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Abstract

We correct a recent result concerning the fractional derivative at extreme points. We

then establish new results for the Caputo and Riemann-Liouville fractional derivatives

at extreme points.
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1 Introduction

In recent years several authors have discussed the existence and uniqueness results for wide
classes of fractional differential equations [1, 2, 3, 4, 6, 7, 9]. The techniques implemented
are mainly fixed point theorems, maximum principle and the method of lower and upper
solutions. In this paper we correct a result obtained in [9] and obtain new results concerning
the fractional derivatives at extreme points. These results will be of interest for many
researchers, especially for those who are working in extending the method of lower and
upper solutions to fractional boundary value problems [1, 7]. In the following we present
some definitions and main results concerning the Caputo and Riemann-Liouville fractional
derivatives.

Definition 1.1. Let f ∈ C[0, 1], δ ≥ 0, and Γ is the Euler gamma function. The left

Riemann-Liouville fractional integral is defined by

Iδf(t) =

{

1
Γ(δ)

∫

t

0
(t − s)δ−1f(s)ds, δ > 0,

f(t), δ = 0.
(1.1)

Definition 1.2. Let f ∈ Cn[0, 1], the left Caputo fractional derivative is defined by

Dδ

Cf(t) = In−δ
dn

dtn
f(t) =

{

1
Γ(n−δ)

∫

t

0
(t − s)n−δ−1f (n)(s)ds, n − 1 < δ < n ∈ Z+,

f (n)(t), δ = n ∈ Z+.

Definition 1.3. Let f ∈ Cn[0, 1], the left Riemann-Liouville fractional derivative is defined

by

Dδ

Rf(t) =
dn

dtn
In−δf(t) =

{

1
Γ(n−δ)

dn

dtn

∫

t

0
(t − s)n−δ−1f(s)ds, n − 1 < δ < n ∈ Z+,

f (n)(t), δ = n ∈ Z+.
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It is well-known that if f(0) = f ′(0) = · · · = f (n−1)(0) = 0, then Dδ
C
f(t) = Dδ

R
f(t).

In general the relation between the Caputo and Riemann-Liouville fractional derivatives is
given by [5, 8]

Dδ

C
f(t) = Dδ

R

(

f(t) −
n−1
∑

k=0

tk

k!
f (k)(0)

)

, (1.2)

where

Dδ

R
tk =

Γ(k + 1)

Γ(k − δ + 1)
tk−δ. (1.3)

2 Main Results

We first show that the following result claimed in [9] is not correct. The following is claimed
as Theorem 2.2 of [9].
• Let a function f ∈ C2(0, 1) ∩ C[0, 1], attain its minimum over the interval [0, 1] at the

point t0 ∈ (0, 1]. Then Dδ

C
f(t0) ≥ 0, for all 1 < δ ≤ 2.

As a counter example we consider f(t) = t(t− 1
2
)(t−1), 0 ≤ t ≤ 1. Direct calculations imply

that f(t) has absolute minimum value at t0 = 3+
√

3
6

< 1. For 1 < δ < 2, we have

Dδ

Ct3 =
Γ(4)

Γ(4 − δ)
t3−δ, Dδ

Ct2 =
Γ(3)

Γ(3 − δ)
t2−δ and Dδ

Ct = 0.

Thus,

D1.1
C f(t0) =

(3 +
√

3)1.9

60.9Γ(2.9)
− 30.1(3 +

√
3)0.9

20.9Γ(1.9)
= −0.4277 · · · < 0,

which contradicts the result in Theorem 2.2 of [9]. We correct the above result by imposing
more conditions on f . We have

Theorem 2.1. Let f ∈ C2[0, 1] attain its minimum at t0 ∈ (0, 1), then

Dδ

Cf(t0) ≥
t−δ

0

Γ(2 − δ)

[

(δ − 1)(f(0) − f(t0)) − t0f
′(0)

]

, for all 1 < δ < 2. (2.1)

Proof. We define the auxiliary function h(t) = f(t)− f(t0), t ∈ [0, 1]. Then h(t) satisfies the
following in [0, 1]

h(t) ≥ 0, h(t0) = h′(t0) = 0, h′′(t0) ≥ 0 and Dδ

C
h(t) = Dδ

C
f(t).

Integration by parts of

Dδ

C
h(t0) =

1

Γ(2 − δ)

∫

t0

0

(t0 − s)1−δh′′(s)ds,

yields

Γ(2 − δ)Dδ

C
h(t0) = (t0 − s)1−δh′(s)|t00 − (δ − 1)

∫

t0

0

(t0 − s)−δh′(s)ds. (2.2)

Since h′(t0) = 0 and h′′(t0) is bounded, there exists µ1(t) ∈ C[0, 1] such that
h′(t) = (t0 − t)µ1(t). We have for 1 < δ < 2

lim
t→t0

h′(t)

(t0 − t)δ−1
= lim

t→t0

(t0 − t)µ1(t)

(t0 − t)δ−1
= lim

t→t0

(t0 − t)2−δµ1(t) = 0.
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Hence

Γ(2 − δ)Dδ

C
h(t0) = −t1−δ

0 h′(0) − (δ − 1)

∫

t0

0

(t0 − s)−δh′(s)ds. (2.3)

Since h(t0) = h′(t0) = 0 and h′′(t0) is bounded, there exists µ2(t) ∈ C[0, 1] such that
h(t) = (t0 − t)2µ2(t). Thus

∫

t0

0

(t0 − s)−δ−1h(s)ds =

∫

t0

0

(t0 − s)−δ+1µ2(s)ds,

is bounded and

lim
t→t0

h(t)

(t0 − t)δ
= lim

t→t0

(t0 − t)2µ2(t)

(t0 − t)δ
= lim

t→t0

(t0 − t)2−δµ2(t) = 0.

Integrating Eq. (2.3) by parts and using the above result together with h(t) ≥ 0 on [0, 1]
yields

Γ(2 − δ)Dδ

C
h(t0) = −t1−δ

0 h′(0) − (δ − 1)

[

(t0 − s)−δh(s)|t00 − δ

∫

t0

0

(t0 − s)−δ−1h(s)ds

]

,

= −t1−δ

0 h′(0) − (δ − 1)

[

− t−δ

0 h(0) − δ

∫

t0

0

(t0 − s)−δ−1h(s)ds

]

= −t1−δ

0 h′(0) + (δ − 1)t−δ

0 h(0) + δ(δ − 1)

∫

t0

0

(t0 − s)−δ−1h(s)ds

≥ −t1−δ

0 h′(0) + (δ − 1)t−δ

0 h(0) = −t1−δ

0 f ′(0) + (δ − 1)t−δ

0 (f(0) − f(t0))

and the result is obtained.

Corollary 2.1. Let f ∈ C2[0, 1] attain its minimum at t0 ∈ (0, 1), and f ′(0) ≤ 0. Then

Dδ
C
f(t0) ≥ 0, for all 1 < δ < 2.

Proof. By Theorem 2.1 there holds Dδ
C
f(t0) ≥ 1

Γ(2−δ)

[

(δ − 1)t−δ

0 (f(0) − f(t0)) − t1−δ

0 f ′(0)

]

.

Since f(t0) ≤ f(0), t0 > 0 and f ′(0) ≤ 0, we obtain Dδ
C
f(t0) ≥ 0.

The following result is obtained as Theorem 1 of [7].
• Let a function f ∈ W 1

t
((0, T )) ∩ C([0, T ]) attain its maximum over the interval [0, T ] at

the point τ = t0, t0 ∈ (0, T ]. Then

Dδ

C
f(t0) ≥ 0, 0 < δ < 1,

where W 1
t ((0, T )) denotes the space of functions f ∈ C1((0, T ]) such that f ′ ∈ L((0, T )) and

L((0, T )) being the set of functions Lebesgue integrable on (0, T ).
By substituting g = −f , we have the following result.
• Let a function g ∈ W 1

t ((0, T ))∩C([0, T ]) attain its minimum over the interval [0, T ] at the

point τ = t0, t0 ∈ (0, T ]. Then Dδ
C
g(t0) ≤ 0, 0 < δ < 1.

The following result is a simple generalization to the above one for t ∈ (0, 1).

Theorem 2.2. Let f ∈ C1[0, 1] attain its minimum at t0 ∈ (0, 1), then

Dδ

C
f(t0) ≤

t−δ

0

Γ(1 − δ)
[f(t0) − f(0)] ≤ 0, for all 0 < δ < 1. (2.4)
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Proof. We define the auxiliary function h(t) = f(t) − f(t0), t ∈ [0, 1]. Then h(t) ≥ 0, on
[0, 1], h(t0) = h′(t0) = 0 and h(t) = (t0 − t)µ3(t) for some µ3(t) ∈ C[0, 1]. Integration by
parts of

Dδ

C
h(t0) =

1

Γ(1 − δ)

∫

t0

0

(t0 − s)−δh′(s)ds,

yields

Γ(1 − δ)Dδ

C
h(t0) = (t0 − s)−δh(s)|t00 − δ

∫

t0

0

(t0 − s)−δ−1h(s)ds. (2.5)

For 0 < δ < 1, we have
∫

t0

0
(t0 − s)−δ−1h(s)ds =

∫

t0

0
(t0 − s)−δµ3(s)ds is bounded and

lim
t→t0

h(t)

(t0 − t)δ
= lim

t→t0

(t0 − t)1−δµ3(t) = 0.

Thus

Γ(1 − δ)Dδ

C
h(t0) = −t−δ

0 h(0) − δ

∫

t0

0

(t0 − s)−δ−1h(s)ds ≤ −t−δ

0 h(0) = −t−δ

0 (f(0) − f(t0)),

and the result is obtained.
In the following we present analogous results concerning the Riemann-Liouville fractional
derivative.

Theorem 2.3. Let f ∈ C2[0, 1] attain its minimum at t0 ∈ (0, 1), then

Dδ

R
f(t0) ≥

t−δ

0

Γ(2 − δ)
(δ − 1)f(t0) for all 1 < δ < 2. (2.6)

Moreover, if f(t) ≥ 0 in [0, 1], then Dδ
R
f(t0) ≥ 0.

Proof. From Eq.’s (1.2)-(1.3) we have for 1 < δ < 2

Dδ

Rf(t) =
t−δ

Γ(2 − δ)

[

(1 − δ)f(0) + tf ′(0)

]

+ Dδ

Cf(t).

Applying the result in Eq. (2.1) yields

Dδ

R
f(t0) ≥ t−δ

0

Γ(2 − δ)

[

(1 − δ)f(0) + tf ′(0)

]

+
t−δ

0

Γ(2 − δ)

[

(δ − 1)(f(0) − f(t0)) − t0f
′(0)

]

=
t−δ

0

Γ(2 − δ)
[(δ − 1)f(t0)].

If f(t) ≥ 0 then f(t0) ≥ 0 and finally Dδ
R
f(t0) ≥ 0.

Theorem 2.4. Let f ∈ C1[0, 1] attain its minimum at t0 ∈ (0, 1), then

Dδ

R
f(t0) ≤

t−δ

0

Γ(1 − δ)
f(t0), for all 0 < δ < 1. (2.7)

Moreover, if f(t0) ≤ 0, then Dδ
R
f(t0) ≤ 0.
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Proof. From Eq.’s (1.2)-(1.3) we have for 0 < δ < 1

Dδ

R
f(t) =

t−δ

Γ(1 − δ)
f(0) + Dδ

C
f(t).

Using the result in Eq. (2.4) we obtain

Dδ

Rf(t0) ≤
t−δ

0

Γ(1 − δ)
f(0) − t−δ

0

Γ(1 − δ)
(f(0) − f(t0)) =

t−δ

0

Γ(1 − δ)
f(t0),

and Dδ
R
f(t0) ≤ 0 provided f(t0) ≤ 0.

Remark 2.1. Analogous results for the fractional derivatives at absolute maximum points

are obtained by applying the above results on −f(t).
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