull=pk u€ Yk, |lull=rk
dr () := inf ©x(u) = 0 as k — oo uniformly for A € [1,2].

UE Zy, |Jul| <pi

Then there exist A\, — 1,uy, €Y, such that

O\ v (ua,) =0, @x, (ux,) = e € [di(2),br(1)] as n — oo.

Particularly, if {uy, } has a convergent subsequence for every k, then ¢ has infinitely many nontrivial

critical points {ur} € X\{0} satisfying ¢ (ux) — 0~ as k — oo.

3 Main Results

Theorem 3.1 Let p € (1,2) and (2.7) hold. Then (1.1) has a weak solution.

We adopt Lemma 2.3 to prove Theorem 3.1. We first offer a lemma involving weak lower semi-
continuity.
Lemma 3.1 Let (H1) hold. Then the functional ¢ determined by (2.6) is weak lower semi-continuous
on X.
Proof. We first prove || - || defined by (2.2) is weak lower semi-continuous on X. Indeed, if the claim

is false, there exists a sequence {u,} such that

Up — u, weakly in X, |lu|| > lUminf ||u,]. (3.1)
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Hence, there is a constant ¢ such that ||u|] > ¢ > liminf, . ||u,||. Consequently, there exists a
subsequence {uy, } C {u,} such that ¢ > ||uy, ||, £ =1,2,.... From Hahn-Banach theorem, we know

there exists fo € X*(the dual space of X) such that || fo|| = 1 and fo(u) = ||u|. Therefore,
Jo(un,) < Lfolllun, [l = llun,ll <, k=1,2,..., (3.2)
on the other hand, note that u,, — u, and thus
Jull = fo(u) = Jim_fo(un,) < c. (33)
That is a contradiction. Secondly, we will discuss W. By Lemma 2.1, there exists u € X such that
ug — u, weakly in X, wur — u, strongly in LP(Q), as k — oc. (3.4)
By integral mean value theorem, there is a number & = &(u,, u) between u,, and u, we have

/u " (s)ds

Combining this and Hélder inequality, note that (2.10), we arrive at

|F(um) — F(u)] = \ / " fs)ds - / " f(s)ds )

W (1t) — W ()| < / |F ) — F(w)]dV = / F(E) (m —w)|dV

<(/ |f(£)|qu)% ([ 1 —u|pdv); 0.

Therefore, U(u,,) — ¥(u) strongly in X. Hence,

[ull® = @ (u) = o(u).

N | —

1
lim inf @ (u,) = lim inf <§|um|2 - \Il(um)) >

m— 00

This completes the proof.

Proof of Theorem 3.1 The energy space X is a Hilbert space, so is reflexive. We easily verify the
assumptions of Lemma 2.3 are true with M = X. Lemma 3.1 leads to ¢ is weak lower semi-continuous
on X. Next, we will show ¢ is coercive on X. Indeed, by (2.7) and Lemma 2.1, there exists a constant

c1 such that
1 1
plw) = 3lulP ~ [ Paav = 3l = [ (eolul +ealup)av
Q Q

Y

Sl = comylull = err2 ]

and thus ¢(u) — oo as [Ju|| — co. Lemma 2.3 implies ¢ can attain its infimum in X, i.e., (1.1) has at
least a weak solution. This completes the proof.

Theorem 3.2 Suppose that (H1) and the following two conditions are satisfied.

(H2) There exists o > 2 such that, for u € R\{0}, there holds 0 < aF'(u) < uf(u).

(H3) f(u) is odd about u, i.e., f(u)+ f(—u) = 0.
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Then (1.1) has infinitely many weak solutions.

In order to obtain that ¢ satisfies (PS) condition, we need the following lemma. Note that if ¢
satisfies (PS) condition, then ¢ satisfies (PS). condition for all ¢ € R by Remark 2.1.
Lemma 3.2 Assume that (H1) and (H2) hold. Then ¢(u) satisfies (PS) condition.
Proof. Let {u} be a sequence in X such that {¢(uy)} is bounded and p(ux) — 0 as k — oco. We
first prove {uy} is bounded. From the definition of functional ¢, there exists C' > 0 such that

CZ@(Uk):%/

[ui, + |D; ' Vyugl?] de/ F(ug)dV
Q

Q

and

(¢ (ur), ur) Z/

[uj, + D5 ' Vyu?] AV — / fug)updV = o(1)]|ug]|.
Q Q

Consequently, by (H2), there holds

¢ = ol = (5 - 2 ) lul+ [ (Erwu - F) av = (5= L)

which implies {uy} is bounded in X. Going if necessary to a subsequence, we can assume that there

exists u € X such that
ug — u, weakly in X, wur — w, strongly in LP(Q), as k — oc.

Hence, (¢'(ur) — ¢’ (uw))(ur — u) — 0, and note that (H1) leads to f € L%(£2) (see (2.10)), where

p~ '+ ¢! =1, hence, by Holder inequality, we get

[t = st = av < ([ 156w - spav)” ([ - arav)’

< [+ If(U)Iq]dV)% ([ 1~ u|PdV)% 0.

(¢ (ur) — &' () (ur — u) = [Jug —ul|* — /Q(f(wc) = f(u))(ur — u)dV.

Therefore,

So ||lup — ul] — 0 as k — oo, i.e., {ur} converges strongly to w in X. Therefore, ¢ satisfies (PS)
condition.
Proof of Theorem 3.2 If (H2) is satisfied, then we know the following inequalities holds (see [31,

Lemma 3.2] and [32, Lemma 2.2]):

F@)gF(”

ﬁ) [u|®, if 0 < |ul] <1, F(U)ZF<
u

i) ul®, if fu] > 1.
|ul
It is easy to see that

Flu) < Mul, il <1, F(u) = mlul®, i [u] > 1, (3.6)
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where M := max,|—; F'(u) > 0, m := minj,— F'(u) > 0 by (H1). Since F(u) —m|u|® is continuous

on [—1, 1], there exists a constant Cy such that
F(u) > ml|u|® — Co,u € [-1,1]. (3.7)
Consequently, the second inequality of (3.6) and (3.7), we get
F(u) > mlul* — Co,u € R. (3.8)

Choosing @1 = Y, Q2 = Zj, in Lemma 2.4, we easily find X = Q1 P @2 and dim Q1 < oo. In view of
(H1) and (H3), it is obvious ¢(u) is even and ¢(0) = 0. By Lemma 3.2, ¢(u) satisfies (PS) condition.
We first prove ¢ satisfies (i) of Lemma 2.4. For any v € X and [ul| < 7, {/meas(Q) = |u] <1, we

have by the first inequality of (3.6) and Lemma 2.1
/ Plu)dv < M/ | dV = MJull& < M~ ]|,
Q 9]

Therefore,

1 1 @ [e% —1 a
p(u) = 3 [[ull® —/QF(U)dV > Sllull®* = Mrull, flul <7t /meas().

Therefore, we can choose p > 0 small enough such that ¢(u) > 8 > 0 with [Ju|| = p.
Finally, we show ¢ satisfies (ii) in Lemma 2.4. Let W C X is a finite dimensional subspace. For
every r € R\ {0} and v € W\ {0} with ||u]| = 1, we obtain by (3.8) and Lemma 2.1

2 2 2
olru) = % - /Q F(ru)dV < % - /Q(m|ru|o‘ —Co)dV < % —m7,r" + Comeas(Q).

Note o > 2, the above inequality leads to there exists o such that ||ru|| > p and p(ru) < 0 for each

r > 1o > 0. Since W is a finite dimensional subspace, there exists R(W) > 0 such that ¢(u) < 0 on
WABgrw)-

Lemma 2.4 yields that ¢(u) has infinitely many critical points, i.e., (1.1) has infinitely many weak
solutions. This completes the proof.
Theorem 3.3 Let p € (2,p), (2.7), (H2) and (H3) hold. Moreover, the following two conditions are
satisfies:

(H4) there exists positive constants u € [p,p), (1 > 0 and ¢z > 0 such that
F(u) < (ilul” + ¢, Yu € R.

(H5) there exists positive constants ' € (2,p], (2 > 0 and ¢3 > 0 such that
F(u) > Glul” —cs, Yu € R.
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Then (1.1) has infinitely many weak solutions {u,, } on X for all positive integer n such that ||u,| — oo
as n — oo.
Proof. (H3), Lemma 2.2 and Lemma 3.2 enable us to obtain that (A1) and (A4) are satisfied.

For any u € Yy, let

1
’ w
fulli= ([ juav) 59)
Q
and it is easy to verify that || - || defined by (3.9) is a norm of Yj. Since all the norms of a finite
dimensional normed space are equivalent, so there exists positive constant ¢4 such that caljul] < ||u||«-

In view of (H5),

1 1 ’
ol = el = [ Fav < gl - [ @lul - cajav

1 ’ ’
< §Hu|\2 — Cac) |Jul]* + 5 - measQ.

Since i/ > 2, then there exists positive constants dj such that

p(u) <0, for each u € Y, and ||ul| > dp. (3.10)
For any u € Zg, let
1
lu] e = </ |u|“dV) and B :=  sup  |ull, (3.11)
Q uEZy,||ul|=1

Since X is compactly embedded into L*(2), there holds (see [10, Lemma 3.8]), 8 — 0, as k — .

In view of (H4), we find

1 1
ol = 5llul? = [ F@av = Sul® = [ @l + cajav

1
> Z|lull? =GBy |lul[* — co - measQ.

3!

Choosing r, := 1/f, we easily ry — oo as k — oo, then

o(u) > =12 — (1 — ¢y - measQ — oo, as k — 00.

Hence, by := infyez, ju|=r, ¢(u) — 00 as k — oo. Combining this and (3.10), we can take pj :=
max{dy, s + 1}, and thus ax 1= max,ecy, ju|=p, ©(u) < 0.

Up until now, we have proved the functional ¢ satisfies all the conditions of Lemma 2.5, then ¢ has
an unbounded sequence of critical values ¢, = ¢(u,). We only need to show ||u,| — oo as n — oo.
Indeed, going to a subsequence if necessary, we may assume that there is a constant M > 0 such that
|un| < M. By this, there exist &, between wu,, and 0, integral mean value theorem and the definition

of ¢(uy,) enable us to obtain
Flun) = / " (s)ds = F(E)tms (& (1), tn) = (tim, ) — / Ftn)undV = 0. (3.12)
0 Q
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Consequently,

~—

Cp = Sp(un

1 1
= 3lual? = [ PtV = Zlunl = [ fn)unav

Note Q2 is a bounded domain, we easily know [, f(un)un,dV and [, f(&:)undV are bounded from the
continuity of f and the boundedness of u, and &,. This contradicts the unboundness of ¢,,. This
completes the proof.

In the following, we shall prove (1.1) has infinitely many weak solutions by variant fountain the-
orems by Zou [20]. To facilitate computations for the following proof, without loss of generality, we
only consider a special case of (H1), i.e., f satisfies the following condition:

(H6) f(u) = p|u|*~1, where 1 < p < 2 is a constant.
Theorem 3.4 Let (H6) holds. Then (1.1) possesses infinitely many nontrivial solutions.
In order to apply Lemma 2.6 to prove the result, we first define the functionals A, B and ¢, on

our working space X by

A(u) := ;HUHQ, B(u) := /QF(u)dV (3.13)

or(u) = A(u) = AB(u) =  Jull® ~ A / F(u)dV (3.14)

for all u € X and A € [1,2]. By Lemma 2.2, we know ¢y € C*(X,R), VA € [1,2]. Note ¢1 = ¢, where
¢ is determined by (2.6).

The following three lemmas play some important roles in our Theorem 3.4.
Lemma 3.3 Let (H6) holds. Then B(u) > 0. Furthermore, B(u) — oo as ||u]| — oo on any finite
dimensional subspace of X.

Proof. By simple computation, we have
F(u) = /“ f(s)ds = |ult, Yu € X.
0
It yields B(u) > 0. We will prove there exists € > 0 such that
meas(|u| > el|ul|*) > e, Vu e Z\{0},VZ C X and dim 2 < 0. (3.15)
There exists otherwise a sequence {up nen C 2 \{0} such that

nll” 1
meas <|un|“ > M) <—,VneN (3.16)
n n

For each n € N, let vy, := “"” € X = ||vn|| =1,Yn € N and

flw

1 1
meas <|vn|“ > —) < —,VneN (3.17)
n n
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Passing to a subsequence if necessary, we may assume v,, — vg in X for some vy € 2 since 2 is of

finite dimension. We easily find ||ug|| = 1. Consequently, there exists a constant oy > 0 such that

meas(|vg|" > o¢) > 09. (3.18)
Indeed, if not, then we have
1
meas <|v0|“ > —) =0, Vn € N, (3.19)
n
which implies
2 2 2 2
0< / |vo# 2V < [vollz < il SN 0, as n — oo.
Q n n n
This leads to vg = 0, contradicting to ||vg|| = 1. In view of Lemma 2.1 and the equivalence of any two
norms on 2", we have
/ |vy, — vo|?dV — 0, as n — oo. (3.20)
Q

For every n € N, denote

N o= {|vn|“ < l} and A€ = {|vn|“ > l},
n n

and Ag := {|vo|* > o0}, where gq is defined by (3.18). Then for n large enough, by (3.18), we see

1
meas(A N .AG) > meas(.Aj) — meas(AN ) > g9 — — > %.
n
Consequently, for n large enough, we arrive at immediately
/ |vn, — vo|HdV > / [y, — vo|*dV
Q NN
1
>1 o AV —/ o |4V
28 v N O
o0 1 %
> <2u — n) meas(A N Ap) > ot 0.

This contradicts to (3.20). Therefore, (3.15) holds. For the € given in (3.15), we let
M= {|ul* = eljul"}, Vu € 27\{0}.

Then by (3.15), we find
meas(.4,,) > e, Yu € Z\{0}.

Consequently, for any v € 2°\{0}, we see

Blu) = / ' dv > / el aV > |fuf",
Q

N

which implies B(u) — oo as ||u]| — oo on any finite dimensional subspace 2" C X.

(3.21)
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Lemma 3.4 Let (H6) holds. Then there exists a sequence py — 07 as k — oo such that

ar(N) = inf oxa(u) > 0,Vk € N,

1
UE Zy, || ull=ps

dr(\) := ©x(u) = 0 as k — oo uniformly for A € [1, 2],

inf
UE Zy, [Jul| <pi

where 7, := @j’;k X, = span{ey, ...} for any k € N.

Proof. By the definition of ¢y and A € [1,2], we have

1 1
orlw) > Ll =2 [ fupav = Sl —2lullp, YO eAx X (@22)
Let
lp:= sup  |ullu, VkeN. (3.23)
UE Zy,||ul|=1

Since X is compactly embedded into L*(2), there holds (see [10, Lemma 3.8]),
lp, — 0, as k — oo.
Combining (3.22) and (3.23), we get
1 9 u 1 9 Bl
pa(u) 2 Sllull® = 2fully = Sllull® =20 ull?, V(A w) € [1,2] x Zs. (3.24)
For every k € N, we can choose
e
pu = 8P IET,
then pr — 07, as k — oo. Since p € (1,2), we have by direct computation

2
ar(\) = inf  ox(u)>2E >0,k eN.
u€ Zi, ||ull=px 4

Besides, for each k € N, (3.24) enables us to obtain
oa(u) > =2lpll, YA € [1,2] and u € Z; with [Jul] < pg.

Therefore,

=2l ph < inf ea(u) <0, VA e[1,2] and k € N.
u€ Z, ||lull<py

Since I, — 0, pr, — 0T, as k — oo, we find

dr () := inf ox(u) — 0 as k — oo uniformly for A € [1,2].
u€ Z, [|lull<pr

Lemma 3.5 Let (H6) holds. Then for the sequence {pj}ren obtained in Lemma 2.5, there exists

0 < r, < pg for each k € N such that

b(A\):=  max  py(u) <0, VA€ [1,2],k €N,

UE Yk, |l ull=rs
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where Yy, := @?:1 X, =span{eq,...,ex}.
Proof. Note Y}, is finite dimensional for all £ € N. Then by (3.15), there exists a constant e, > 0

such that

meas(A,F) > er, Yu € Y3\ {0}, (3.25)

where A := {|u|* > ex||u||*}, Vk € N and u € Y;\{0}. Combining this, we have

1 1
otw) < gl = [ furav < Sl - [ afulrav
) @ 1%’“ , (3.26)
< gl = cxllull - meas(A4) < 2 ull? — Elhull <~ lul?

_2
PP

for all uw € Y, with [Ju|| <e;7". If we take
0<r < min{pk,si’_“},Vk €N,

(3.26) leads to
2
be(\) := max  ox(u) < —% <0, VAe[1,2,keN.

€Y, [[ull=rk
Proof of Theorem 3.4 Clearly, ¢, (u) maps bounded sets to bounded sets uniformly for A\ € [1, 2]
and @y (—u) = @x(u). Thus (T1) of Lemma 2.6 holds. Lemma 3.3-Lemma 3.5 imply (T2) and (T3)
of Lemma 2.6 are satisfied. Therefore, by Lemma 2.6, for each k € N, there exists A, — 1,ux, € Y,

such that

<p')\n|yn(u>\n) =0, ¢x, (ur,) — cx € [dr(2),br(1)] as n — oo. (3.27)

We claim {uy, } obtained in (3.27) has a strong convergent subsequence in X . For the sake of notational

simplicity, in what follows, we always set u, = uy, . Indeed,
HunH2 =205, (un) +2X, | |uptdV < Co + 4”“”;: < Co+ 47—5”1‘”#
Q

for some Cy > 0. This implies {uy} is bounded in X since p € (1,2). Next, We show {u,} has a

strong convergent subsequence in X. Consequently, without loss of generality, we may assume
Up — Ug, AS N — 00 (3.28)
for some ug € X. In view of Lemma 2.1, u,, — ug in L*(Q2). By (2.6) and (3.14), we find

n%fww:wgwmfﬁw@mfw@+4uwwm—ﬂmm%fwmv

It is clear that

(@5, (un) — @1 (w), up — ug) — 0, as n — oo.
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On the other hand, Holder inequality and u,, — ug in L*(€2) enable us to find

/ Ounf (1) — (10)) (i — )V < g / Ounltan P71 + oY)t — g AV
Q

Q
1
=
[ty — upl*dV ]  — 0, as n — oo.
Q

Nowadays, from the last assertion of Lemma 2.6, we know ¢ = (1 has infinitely many nontrivial

p—1

nt po1
w[z ([wpav) ™+ ([ wav)
Q Q

Hence u,, — ug in X. Therefore, the claim above is true.

critical points. Therefore, (1.1) has infinitely many nontrivial solutions.
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