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Abstract

Abstract. The aim of this paper is to analyze the properties of the solution map to the
Cauchy problem for the wave map equation with a source term, when the target is the hyper-
boloid H? that is embedded in R®. The initial data are in H' x L?. We prove that the solution
map is not uniformly continuous.
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In this paper we study the properties of the solution map (uo,u1,9) — u(t,z) to the Cauchy
problem

(1) ue — A — (Jug]? = |Vaul*)u = g(t, z),

(2) u(0,2) = uo(x) € H'(R?), u(0,2) = uy(z) € L*(R?)
in the case when z € R? and the target is the hyperboloid H? : u? +u3 —u3 = —1, H? — R3. Here
|“t|2 = U%t + Ugt - u%ta

IVoul? = |V ul? + [V, ul?,
\Voul? = ul,, +u3,, —u3,,, i=1,2

More precisely, we prove that the solution map (uo,u1,g) — u(t,z) to the Cauchy problem (1),
(2) is not uniformly continuous.
In [1] is proved that the solution map isn’t uniformly continuous in the case when g = 0.
When we say that the solution map (uo,u1,g) — u(t,z) is uniformly continuous we under-
stand: for every positive constant € there exist positive constants § and R such that for any two
solutions u,v : R x R?* — H? of (1), (2), with right hands g = g1, g = g2 of (1), so that
3)
E0,u—v) <6, |lgillerqoarerey < R lg2lleiqoyrereyy < R llgr — g2llroajre(re)) < R,
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the following inequality holds
(4) E(t,u—v)<e for Vte]|0,1],
where

E(t,u) = |[0cut, )||72r2) + [[Vault, )Lz r2)-

Here we prove
Theorem 1. There exist constant € > O such that for every pair of positive constants 6 and R there
exists smooth solutions u, v: R x R?> — H? of (1), (2), with right hands g = g1, g = g2 of (1), so
that

E0,u—v) <6, |lgillerqorereyy < R lg2lleiqorereyy < R llgr — g2llroajre(r2y) <6,

and

E(l,u—v) >e¢

Proof. We suppose that the solution map (uo,u1,g) — u(t,z) to the Cauchy problem (1), (2) is
uniformly continuous. Then for every € > 0 there exist positive constants § and R such that for any
solution u of (1), (2) with right hand g of (1) for which

(5) E0,u) <6, |lgllror2re) < R

and the inequality

(6) E(t,u) <e

holds for every ¢ € [0, 1] (in this case v = 0, which is solution of (1) with right hand g = 0). Let

u = (u1;u2;u3);

u1 = sinh x cos ¢,

ug = sinh x sin ¢,

uz =coshy, x>0, ¢ €]l0,2n],

(%)

x = Y2, where Y is solution to the Cauchy problem

(7) Yy — AY =0,

(8) Y(0,2) =0, Y3(0,2) = q(),

o) = [ sin(ag)ol)ic
1

(&) = on(§) = H(AN)W,

H(-) is the characteristic function of correspond set, € = x1&; + 2262,

Ay = {£ € R?, & = rcosg, & = rsing, No < |€]| < N, ¢ € (%7 g)},
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N > N, > 0 are fixed such that N, is close enough to N, sin(&n) > a1, cos(|n]) > az, sin(|§]) > a4
for§ € Ay, n€ Ay, where 0 < a1 <1,0<as<1,0<ay <1 (for instance No=1—-p, N=1,p
is close enough to zero), g = (g1, g2, g3),

1 . 2z .
g1 = coshxcosdr (xu — Ax) + ﬁsznhxcosgbl - r—;coshxsznqblleJr

sinh3xcosgq

2x
+—21 coshx Xz, sing: + 5 ;
T T

. 1 . . 2x
g2 = coshxsindy (xe — Ax) + T—Qsmhxsmq’)l + T—;coshxcosqblxml—

2 inh3xsi
201 pshxxsgcosdy + SR XSNOL
r r
g3 = sinhx [,
sinh(2Y?)

_ 2 2
R R

1 = rcospy, ra = rsingy, r > 0. Then the function v which is defined with (x) is a solution to (1).
We can to write the solution of the problem (7), (8) in the form

9) Y(ta) = [ sinule)sin(ag) 22 e
R 4
For the function Y, which is defined with (9), we have the following estimates
(10) Y| r2(r2) < szn(t|z|)%’ - =
_ . ON(T)\2, \ 3 (N1 Nt [a(N - N)
- (/AN (Sm(”x') ] ) dm) = \/g(/N de) —\ 12NN,
. : on(§) Lo
) Yl [ [sntlehsinae) R lde < [ opae

/;/ij%dpdqsgwmx

12) V] < el 5 (N - NE).

T N1 1
(13)  [Wlleae < lleos(tle)o () lozrs) < ( / [ Sodeae)” =[5 o)
49) W) =| [ costtihsineron(©)de] < [ on(epde = v N,
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Similarly, we have

(15) Vil < T (NE - ND),
™
(16) 1Yz llL2(rz) < 4[5 (N = No).
On the other hand
sinh(2Y?)
(17) 1fllzcrey < 12521 secrn) +12¥2acee) + || =5 |
Now we use (13), (14). Then
s 3 3
(18) 12Y2| 2y < 2 (NF = N |Villpars) <
18
E(Nng ) m(N — No)
9 ° 12
Similarly
(N — No)
18 2Y 2r2y < =(IN2 —Nz —_—
(8) 2% 2 a0y < BV - N T
Let Q = {z € R? : |[z| < 1}. Then
(19) sinh(2Y?) ‘ sinh(2Y?) ‘ sinh(2Y?) ‘
2r2 L2(R2) — 2r2 L2(Q) 2r2 L2(R2\Q)

3

Since (12) holds, we have that there exists constant ¢; such that |sinh(2Y?)| < ¢1(N2 — ]\7(3%)2|:c|2
sinh(2Y?) ’

and
. 2 9 %
_ (/ (smh(2Y )) dz) <
2r2 L2(Q) Q 2r2

ot (Y

On the other hand (here we use (11) and the fact that sinhz increases for every z)

(20)

3

\/27%1(N% — NZ2).

sinh(2Y?) \/_

21 7’ h v N -—
(21) 2r2 L2(R2\Q) — S sin \/_
From (19), (20), (21) we get

sinh(2Y?) Noriaain 3.,
22 7‘ h( NG A(NE N2
(22) 5,2 Lemay = < sin \/_ 2 (N2 )
and from (17), (18), (18), (22)
(22) [ fllL2(r2y <
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s 3 3 W(N—N)
<2-(N%? = N2 )y ———
<25( ) T

+sznh \/_ \/7 —+\/_01( fNo%)Q,

(23) ||gg||Lz(R2)f||sznhxf||Lz(Rz)<sznh \/_ VNI fl 22(r2)-

We note that when N, is close enough to N [|gs||r1([0,1]22(r?)) is close enough to zero .
From third equation of (1) we get that x is solution to the equation

sinh(2
Xt — Ax + # =
r
ie. nh(2y)
sin
Xtt—AXZ—TQX‘Ff-

Then(here we use (11) and the fact that the functions sinhzx, cosha are increasing for every x > 0)

sinh2yx
(24) lglz2re) < cosh(G f VA Hff | .
21‘2
T[22
cos \/_ 2 Xz1 L2(R2)+
21‘1
cosh \/_ v N. H 5 Xaa L2(R2)
sinhy . sznhQ \/— \/7 sinhy
L2(R?) L2(R2)
Since X, =2YY,,,
215 o122l 2|
—2 X | S 25 |YIYe, | <
(from (12))
|zallx] 2
< N o,
< Tl ¥z,
2T9 T
(25) 15250 |y < gV = N Ve 2y <
(here we use (16))
< I(wt - vé), T 2)
9 12
Similarly
21‘1 s 3 3 7T(N — No)
2). i SY <I(N? N2
(26) ‘ | ) 12

From (17), (227), (22), (24), (25), (26) we get

(27) llg1]lL2(r2) < C1,
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where C1 is close enough to zero when N, is close enough to N. Similarly,

(28) llg2||L2(r2) < Co,

where C is close enough to zero when N, is close enough to N. From (23), (27), (28) we have
I9llz2(r2) < C,

where C' is close enough to zero when IV, is close enough to N. From here the second inequality of
(5) is hold for every R > 0 when N is close enough to N.

Sinse
Y(0,2) =0, x(0,2) =0, x:(0,2)=2Y(0,2)Y;(0,2) =0,
Xz; (0,2) = 2Y(0,2)Y,,(0,2) =0, i=1,2,
u14(0, ) = coshx(0, z)cosp1x:(0,2) =0,
u2t(0, ) = coshy(0, x)sind1x:(0,z) = 0,
uzt(0, x) = sinhyxx:(0,2) =0,
U1z, (0, ) = coshx(0, x)cosd1 X, (0,2) + sinhx(O,x)singbl% =0,
U2z, (0, ) = coshx (0, x)sing1 xa, (0, 2) — sinhx(0, x)cosqﬁ% =0,
U3z, (0, ) = sinhx(0,2)x, (0,2) =0,
U1z, (0, ) = coshx (0, x)cosp1 Xz, (0, ) — sinhx(0, x)szngbl% =0,
Uz, (0, 2) = coshy (0, x)sind1 X, (0, 2) + sinhx(0, x)cos¢1% =0,
U342, (0, ) = sinhx(0,2) x4, (0,2) =0,
we have
E(0,u) =0,
i.e. the first inequality of (5) holds for every ¢ > 0.
From (6) we get that
(20) orulagesy <€V te 0.1
On the other hand
||3tu||%2(7z2) = ||3tU1||%2(7z2) + ||atu2||%2(732) - ||8tu3||%2(722) =

= |lcoshxcosixil|F2(re) + llcoshxsingixi||2(rz) — |lsinhxxil|F2(re) =

— [ \Beostitx — sinh®)do = [ \Edz = [l
R2 R?

Therefore, using (29), we get
1
2

[[XtllL2(r2) < €

or L
2||YYt||L2(R2) S €2,
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From here

(30) 2/722 VY Yidw < ||l p2(ro) €
for any function ¢ € L?(R?). Let
(31) B = aladad = (V] - NV - NDRVE - VNP
and € = %,
b =€) = H(A) -
NE

For t =1 and x € Ay we have

(32) Y > a1a4%(\/ﬁ —V/N,) >0,

(33) Y, > alaglls(N% ~NZ)>o0.
(34) bdz = Z(NF — N3,
"” 21
™ 3 3
(35) ||¢||L2(AN) = 1_8( N% - No2).

From (30), (32), (33), (34), (35) we have for t =1

5

2 m2 3 31,7 T 1

a2asa;————(N? — N2)3 (N7 — NJ)(VN — /N,) < €2,
i. e. € > B which is contradiction with € = %. Therefore the solution map is not uniformly
continuous.
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