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Abstract

We investigate in this article the null controllability for the semilinear heat

operator u′ − ∆u + f(u) in a domain which boundary is moving with the time

t.
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1. Introduction and Main Result

In this article we consider semilinear parabolic problems in domains which are

moving with the time t. Given a time T > 0, the state equation is posed in an open

set Q̂ of R
n × (0, T ) contained in R

n+1 = R
n
x × Rt . The open set Q̂ is the union of

open sets Ωt of R
n, for 0 < t < T , which are images of a reference domain Ω0 by a

diffeomorphism τt : Ω0 → Ωt .

We identify Ω0 to a bounded open set Ω of R
n and its points are represented by

y = (y1, y2, . . . , yn) and those of Ωt by x = (x1, x2, . . . , xn) are such that x = τt(y).

We also employ the notation τ(y, t) instead of τt(y).

Thus, the noncylindrical domain Q̂ of R
n+1 is defined by

Q̂ =
⋃

0<t<T

{Ωt × {t}}.

The boundary of Ωt is represented by Γt and the lateral boundary of Q̂, denoted by

Σ̂, is given by

Σ̂ =
⋃

0<t<T

{Γt × {t}}.

Let Q be the cylinder

Q = Ω × (0, T ),

Ω the reference domain. We have the natural diffeomorphism between Q and Q̂

given by

(y, t) ∈ Q→ (x, t) ∈ Q̂, (x, t) = (τt(y), t) = (τ(y, t), t).

We will develope the article under the following assumptions.

(A1) For all 0 ≤ t ≤ T , τt is a C2-diffeomorphism from Ω to Ωt .

(A2) τ(y, t) ∈ C0([0, T ];C2(Ω));
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We assume Ω ⊂ R
n bounded and of class C2. It could be Lipschitz continuous

and unbounded.

In this article we will work with the following state equation

(1.1)

∣∣∣∣∣∣∣∣∣∣

u′ − ∆u+ f(u) = h(x, t)χ
q̂

in Q̂

y = 0 on Σ̂

u(x, 0) = u0(x) in Ω.

In (1.1) we have u = u(x, t), u′ =
∂u

∂t
; ∆ is the Laplace’s operator in R

n;

q̂ is an open, non-empty, subset of Q̂. We also denote by wt the cross section of q̂

at any 0 < t < T ; χ
q̂

the characteristic function of q̂. The function h(x, t) is the

control that acts on the state u(x, t) localized in q̂. The nonlinear function f is real

and globally Lipschitz such that f(0) = 0. This means that there exists a constant

K0 , called Lipschitz constant, such that

(1.2) |f(ξ) − f(η)| ≤ K0|ξ − η|

for all ξ, η ∈ R.

As we will see later, if u0 ∈ L2(Ω), h ∈ L2(Q̂) the system (1.1) has a unique

solution

u ∈ C0([0, T ];L2(Ωt)) ∩ L
2(0, T ;H1

0(Ωt)).

The null controllability problem for (1.1) can be formulated as follows: Give

T > 0 and u0 ∈ L2(Ω), to find a controll h ∈ L2(Q̂) such that the solution u = u(x, t)

of (1.1) satisfies the conditions:

• u(x, T ) = 0 for all x ∈ ΩT ,(1.3)

• |h|
L2( bQ)

≤ c|u0|
L2(Ω)

, for all u0 ∈ L2(Ω).(1.4)

EJQTDE, 2003 No. 16, p. 3



There is a large literature on the null controllability for heat equations in cylindri-

cal domains. See for instance, and the bibliography therein, Lions [20,21,22], Fabre-

Puel-Zuazua [12], Fernandez-Cara and Zuazua [14], Cabanillas-Menezes-Zuazua [4],

Zuazua [38]. In the context of noncylindrical domain, Limaco-Medeiros-Zuazua [17],

proved null controllability for linear heat equation.

The main result of the present paper is the following:

Theorem 1.1. Assume f is C1 and satisfies (1.2) with f(0) = 0. Then, for all T > 0

and for every u0 ∈ L2(Ω), there exists h ∈ L2(Q̂) such that the solution u = u(x, t) of

(1.1) satisfies (1.3). Moreover, (1.4) holds for a suitable constant C > 0 independent

of u0. In other words, system (1.1) is null controllable for T > 0.

The methodology of the proof of the Theorem 1.1 is based in the fixed point

method, see Zuazua [39,40]. There is however a new difficulty related to the fact

that Q̂ is noncylindrical. To set up this point we employ the idea contained in [27].

The first step on the fixed point method is to study the null controll for the linearized

system. This problem is reduced, by duality, to obtain a observability inequality

for the adjoint system. This is get as an application of Carlemann inequalities as in

Imanuvilov-Yamamoto [17].

This work is organized as follows: Section 2 is devoted to prove the null con-

trollability for the linearized system. In Section 3 we prove Theorem 1.1 by a fixed

point method.

To close this section we mention some basic references on the analysis of Par-

tial Differential Equations in noncylindrical domains. Among many references we

mention the following: Lions [19]; Cooper and Bardos [9]; Medeiros [6]; Inoue

[18]; Rabello [33]; Nakao and Narazaki [34], for wave equations. Bernardi, Bon-

fanti and Lutteroti [2], Miranda, Medeiros [9] for Schrödinger equations; Cheng-He
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and Ling-Hsiano [7] for Euler equation; Miranda and Limaco [33] for Navier-Stokes

equations; Chen and Frid [6] for hyperbolic systems of conservation law. Note

that in [29] and [30] they considered τt(y) = K(t)y. In [2] the authors considered

τt(y) = K(t)y + h(t), h(t) a vector of R
n.

2. Analysis of the Linear Problem

The main result of this article will be proved in Section 3 by means of a fixed

point argument. As an step preliminary we need to analyse the null controllability

of the following linearized system:

(2.1)

∣∣∣∣∣∣∣∣∣∣

u′ − ∆u+ a(x, t)u = h(x, t) in Q̂

u = 0 on Σ̂

u(x, 0) = u0 in Ω,

where the potential is assumed to be in L∞(Q̂).

First of all we study the existence and uniqueness of solution of the system (2.1).

2.1 Strong and Weak Solutions

We distinguish three classes of solutions for the system (2.1), as follows: strong,

weak and ultra weak solutions defined by transposition.

Definition 2.1. a) A real function u = u(x, t) defined in Q̂ is said to be a strong

solution for the boundary value problem (2.1) if

(2.2) u ∈ C0([0, T ];H1
0(Ωt)) ∩ L

2(0, T ;H2(Ωt) ∩H
1
0 (Ωt)) ∩H

1(0, T ;L2(Ωt))

and the three conditions in (2.1) are satisfied almost everywhere in their correspond-

ing domains.
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b) We say that the function u is a weak solution of (2.1) if

(2.3) u ∈ C0([0, T ];L2(Ωt)) ∩ L
2(0, T ;H1

0(Ωt))

and

(2.4)

∫ T

0

∫

Ωt

uϕ′ dxdt+

∫ T

0

∫

Ω

u0(x)ϕ(x, 0) dxds+

+

∫ T

0

∫

Ωt

∇xu∇xϕdxdt =

∫ T

0

∫

Ωt

hϕ dxdt

for all ϕ ∈ L2(0, T ;H1
0(Ωt)) ∩ C

1([0, T ];L2(Ωt)) such that ϕ(T ) = 0.

Theorem 2.1. Assume that the noncylindrical domain Q̂ satisfies the conditions

of the Section 1. Then, if u0 ∈ H1
0 (Ω), a(x, t) ∈ L∞(Q̂) and h ∈ L1(0, T ;L2(Ωt)),

the problem (2.1) has a unique strong solution.

Moreover, there exists a positive constant C (depending on Q̂ but independent

of u0 and h) such that

(2.5) ||u||
L∞(0,T ;H1

0 (Ωt))
+ |u′|

L2( bQ)
+ |u|

L2(0,T ;L2(Ωt))
≤ C

(
||u0||

H1
0 (Ω)

+ |h|
L2( bQ)

)

and for f ∈ L2(0, T ;H1
0(Ωt)),

(2.6) ||u||
L∞(0,T ;H1

0 (Ωt))
+ |u|

L2(0,T ;H2(Ωt)))
≤ C

(
||u0||

H1
0 (Ω)

+ |h|
L2(0,T ;H1

0 (Ωt))

)

Proof: As in [27] we employ the argument consisting in transforming the heat equa-

tion in the noncylindrical domain Q̂, into a variable coefficients parabolic equation

in the reference cylinder Q by means of the diffeomorphism (x, t) = (τt(y), t) =

(τ(y, t), t) for x ∈ Ωt , y ∈ Ω and 0 ≤ t ≤ T , i.e., for (x, t) ∈ Q̂ and (y, t) ∈ Q.

In fact we set

(2.7) v(y, t) = u(τt(y), t) = u(τ(y, t), t), for y ∈ Ω, 0 ≤ t ≤ T,
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or equivalently

(2.8) u(x, t) = v(τ−1
t (x), t) = v(ρ(x, t), t), x ∈ Ωt , 0 ≤ t ≤ T.

Here and in the following τ−1
t denotes the inverse of τt , which, according to

assumption (A1) is a C2 map from Ωt to Ω, for all 0 ≤ t ≤ T . This map will be

denoted by ρt . We shall also employ the notation ρ(x, t) = ρt(x), yj = ρj(x, t),

1 ≤ j ≤ n.

We obtain,

∂

∂t
u(x, t) = u′(x, t) =

∂v

∂t
(ρ(x, t), t) + ∇y v(ρ(x, t), t) ·

∂

∂t
ρ(x, t),

where · is the scalar product in R
n. In other words,

∂

∂t
u(x, t) = u′(x, t) =

∂v

∂t
(y, t) + ∇y v(y, t) · b̃(y, t)

where b̃(y, t) denotes a vector field

(2.9) b̃(y, t) =
∂

∂t
ρ(x, t).

Note that according to the assumption (A2),

(2.10) b̃ ∈ C1(Ω).

On the other hand,

∂

∂xi

u(x, t) =
∂

∂yj

v(y, t)
∂yj

∂xi

= ∇y v(y, t) ·
∂

∂xi

ρ(x, t),

and
∂2

∂x2
i

u(x, t) =
∂2

∂yj∂yk
v(y, t)

∂yj

∂xi

∂yk

∂xi
+

∂

∂yj
v(y, t)

∂2yj

∂x2
i

or

∆u(x, t) =
n∑

i=1

∂2v

∂yj∂yk

∂ρj

∂xi

∂ρk

∂xi

+
n∑

i=1

∂v

∂yj

∂2ρj

∂x2
i

·
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Thus by the mapping x = τ−1(y) that takes Q̂ into the cylinder Q we transform

(2.1) in an equivalent problem (2.11) given by

(2.11)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂v

∂t
−

n∑

i=1

∂2v

∂yj∂yk

∂ρj

∂xi

∂ρk

∂xi
−

n∑

i=1

∂v

∂yj
∆ρj +

+ b̃ · ∇yv + a(y, t)v = h(y, t) in Q

v = 0 on Σ, lateral boundary of Q

v(y, 0) = u0(y) in Ω

Analysis of the operator A(t)v = −
n∑

i=1

∂2v

∂yj∂yk

∂ρj

∂xi

∂ρk

∂xi

For v, ϕ ∈ L2(0, T ;H1
0(Ω)) and Gauss’ Lemma we obtain the bilinear form

a(t, v, ϕ) defined by

a(t, v, ϕ) = (A(t)v, ϕ) =

n∑

i=1

∫

Ω

∂v

∂yj

∂ϕ

∂yk

∂ρj

∂xi

∂ρk

∂xi
dx.

This bilinear form is bounded because ρ ∈ C2(−Ω) by assumption (A2). Let us

prove that it is H1
0 (Ω)-coercive. In fact, set ϕ = v ∈ H1

0 (Ω). We have

a(t, v, v) =

n∑

i=1

∫

Ω

(
∂v

∂yk

∂ρk

∂xi

) (
∂v

∂yj

∂ρj

∂xi

)
dy =

=
n∑

i=1

∫

Ω

n∑

k=1

(
∂v

∂yk

∂ρk

∂xi

)2

dy.

Note that

(
∂v

∂yk

∂ρk

∂xi

)

1≤k≤n

is a vector of R
n. Let us consider the n× n matrix M

given by

M =

(
∂ρk

∂xi

)

1≤i,k≤n

and the vector ξ of R
n defined by

ξ =

(
∂v

∂yk

)

1≤k≤n
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We observe that
n∑

i=1

n∑

k=1

(
∂v

∂yk

∂ρk

∂xi

)2

= ||Mξ||2Rn .

But, by assumption, M is bounded and invertible what comes from assumptions on

x = τt(y). Then,

||M−1ξ||2Rn ≤ C0||ξ||
2
Rn , C0 > 0

or

||M ξ||2Rn ≥
1

C0
||ξ||Rn .

Thus, returning to the quadratic form, we obtain

a(t, v, v) =

∫

Ω

||M ξ||2Rn dy ≥
1

C0

∫

Ω

|ξ|2Rn dy

or

a(t, v, v) ≥
1

C0

||v||2
H1

0(Ω)
.

In (2.11) set

b(y, t) = b̃(y, t) − ∆ρ(y, t), b ∈ [L∞(Q)]n.

Thus, from (2.11) we obtain for (2.1) in Q the following system

(2.12)

∣∣∣∣∣∣∣∣∣∣

v′ + A(t)v + b · ∇yv + a(y, t)v = h(y, t) in Q

v = 0 on Σ

v(y, 0) = u0(y) in Ω

Note that (2.12) is a linear parabolic system with variable coefficients in a cylin-

der Q = Ω × (0, T ), Ω a regular bounded open set of R
n. Since A(t) is co-

ercive the boundary value problem (2.12) is a classical problem studies in Lions-

Magenes [24]. If we take u0 ∈ H1
0 (Ω) and h ∈ L2(0, T ;L2(Ω)) then (2.12) has
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strong solution v ∈ C0([0, T ];H1
0(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ H1(0, T ;L2(Ω)). Oth-

erwise, if u0 ∈ L2(Ω) and h ∈ L2(0, T ;L2(Ω)), then (2.14) has a weak solution

u ∈ C0([0, T ];L2(Ω) ∩ L2(0, T ;H1
0(Ω)). In both cases we have uniqueness.

From the assumption (A1) and (A2) the transformation y → x from Q in Q̂

maps the space C0([0, T ];H1
0(Ω))∩L2(0, T ;H2(Ω))∩H1(0, T ;L2(Ω)) into the space

C0([0, T ];H1
0(Ωt)) ∩ L

2(0, T ;L2(Ωt)) ∩H
1(0, T ;L2(Ωt)).

To prove the estimate (2.5) we first establish the classical energy estimate. In

fact, multiplying (2.1) by u integrating for x ∈ Ωt and 0 < t < T , we get

(2.13)

∫ t

0

∫

Ωt

u′u dxds+

∫ t

0

|∇u(s)|2
L2(Ωs)

ds =

= −

∫ t

0

∫

Ωt

au2 dxds+

∫ t

0

∫

Ωt

hu dxds ≤

≤ ||a||
L∞( bQ)

∫ t

0

∫

Ω

u2 dxds+ C(ε)|h|2
L2(0,T ;H−1(Ωt))

+

+ ε|u|2
L2(0,T ;H1

0 (Ωt))

Note that since u vanishes on the lateral boundary Σ̂ of Q̂ we have (cf. Duvaut

[11], p.26):

(2.14)

∫ t

0

∫

Ωt

uu′ dxdt =
1

2

∫ t

0

∫

Ωt

∂

∂t
|u(x, t)|2 dxdt =

=
1

2

[∫

Ωt

u2(x, t) dx−

∫

Ω

(u0(x))2 dx

]

As a consequence of the assumptions (A1) and (A2) it follows that the Poincaré

inequality is satisfied, uniformly, in the domain Ωt for all 0 ≤ t ≤ T . Thus, in view

of (2.13) and (2.14) we have

(2.15)

1

2

∫ t

0

∫

Ωt

∂

∂t
|u(x, t)|2 dxdt +

1

2

∫ t

0

|∇u(s)|2
L2(Ωs)

ds ≤

≤ c|h|2
L2(0,T ;H−1(Ωt))

+ ||a||
L∞( bQ)

∫ t

0

∫

Ωt

u2 dxdt
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Then,

(2.16)

∫

Ωt

u2 dx ≤ C
(
|u0|2

L2(Ω)
+ |h|2

L2(0,T ;H−1(Ωt))

)

By (2.14), (2.15) and (2.16) we have

(2.17) |u(t)|2
L2(Ωt)

+
1

2

∫ t

0

|∇u(s)|2
L2(Ωs)

ds ≤ C
[
|u0|2

L2(Ω)
+ |h|2

L2(0,T ;H−1(Ωt))

]
,

for a constant C > 0.

In particular, strong solutions satisfies the energy estimate

(2.18) |u|2
L2(0,T ;L2(Ωt))

+ |u|2
L2(0,T ;H1

0 (Ωt))
≤ C

[
|u0|2

L2(Ω)
+ |h|2

L2(0,T ;H−1(Ωt))

]
,

with C > 0 constant independent of the solution.

Now we multiply (2.1) by −∆u and integrate. We have

(2.19) −

∫

Ωt

u′ ∆u dx+

∫

Ωt

|∆u|2 dx−

∫

Ωt

au∆u dx = −

∫

Ωt

h∆u dx.

Moreover

(2.20) −

∫

Ωt

u′∆u dx =

∫

Ωt

∇u · ∇u′ dx =
d

dt

∫

Ωt

|∇u|2 dx−

∫

Γt

|∇u|2w · nt dσ,

where nt denote the unit outward normal vector to Ωt and w is the velocity field

w =

[
∂τ

∂t

]
ρ(x, t) [cf. Duvaut [11] p.26]. Note that according to the assumption (A1)

and (A2), by uniform (with respect to t) elliptic regularity, classical trace results

and interpolation, [cf. Lions-Magenes [24] p.49], we obtain

(2.21)

∣∣∣∣
∫

Γt

|∇u|2w · nt dσ

∣∣∣∣ ≤ c

∫

Γt

|∇u|2 dσ ≤

≤ cα

[∫

Ωt

|∆u|dx

]α [∫

Ωt

|∇u|2 dx

]1−α

for all α ≥
1

2
·
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Combining (2.19)-(2.21) and by Cauchy-Schwarz’s inequality we deduce that

(2.22)

d

dt

∫

Ωt

|∇u|2 dx ≤ −
1

2

∫

Ωt

|∆u|2 dx+ |∇h|
L2(Ωt)

· |∇u|
L2(Ωt)

+

+ c|∇u|2
L2(Ωt)

+ |a|
L∞( bQ)

|∇u|2
L2(Ωt)

=

= −
1

2

∫

Ωt

|∆u|2 dx+ |∇h|
L2(Ωt)

· |∇u|
L2(Ωt)

+ C|∇u|2
L2(Ωt)

.

Solving this differential inequality we deduce the existence of a constant C such that

(2.23) |u|2
L2(0,T ;H1

0 (Ωt))
+ |u|2

L2(0,T ;H2(Ωt))
≤ C

[
|u0|2

H1
0 (Ω)

+ ||h||
L1(0,1;L2(Ωt))

]
.

A variation of this argument alows also to get

(2.24) ||u||2
L∞(0,T ;H1

0 (Ωt))
+ |u|

L2(0,T ;H2(Ωt))
≤ C

[
|u0|2

H1
0 (Ωt)

+ |h|2
L2( bQ)

]

In fact, to obtain (2.24) instead of (2.23) it is sufficient to estimate the term∫

Ωt

h∆u dx as follows

∫

Ωt

h∆u dx ≤
1

2

∫

Ωt

(|h|2 + |∆u|2)dx.

This complete the proof of the Theorem 2.1.

Remark 2.1 Note that we could also have obtained the above estimates using

existence results for the variable coefficients parabolic equation satisfied by v and

then doing the change of variables x→ y of Q̂ into Q.

Theorem 2.2 Given u0 ∈ L2(Ω) and f ∈ L2(0, T ;H−1(Ωt)), there exists a unique

weak solution of (2.1). Moreover, there exists a constant C > 0 (depending on Q̂

but independent of u0 and h) such that

(2.25) ||u||
L∞(0,T ;L2(Ωt))

+ |∇u|
L2( bQ)

≤ C
[
|u0|

L2(Ω)
+ |h|

L2(0,T ;H−1(Ωt))

]
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A similar argument allows to replace h ∈ L2(0, T ;H−1(Ωt)) by the assumption

h ∈ L1(0, T L2(Ωt)) and to obtain the estimate

(2.26) ||u||
L∞(0,T ;L2(Ωt))

+ |∇u|
L2( bQ)

≤ C
[
|u0|

L2(Ω)
+ ||h||

L1(0,T ;L2(Ωt))

]

Proof: We follow the argument of reference [27]. We proceed by steps.

Step 1 (Existence). Let u0
m ∈ H1

0 (Ω) and hm ∈ L2(Q̂) be a sequence of regularized

initial data and right hand side terms, respectively, such that u0
m → u0 strongly in

H1
0 (Ω), hm → h strongly in L2(0, T ;H−1(Ωt)). Then, for each m ∈ N, let us

consider the unique strong solution um of (2.1) with initial data u0
m and right side

hm . Thus, for any n, k ∈ N we have

(2.27)

∣∣∣∣∣∣∣∣∣∣

(un − uk)
′ − ∆(un − uk) + a(x, t)(un − uk) = hn − hk a.e. in Q̂,

(un − uk) = 0 on Σ̂

(un − uk)(0) = u0
n − u0

k in Ω

By the energy estimate (2.18) we obtain that (um) is a Cauchy sequence in the

space

C0([0, T ];L2(Ωt)) ∩ L
2(0, T ;H1

0(Ωt)).

Thus it converges, as m → ∞, to a limit u ∈ C([0, T ];L2(Ωt)) ∩ L2(0, T ;H1
0(Ωt)).

The limit u is a weak solution of (2.1) satisfying (2.4) and the estimate (2.25). In

fact, um is strong solution for every m ∈ N. Then, multiplying the equation with

um by a test function ϕ and integrating by parts we deduce that um satisfies the

weak formulation (2.4).

The convergence of um to u in the space

C0([0, T ];L2(Ωt)) ∩ L
2(0, T ;H1

0(Ωt))

EJQTDE, 2003 No. 16, p. 13



allows to pass to the limit in the weak formulation to conclude that u satisfy (2.4).

Step 2 (Uniqueness). Assume that the system (2.2) admits two weak solution u

and û satisfying (2.4). Introduce w = u− û. Then, w belongs to C0([0, T ];L2(Ωt))∩

L2(0, T ;H1
0(Ωt)) and satisfies

∫ T

0

∫

Ωt

wϕ′ dxdt +

∫ T

0

∫

Ωt

∇xw · ∇xϕdxdt+

∫ T

0

∫

Ωt

a(x, t)uϕ dxdt = 0

for all test function ϕ. In order to conclude that w = 0, it is sufficient to consider

w = ϕ as a test function. Of course we cannot do it directly since w is not a test

function. It is justified by regularization and cut-off argument.

In this way we complete the proof obtaining the energy estimate for w what

guarantees that

∫ t

0

∫

Ωt

∂

∂t
|w|2 dxdt +

∫ t

0

|∇w(s)|2 ds ≤ ||a||
L∞( bQ)

∫ t

0

∫

Ωt

|w|2 dxdt.

Then w = 0 because w(0) = 0.

Step 3. To prove the estimate (2.26), it suffices to employ in (2.18) the estimate
∣∣∣∣
∫ T

0

∫

Ωt

ρh dxdt

∣∣∣∣ ≤ |h|
L1(0,T ;L2(Ω))

· ||u||
L∞(0,T ;L2(Ωt))

.

2.2 Ultra Weak Solutions by Transposition Method

In this section we address the question of finding solutions u of the boundary

value problem

(2.28)

∣∣∣∣∣∣∣∣∣∣

u′ − ∆u+ a(x, t)u = 0 in Ωt , for 0 < t < T

u = 0 on Γt for 0 < t < T

u(0) = u0 in Ω
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when u0 ∈ H−1(Ω) and a(x, t) ∈ L∞(Q̂).

We employ the transposition method as in Lions-Magenes [23]. First of all we

define what we understand by ultra weak solution by this method.

A function u = u(x, t) is said to be ultra solution of (2.28) or solution by trans-

position if

(2.29) u ∈ C0([0, T ];H−1(Ωt)) ∩ L
2(0, T ;L2(Ωt))

and

(2.30)

∫ T

0

∫

Ωt

u(x, t)h(x, t) dxdt = 〈u0, ϕ(0)〉 for all h ∈ L2(Q̂)

where ϕ is the unique strong solution of the adjoint system

(2.31)

∣∣∣∣∣∣∣∣∣∣

− ϕ′ − ∆ϕ + aϕ = h in Ωt for 0 < t < T

ϕ = 0 on Γt for 0 < t < T

ϕ(x, T ) = 0 in Ω

Here, 〈 , 〉 denotes the duality passing between H−1(Ω) and H1
0 (Ω).

According to Theorem 2.1, the system (2.31) admits a unique strong solution ϕ.

Thus the definition of ultra weak solution makes sense.

Note that the strong solution ϕ satisfies the following estimates:

(2.32) ||ϕ||
L∞(0,T ;H1

0 (Ωt))
≤ c|h|

L2( bQ)

and

(2.33) ||ϕ||
L∞(0,T ;H1

0 (Ωt))
≤ c||h||

L1(0,T ;H1
0 (Ωt))

These estimates were proved in Theorem 2.1. Indeed, it is sufficient to make the

change of variables t→ T − t to reduce the system (2.31) to (2.1).
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By Riesz-Fréchet theorem we deduce that there exists a unique ultra weak solu-

tion in the class (2.29). More precisely, in view of (2.32) we deduce the existence of

unique solution u ∈ L2(Q̂) and the second estimate (2.33) provides the aditional reg-

ularity u ∈ L∞(0, T ;H−1(Ωt)). Moreover, one deduces the existence of a constant,

independent of u0, such that

(2.34) ||u||
L∞(0,T ;H−1(Ωt))

+ |u|
L2( bQ)

≤ c|u0|
H−1(Ω)

.

In order to show that u ∈ C0([0, T ];H−1(Ωt)) we use a classical density argument.

When u0 is smooth enough, u is a weak or strong solution, therefore u is continuous

with respect to time with values in H−1(Ωt). According to (2.34), by density, we

deduce that u ∈ C0([0, T ];H−1(Ωt)) whenever u0 ∈ H−1(Ω).

To complete this section, we observe that when u0 is smooth so that exist weak

or strong solution then they are also ultra weak solutions. It is sufficient to integrate

by parts in the strong formulation of (2.1) or consider the weak formulation.

2.3 Observability of the Linearized Adjoint System

As we said before we employ a fixed point argument in order to prove our results

in the semilinear case. However, first we analyse the null controllability for the

following linearized system:

(2.35)

∣∣∣∣∣∣∣∣∣∣

u′ − ∆u+ a(x, t)u = h(x, t)χ
q̂

in Q̂

u = 0 on Σ̂

u(x, 0) = u0(x) in Ω,

where the potential a = a(x, t) is assumed to be in L∞(Q̂). Remember we denote

by ût the cross section of q̂ at any 0 < t < T .

As we know, the null controllability of (2.35) is equivalent to a suitable observ-

ability property for the adjoint system of (2.35).
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Thus, let us consider the adjoint system

(2.36)

∣∣∣∣∣∣∣∣∣∣

− ϕ′ − ∆ϕ+ aϕ = 0 in Q̂

ϕ = 0 on Σ̂

ϕ(T ) = ϕ0 in ΩT

for which we have the following observability property.

Proposition 2.1. For all T > 0 and R > 0 there exists a positive constant C > 0

such that

(2.37) |ϕ(0)|2
L2(Ω)

≤ C

∫

q̂

|ϕ(x, t)|2 dxdt,

for every solution of (2.36) and for any a ∈ L∞(Q̂) such that ||a||
L∞( bQ)

≤ R.

Remark 2.2. The constant C in (2.37) will be referred to as the observability

constant. It depends on Q̂, q̂ the time T and the size R of the potential but does

not depend of the solution ϕ of (2.36).

Proof of the Proposition 2.1: The inequality (2.37) is a consequence of the

results in [17]. In fact, by the change of variables x→ y, from Q̂ into Q, the adjoint

system (2.36) is transformed into a variable coefficient parabolic equation of the

form

(2.38)

∣∣∣∣∣∣∣∣∣∣

− ψ′ + A(t)ψ + b · ∇ψ + aψ = 0 in Q

ψ = 0 in Σ

ψ(T ) = ψ0 ı̀n ΩT

as in (2.12) with h̃ = 0. Thus the coefficient of the principal part A(t), according

to the assumption (A1) and (A2) are of class C1 and a and b are bounded. Then,
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the observability inequalities in [17] guarantee that for every T > 0 and every open

subset q of Q, there exists a constant C > 0 such that

(2.39) |ψ(0)|
L2(Ω)

≤ C

∫

q

|ψ(y, t)|2 dydt.

In particular it is true for q ⊂ Q image of q̂ by x → y. Thus estimate (2.37) for ϕ

is obtained from (2.39) for ψ by the change of variables y → x.

2.4 Approximate Controllability for the Linearized System

From the observability inequality (2.37) the null controllability result for the lin-

earized system can be proved as the limit of an approximate controllability property.

In fact, given u0 ∈ L2(Ω) and δ > 0 we introduce the quadratic functional

(3.40) Jδ(ϕ
0) =

1

2

∫

q̂

ϕ2 dxdt+ δ|ϕ0|
L2(ΩT )

+

∫

Ω

u0ϕ(0) dx,

where ϕ is the solution of (2.36) with initial data ϕ0. The functional Jδ is continuous

and strictly convex in L2(Ωt). Moreover, Jδ is coercive. More precisely, in view of

(2.37) we have

(2.41) lim inf
|ϕ0|

L2(ΩT )→∞

Jδ(ϕ
0)

|ϕ0|L2(ΩT )

≥ δ.

To prove (2.41) we follows the argument used in [27] which we will not repeat here.

Thus Jδ has a unique minimizer in L2(ΩT ). Let us denote it by ϕ̂0,δ. It is

not difficult to prove that the control hδ = ϕ̂δ, where ϕ̂δ is the solution of (2.36)

associated to the minimizer ϕ̂0,δ is such that the solution uδ of (2.1) satisfies

(2.42) |uδ(T )|
L2(ΩT )

≤ δ.

We refer to [12] for the details of the proof.

2.5 Null Controllability of the Linearized System

The null controllability property may be obtained as the limit when δ tends to
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zero of the approximate controllability property above obtained. However, to pass to

the limit we need a uniform bound of the control. To obtain this bound we observe

that, by (2.37),

(2.43) Jδ(ϕ
0) ≥

1

2

∫

q̂

ϕ2 dxdt− C

[∫

q̂

ϕ2 dxdt

]1/2

|u0|
L2(Ω)

,

when C > 0 is independent of δ. On the order hand,

(2.44) Jδ(ϕ̂
0,δ) ≤ Jδ(0) = 0.

Writing (2.43) for ϕ̂0,δ instead of ϕ, with ϕ0,δ the minimizer of Jδ in L2(ΩT ) and

combining it with (2.44), we deduce that

(2.45) |hδ|L2(0,T ;L2(Ωt))
≤ 2C|u0|

L2(Ω)
,

for all δ > 0.

In other words, hδ remains bounded in L2(0, T ;L2(Ωt)) as δ → 0. Note also that

the constant C in (2.45) is independent of ||a||
L∞( bQ)

≤ R.

Extracting a sub net hδ deduce that

(2.46) hδ ⇀ h, as δ → 0, weakly in L2(Q̂),

for some h ∈ L2(Q̂).

We can prove that the limit h is such that the solution u of (2.1) satisfies (1.3).

Moreover, by the lower semicontinuity of the norm with respect to the weak topology

and by (2.46) we deduce that

(2.47) |h|
L2( bQ)

≤ lim inf
δ→0

|hδ|L2( bQ)
≤ 2C|u0|

L2(Ω)
.

By the process we complete the proof of the following result.

Theorem 2.3. Assume that the noncylindrical domain Q̂ satisfies the conditions

fixed in Section 1 and that a(x, t) ∈ L∞(Q̂). Then, for every T > 0 and u0 ∈ L2(Ω).
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there exists h ∈ L2(Q̂) such that the solution of (2.1) satisfies (1.3). Moreover, there

exists a constant C > 0, depending on R > 0, but independent of u0, such that (1.4)

holds for every potential a = a(x, t) in L∞(Q̂) such that ||a||
L2( bQ)

≤ R.

3. Proof of the Main Result

This section is devoted to prove Theorem 1.1. As we said, in the Introduction,

it will be a consequence of Theorem 2.3 above and a fixed point argument.

In order to be self contained we will prove existence result.

Theorem 3.1. Assume that f : R → R is C1 and globally Lipschitz function, such

that f(0) = 0. Let u0 ∈ L2(Ω) and h ∈ L2(Q̂). Then, there exists a unique solution

u ∈ C0([0, T ];L2(Ωt)) ∩ L
2(0, T ;H1

0(Ωt)) of the problem (1.1).

Proof: As in the proof of Theorem 2.1 we transform the problem in a noncylindrical

domain Q̂ into a parabolic problem with variables coefficients in the cylinder Q. In

fact, the change of variables (2.7), equivalently (2.8), transforms (1.1) in

(3.1)

∣∣∣∣∣∣∣∣∣∣

v′ + A(t)v + b · ∇yv + f(v) = h(y, t) for (y, t) ∈ Q

v = 0 for (y, t) ∈ Σ

v(y, 0) = v0(y) for y ∈ Ω.

Then we know that (3.1) admits a unique solution

v ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0(Ω)).

By the change of variable y → x we deduce the existence of a unique solution u of

(1.1) in the class

u ∈ C0([0, T ];L2(Ωt)) ∩ L
2(0, T ;H1

0(Ωt)).
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As in [12] we introduce the nonlinearity

(3.2) g(s) =

∣∣∣∣∣∣∣

f(s)

s
if s 6= 0

f ′(0) if s = 0.

Note that g is uniformly bounded with ||g||
∞

≤ ||f ′||
∞

.

Given any z ∈ L2(Q̂) we consider the linearized system

(3.3)

∣∣∣∣∣∣∣∣∣∣

u′ − ∆u+ g(z)u = hχ
q̂

in Q̂

u = 0 on Σ̂

u(x, 0) = u0(x) in Ω

Observe that (3.3) is a linear systsem in the state u = u(x, t) with potential

a = g(z) ∈ L∞(Q̂), satisfying the condition

(3.4) ||a||
L∞( bQ)

≤ ||f ′||
L∞(R)

.

With this notation, the system (3.3) can be written as

(3.5)

∣∣∣∣∣∣∣∣∣∣

u′ − ∆u+ au = hχ
q̂

in Q̂

u = 0 on Σ̂

u(x, 0) = u0(x) in Ω.

By the subsection 2.4, if δ > 0 is fixed, for each z ∈ L2(Q̂) we can define a control

hδ = hδ(x, t) ∈ L2(Q̂) such that the solution uδ of (3.5) satisfies

(3.6) |uδ(T )|
L2(ΩT )

≤ δ,

see (2.42).

Moreover, for every R > 0 and all potential a = a(x, t) ∈ L∞(Q̂) such that

||a||
L∞( bQ)

≤ R, we have

(3.7) |hδ|L2( bQ)
≤ |u0|

L2(Ω)
,
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for all δ > 0. Therefore, the controls hδ are uniformly bounded (with respect to z

and δ) in L2(Q̂).

This result allows to define a nonlinear mapping

(3.8) Nδ(z) = u, from L2(Q̂) into L2(Q̂)

where u satisfies (3.5) and (3.6).

In this way, the approximate controllability problem for (1.1) is reduced to find

a fixed point for the map Nδ . Indeed, if z ∈ L2(Q̂) is such that Nδ(z) = u = z, u

solution of (3.3) is solution of (1.1) Then the control hδ = hδ(z) is the one we were

looking for, since, by construction, uδ = uδ(z) satisfies (3.6).

As we shall see, the nonlinear map Nδ satisfies the following properties:

(3.9) Nδ is continuous and compact,

(3.10) The range of Nδ is bounded, i.e., exists M > 0 such that |Nδ(z)|L2( bQ)
≤M

for all z ∈ L2(Q̂).

Therefore, by (3.9), (3.10) and Schauder fixed point theorem, it follows that Nδ

is a fixed point.

By the moment, assume that (3.9) and (3.10) are true which proof comes after.

Then if (3.9) and (3.10) are true it follows, by Schauder’s fixed point theorem, that

we have a control hδ in L2(Q̂) such that the solution uδ of

(3.11)

∣∣∣∣∣∣∣∣∣∣

u′δ − ∆uδ + f(uδ) = hδ(x, t)χq̂
in Q̂

uδ = 0 on Σ̂

uδ(x, 0) = u0(x) in Ω.

satisfies

(3.12) |uδ(T )|
L2(ΩT )

≤ δ,
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with an estimate of the form

(3.13) |hδ|L2( bQ)
≤ C|u0|

L2(Ω)
, ,

with C independent of δ.

Passing to the limit as δ → 0, as in Section 2, we deduce the existence of a limit

control h ∈ L2(Q̂) such that the solution u of (1.1) satisfies (1.3) and (1.4).

To complete the argument we need to prove (3.9) and (3.10).

Continuity of NδNδNδ. Assume that zj → z in L2(Q̂). Then the potential aj = g(zj)

is such that

(3.14) aj = g(zj) → a = g(z) in L2(Q̂).

In fact, we have

(3.15) |g(zj)| =
|f(zj)|

|zj|
≤ K0 ,

by hypothesis, K0 the Lipschitz constant of f , then |g(zj)|
p ≤ K

p
0 , 1 ≤ p <∞.

We also have zj → z in L2(Q̂) and consequently a subsequence zj → z a.e. in

Q̂. Then

|g(zj)|
p =

|f(zj)|
p

|zj|P
→

|f(z)|p

|z|p
a.e. in Q̂.

It follows by Lebesgue’s bounded convergence theorem that

g(zj) → g(z) in Lp(Q̂)

for all 1 ≤ p < ∞, that is aj → a in Lp(Q̂). According to Theorem 2.3 the

corresponding control are uniformly bounded, i.e.,

(3.16) |h|
L2( bQ)

≤ C, for all y ≥ 1,
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and, more precisely,

(3.17) hj = ϕ̂j in q̂,

where ϕ̂ solves

(3.18)

∣∣∣∣∣∣∣∣∣∣

− ϕ′ − ∆ϕ+ g(zj)ϕ = 0 in Q̂

ϕ = 0 on Σ̂

ϕ(x, T ) = ϕ̂0
j in ΩT ,

with the initial data ϕ̂0
j that minimizes the correspondent functional Jδ in L2(Q̂).

We also have

(3.19) |ϕ̂0
j |L2(ΩT )

≤ C.

By extracting a subsequence (ϕ̂0
j) we have

(3.20) ϕ̂0
j ⇀ ϕ̂0 weakly in L2(QT ).

From (3.18), (3.14) and (3.15) we have a subsequence still represented by (ϕ̂j) such

that

ϕ̂j ⇀ χ weakly in L2(0, T ;H1
0(Ωt)).

We will prove that χ = ϕ̂ and ϕ̂ solves

∣∣∣∣∣∣∣∣∣∣

− ϕ′ − ∆ϕ+ g(z)ϕ = 0 in Q̂

ϕ = 0 on Σ̂

ϕ(x, T ) = ϕ̂0 in ΩT .

It is sufficient to prove that

g(zj)ϕ̂j ⇀ g(z)ϕ̂ weakly in L2(Ω × (0, T )).
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In fact, with the change of variables y → x from Q̂ into Q the system (3.18) is

transformed in one system in ψj(x, t) = ϕj(y, t) with y = τt(x), as follows:

∣∣∣∣∣∣∣∣∣∣

− ψ′
j + A(t)ψj + ajψj + b · ∇ψj = 0 in Q

ψj = 0 on Σ

ψj(T ) = ψ̂0
j in Ω.

For the parabolic problem for ψj we obtain estimates in the cylinder which permits

to employ compacteness argument of the type Lions-Aubin for ψj . When we change

the variables y → x we obtain subsequence (ϕ̂j) in L2(Q̂) such that

ϕ̂j → ϕ̂ strong L2(Q̂).

This implies that

g(zj)ϕ̂j → g(z)ϕ̂ weakly in L2(Q̂).

Therefore,

hj → h in L2(Q̂)

where

h = ϕ̂ in q̂.

Note that uj and u solve (3.11), what implies, by the estimates, that

uj → u in L2(Q̂),

where u solves

(3.21)

∣∣∣∣∣∣∣∣∣∣

u′ − ∆u+ g(z)u = hχ
q̂

in Q̂

u = 0 on Σ̂

u(x, 0) = u0(x) in Ω
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and

(3.22) |u(T )|
L2(Ω)

≤ δ.

To complete the proof of the continuity of Nδ it is sufficient to check that the

limit ϕ̂0 obtained in (3.20) is the minimizer of the functional Jδ associated to the

limit control problem (3.21) and (3.22).

To do this, given ψ0 ∈ L2(ΩT ) we have to show that

(3.23) Jδ(ϕ̂
0) ≤ Jδ(ψ

0).

In fact, by weak lower continuity, we have

(3.24) Jδ(ϕ̂
0) ≤ lim inf

j→∞
Jδ,j(ϕ̂

0
j).

We also have

Jδ(ψ
0) = lim inf

j→∞
Jδ,j(ψ

0), for all ψ0 ∈ L2(ΩT ).

But,

(3.25) Jδ,j(ϕ̂
0
j) ≤ Jδ,j(ψ

0) for all ψ0 ∈ L2(ΩT ),

because ϕ̂0
j is the minimizer of Jδ,j . Thus, by (3.25) and (3.24) we obtain (3.23).

Compactness of NδNδNδ. The above argument says that when z varies in a bounded

set B of L2(Q̂) implies that u = Nδ(z) lies in a bounded set of L2(Q̂) where u solves

(3.34)

∣∣∣∣∣∣∣∣∣∣

u′ − ∆u = hχ
q̂
− g(z)u in Q̂

u = 0 on Σ̂

u(x, 0) = u0(x) in Ω.
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Set β = hχ
q̂
− g(z)u and (3.34) can be write for u = w+ v, with w fixe solution

of ∣∣∣∣∣∣∣∣∣∣

w′ − ∆w = 0 in Q̂

w = 0 on Σ̂

w(x, 0) = u0(x) in Ω

and v solution of ∣∣∣∣∣∣∣∣∣∣

v′ − ∆v = β in Q̂

v = 0 on Σ̂

v(x, 0) = 0 in Ω

It follows that w is fixe and belongs to

L∞(0, T ;L2(Ωt)) ∩ L
2(0, T ;H1

0(Ωt)).

As β is uniformly bounded in L2(Q̂) we have v varies in a bounded set of L2(0, T ;

H1
0 (Ωt)∩H

2(Ωt)) and v′ varies in a bounded set of L2(0, T ;L2(Ωt)). Thus by Aubin-

Lions compactness result, v varies in a relatively compact set of L2(0, T ;L2(Ωt)). It

then follows that u = w+v, with w in L2(0, T ;L2(Ωt)) varies in a relatively compact

set of L2(0, T ;L2(Ωt)).
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