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REPRESENTATION AND STABILITY OF SOLUTIONS OF
SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH MULTIPLE DELAYS

MICHAL POSPISIL

ABSTRACT. This paper is devoted to the study of systems of nonlinear
functional differential equations with time-dependent coefficients and
multiple variable increasing delays represented by functions g¢;(t) < t.
The solution is found in terms of a piecewise-defined matrix function.
Using our representation of the solution and Gronwall’s, Bihari’s and
Pinto’s integral inequalities, asymptotic stability results are proved for
some classes of nonlinear functional differential equations with multiple
variable delays and linear parts given by pairwise permutable constant
matrices. The derived theory is illustrated on nontrivial examples.

1. INTRODUCTION

The classical method of steps [8] where the initial value problem

(1.1) #(t) = Bx(t — 1), t>0
(1.2) x(t) = (1), —7<t<0
is solved by subsequent integrating of equation (1.1) on intervals [0, 7),
[7,27), [27,37),... was renown in 2003 by Khusainov and Shuklin [13]. Ap-

plying this method, they constructed so-called delayed matrix exponential
eB! defined as

o, t < —7,
—7 <t<0,
E+Bt+ B2 o gl () <t < kr k€N

where O, E are the zero and the identity N x N matrix, respectively. Let
us recall their result.

Theorem 1.1. Let p € C! := CY([-7,0],RY) and AB = BA. Then any
solution x(t) of the Cauchy problem consisting of equation

#(t) = Az(t) + Ba(t — 1),  t>0
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and initial condition (1.2) has the form
~ 0 ~
I(t) — eA(tJrT)efth(—T) _'_/ eA(tfrfs)eB(tfrfs)eAT@O/<S> . A@(S))db‘,

-
-7

where B = e~ A7 B,

Using the variation of constants formula for retarded differential equations
with constant delay [8] and e, they stated the solution of nonhomogeneous
equation

&(t) = Az(t) + Bx(t — 1) + f(t)
with continuous function f : [0, 00) — R¥ satisfying initial condition (1.2).
Later, their result was used to establish sufficient conditions for the expo-
nential stability of the trivial solution of the nonlinear equation

t(t) = Ax(t) + Bx(t — 1) + f(z(t),z(t — 7))

with various functions f in [16]. The results from [13] were generalized
to delay differential equations with multiple fixed delays and pairwise per-
mutable matrices in [14] and analogical theory was developed for retarded
oscillating systems and difference equations with one or more fixed delays
(cf. [7, 11, 12, 15]). Recently, the matrix representation of solutions of
systems of differential equations with a single fixed delay was applied to
boundary-value problems in [4, 5, 6].

In this paper, we consider the functional differential equation (FDE) with
one or multiple time-dependent delays. More precisely, we deal with equa-
tions of the form

#(t) = Bi(t)z(g1(1)) + - -+ Ba(D)a(gn(t)), 20
where B; € C([0,00), L(RY,RY)), g; € G° for i = 1,...,n and
G° :={g € C([s,o),R) | g(t) < ton [s,00),¢ is increasing}.

In Section 2, we derive the solution of a corresponding nonhomogeneous
equation. Later, in Section 3 we use the property of commutativity of
matrices to transform the nonlinear FDE with multiple delays and linear
term Az(t) to a nonlinear FDE with multiple delays but without a delay-
independent linear term. After this transformation, we can apply the theory
of Section 2, and so establish sufficient conditions for the exponential stabil-
ity of the trivial solution of nonlinear FDE with multiple delays and linear
term Az(t) added on the right-hand side, supposing that the linear parts are
given by pairwise permutable constant matrices. So, in Section 3, we study
the exponential stability of the trivial solution of systems of FDEs with
linear parts given by pairwise permutable matrices (for stability criteria for
scalar equations with variable coefficients see e.g. [1, 2, 10, 19]).

In the whole paper ||E|| = 1, N denotes the set of all positive integers and

g*(t), g7*(t) for k =2,3,... denote the iterations of functions g(t), g~ *(¢),
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respectively, e.g. if k = 2, then ¢*(t) = g(g(t)) and g~2(t) = g 1 (g7 (¢)).
Moreover, ¢°(t) = t. If g : [s,00) — [g(s),o0) is not surjective, we define
g 1(q) := oo whenever ¢ is such that g(t) < ¢ for any t € [s, c0).

Definition 1.2. Given continuous function F', under the solution of a gen-
eral FDE

(13) #(t) = Fa(p(0).....x(an(®). 1), 120
satisfying initial condition (1.2) with 7 = min{g,(0),...,¢,(0)} we under-
stand function x € C([—7,00), RY)NC*([0, 00), RY) (at 0 we take the right-
hand derivative) which solves equation (1.3) and satisfies (1.2).

2. SOLUTIONS OF SYSTEMS OF FDES

In this section we derive a representation of a solution of FDE with single
variable delay using a piecewise-defined matrix function, which is analog-
ical to delayed matrix exponential P! for equations with constant delay.
Later, we find a solution of FDE with multiple delays as it was done in [14].
Throughout this part, we widely use the method of steps and variation of
constants formula for FDEs (cf. [8, 9]). We note that the existence and
uniqueness of solutions of problems of this section are obvious. First, we
find the fundamental solution of linear FDE with one delay satisfying the
below-stated initial condition (2.2).

Theorem 2.1. Let s € R, B € C([s, ), L(RYRY)), g € G*. Then the
matriz solution of equation

(2.1) X(t) = BOX(g(t),  t>s
satisfying initial condition
O, t<s

2.2 X(t) = ’ ’
(2.2 ( {E -
has the form X (t) = XP(t,s) where
(2.3)

(@, t<s,

E, s <t<g7'(s),
XP(t,s) =qE+ f;l(s (q1)dq1 + -

c Tt fgt—k( Ch fg((k (s g (11123 ) Qk ko dqy,
g ( )§t<g *k(s),k € N.

Proof. From definition of X gB(t, s), the initial condition is immediately ver-
ified. If s <t < g~1(s) then g(s) < g(t) < s and

X(t) = E=0=B(t)0 = B(t)X(g(t)).
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Now, let g7%(s) <t < g~ *1)(5s) for some k € N. Then g~ 1 (s) < g(t) <
g7 *(s) and we get
9()

X(0) = BO)+ BO) [ Blada+---

g 1(s)
g9(t) 9(ak—1)
B [ B [ Blada.di = BOX(o(0)
g+ (s) 97 (s)
Hence equation (2.1) is verified and the proof is finished. O
Now, when we have the fundamental solution, we can derive the solution

of corresponding nonhomogeneous equation (see [9]). Without any loss of
generality we assume the initial function to be given on [g(0), 0].

Theorem 2.2. Let B € C([0,00), L(RY,RY)), g € G°, f € C([0,00),RY),
0 € C([g(0),0],RN). Then the solution of the initial value problem

(2.4) @(t) = B(t)x(g(t)) + f(¢), t=0
(2.5) z(t)=p(t), 9(0)<t<0
has the form
(2.6)
o(t), 9(0) <t <0,
w(t) = ¢ XE(t,000(0) + [y X2 (t,9)B(s)v(g(s))ds + [y XE(t,5)f(s)ds,
0<t
where

Proof. Clearly, x € C([g(0), 00), RY)NC*([0,97'(0))U(g~'(0), 00), RY) and
it satisfies condition (2.5).
Let 0 <t < ¢g1(0). Then for 0 < s <t we get

9(0) < g(s) < g(t) <0< s <t < g7'(0).

Consequently, X7(t,s) = E and ¢(g(s)) = ¢(g(s)). Hence from formula
(2.6)

t t

27) o0) =20 + [ Bls)elg(sds + [ 1(s)as
0 0

what after differentiating with respect to t yields

#(t) = B(t)e(g(t) + f(1).
Even though X”(t,s) is not C' at t = g~'(s) (left-hand derivative is ©,

right-hand derivative is B(g~'(s))), solution z(¢) is C' at g~'(0). To see
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this, we differentiate the solution (2.7) for ¢ € [0, g~%(0)) and

() = /XBts ds+/ XB(t, ) (s)ds
for t € [g71(0), g7%(0)), both at t = g~1(0). We obtain
lim —@(t) = B(g~'(0)¢(0) + f(g~'(0)),

t—(g=1(0))~

lim ~@(t) = B(g~'(0))[»(0) +2(0)] + f(g7'(0)).
t—(g=(0))*"
In fact, we get the equality since 1(0) = 0.
Now if ¢g7%(0) < t < g=**+1(0) for some k € N, then by differentiating
formula (2.6) we obtain

2(t) = X2 (t,0)9(0) + B(t)¥(g(t))
/XBts s))ds + f(t) /XBts
= B()X(g(t),0)0(0) + B(t) ) + B(t / X7 (g J(g(s))ds

(t—i—Bt/ngt s)
0

where we used the properties of X (t, s) from Theorem 2.1. Next, we apply
the identity

g(t)
/ X5(g s = [ X (a0, 9F ()

with F'(s) standing for B(s)i(g(s)) or f(s) to get

g(t)
i(t) = B(t) | X (g(t),0)0(0) + ¥(g(t)) +/0 X, (g(t), $)B(s)(g(s))ds
g(t)
| X)) 5)f (s)ds| + f(2).
For t > g=!(0) it holds ¢¥(g(¢)) = 0 and equation (2.4) is verified. O

Remark 2.3. In reality, if ¢ > ¢g—!(0) is fixed, two integrals in solution z(t)
of (2.6) are split into more integrals as s varies from 0 to ¢. Note that

min{t,g~" (0)}
/ XB t,s)B ))ds—/ Xf(t, s)B(s)p(g(s))ds.
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If we denote

/ B(q1)dgq: + -

t g(q1) 9(q1-1)
--+/ B(Ql)/ B(qa) - / B(q)dq .. .dg:
g-1(s) (4=1)(s) 1(s)

forl =0,...,k, i.e. the lower index [ denotes the number of integrals in the
sum, then z(t) can be written as

gk (t)
(1) = Xu(t0)p0) + [ Xi(t.)Bl)elo(s))ds
L0) g~ (t)
+ / vy Xt B+ [T X))

l 1(t t

+Z/ Xi1(t,8)f(s)ds + " Xo(t,s)f(s)ds

for g7%(0) <t < g~ *D(0), k €N, i.e.
0<g"(t) <g'(0) <g"'(t) <
< gP(t) < g FT0) < g(t) < g7H(0) <t < g7 *HD(0).

Here we used the form of X[(t,s) for fixed ¢ and variable s (in (2.3) it was
given for fixed s and variable ¢):

(2.8)
(0, t<s,
L, g(t) <s <t,
XE(t,s) = E+ [ 1) Bla)da +-
”+fgt*k( (q1) fg (k=1 (s g(f?sl (qr)dqy . . . day,
\ 9k+1(t)<5§g(),k‘€N-

Now we provide an application of Theorem 2.2 on a problem with a
bounded delay.

Example 2.4. Let us consider the following initial value problem

(1) = B(t)z (1 ‘s’et) I, >0
z(t) = (1), -1 <t <0.

Here we have g : [0,00) — [—1,1/2), g(t) = (1 — 3e7%)/2 and ¢!
[—1,1/2) — [0,00), g7 !(s) = In Hence we set g'(¢) = oo whenever
EJQTDE, 2012 No. 54, p. 6
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q>1/2 and g=2%(q) = oo for all ¢ > \f\/_ég < 0. Since we can assume s > 0,
from (2.3) we get
O, t <s,
Xf(t,s): E, s<t<ln 2,
E+ fo s Bla)dg, Ingly <t

Accordingly, formula (2.6) gives the solution of Example 2.4.
Corollary 2.5. The solution of Example 2.4 has the form
(p(t), -1<t<0,

0) + [y B(s)¢ (#) ds+ [ f(s)ds, 0<t<In3,
x(t) = { F(t,0)p(0) —l—fol_%eit t, B(s)gp(l e S)ds
[ BGs (1 . s)d3+f0 = F(t,5)f(s)ds
\+f# f(s)ds, In3 <t

where F(t,s) =

B(q)dq.

In the next step, we shall use the solution of the nonhomogeneous ini-
tial value problem to construct the fundamental solution of FDE with two
delays. Let us consider a matrix equation

(2.9) X(t) = But)X(g:(t)) + Bo(1) X (92(t)),  t>s

together with initial condition (2.2). Then formula (2.6) with f(t) = Ba(t) X (g2(t))
and s instead of 0 yields

X(1) = 0, t<s,
XPi(t,s)+ [ XP(t,q)Ba(q) X (92(q))dg, s <t

From the initial condition, one can see that if s < ¢t < g, '(s) then X (g2(q)) =
) <t<

O for s < ¢ <t ie X(t) = X['(t s). Next, for ¢ such that g5t (s) <
g5 %(s) it holds

e, s <q<gs'(s),
X(g2(Q))_{ BI(QQ(Q) S)’ gz_l(S)SqSt'

Hence for such t we get
t
X(t) = X5 (t.s) + /1( )Xﬁl(t, 0)Ba(a) X' (92(q), 5)dg.
* EJQTDE, 2012 No. 54, p. 7



Analogically we proceed on other intervals [g;"(s), g5 (kﬂ)(s)) with k& =
2,3,.... By this process we obtain

(2.10)
(©, t<s,
Xg(t, s) s <t<gy'(s),
XBUBa () = XBl t,s) + f H(t, 91)32(611)))(31(92(611), s)dqy + - -
o -t f t Q1) Bz f”(;’ll)( XBl (g2(q1), q2) Ba(qa) - - -
ng(qk 2 P(g2(qr-1), qr) Bo(qr) X 2 (92(aqr), 5)day, . . . day,
95" (s) <t < g; "V (s), k e N.

\

Theorem 2.6. Let s € R, By, By € C([s,00), LRY,RY)), g1,90 € G°.

Then X (t) = X112 (t,s) is the matriz solution of equation (2.9) satisfying

initial condition (2.2).
Proof. At t = s it holds
X(s) = Xfll(s,s) =F.

Hence initial condition is immediately verified.
Let s <t < g5'(s). Then

X(t) =X (t,s)
and go(t) < s. So we get
X(t) = X' (t,s) = Bi(t) X (o (1), 5)
= Bi(t) X (91(1)) + Ba(t) X (92(1))-

Now, if g5 *(s) <t < g;(k (s) for some k € N, then g, S 1)(3) < go(t) <
g5 "(s). Accordingly,

X(t) = Bi(t) Xy (91(1), 5) + Ba(t) X ;' (2(1). 5)

t
n / Bu(t)XP (01(0), 00) Bala) X (ga(ar), 8)das + -~
51(s)

92(qr—1)

92(t)
-+ Bo(t) / X (92(), @2) Ba(ge) - / X2 (92(qe-1), )

)

9o 1(5)

t
X Ba(qu) X (g2(qr), s)dap, . . . dgz + /k( | Bi(t) X[ (g1(t), q1) Ba(a1)
g5 " (s

g2(q1) 5 92(qr—1) 5
X / X, (92(q1), 42) Ba(q2) - - - X (92(qr-1)s ar)
g

5 5 (s) 95\ (s)

X Ba () X2 (92(q), s)day, - . . dgy = B1() X (g1(t)) + Ba(t) X (g2(1))
EJQTDE, 2012 No. 54, p. 8



since X' (g1(t), 1) = © whenever ¢ > g(t). In conclusion, we have proved
that X () solves equation (2.9) for any t > s. O

Remark 2.7. Sometimes, it may be easier to use the “fixed t” form of

XDz (t, s) analogical to (2.8) instead of “fixed s” given by (2.10).

Matrix function X ﬁlg?(t s) has some important properties which are

concluded in the next lemma.

Lemma 2.8. Let s € R, By, By € C([s,0), LRY RY)), g1, 9, € G*. Then
the following statements hold true for any t € R:
(1) if By = © then X[P1.D2(t,5) = X2 (t, 5),
(2) if By = © then X[P1D2(t, ) = X1 (t,5),
(3) if g1(t) = g2(t) for allt € [s, oo) then Xfllgf?(t s) = Xfll*B?(t, s),
(4) XBuB2(t o) = XB2Bi(t g).

91,92
Proof. All statements of the lemma follow from the uniqueness of a solution
of a corresponding initial value problem. For instance in 1., both sides of
the identity solve equation

X(t) = Bi(t)X(91(1)) + Ba(t) X (9a(t)) = Ba(t) X (95(t))
together with initial condition (2.2). O

92,91

As before, we obtain a result on the solution of nonhomogeneous equation,
this time with two delays.

Theorem 2.9. Let By, By € C([0,00), L(RY RY)), g1, 92 € G°, f € C([0,00),RY),
v == min{g(0), g2(0)}, ¢ € C([7,0],RYN). Then the solution of the initial
value problem

(2.11) i(t) = Bi(t)x(g1(t)) + Ba(t)x(ga(t)) + f(£),  t=0
(2.12) x(t) = p(t), 7<t<0
has the form
(2.13)

(1), v <t<0,

() = ¢ XBuP2(1,0)0(0) + [ Xffg? (t,5) [Bi(s)¥(g1(s))

+ Ba(s)(g2(s))] ds + [ XD (t,s) f(s)ds, 0<t

where
_Jwlt), ter0)

(2.14) b(t) = {07 o)

Proof. Clearly, the initial condition is satisfied. In verification of equation

(2.11) we consider four cases with respect to t.
EJQTDE, 2012 No. 54, p. 9



Let 0 < ¢ < min{g; '(0),g,'(0)}. Then XZ:B2(t,5) = E for s € [0,¢]
since

g(t) <0<s<t<g'(0),  gi(t) <0<s<t<gr(0).
Thus from (2.13) we get

x(t) =<P(0)+/0 Bl(S)@(gl(S))+Bz(8)w(gz(5))d8+/0 f(s)ds

which is a solution of equation (2.11) since z(g;(t)) = ¢(g;(t)) for i = 1, 2.
If g7'(0) <t < g3'(0) then go(t) < 0 < s <t < g5'(0) for s € [0,1].
Therefore z(gs(t)) = (g2(t)), XJ',7%(t,s) = X2 (t, s) and we obtain

91,92

£(t) = XP(t,0)p / XP2(t,)[Bu(s)(g1(5)) + Ba(s)olga(s))]ds

¥ / XE(t,5)f(5)ds.
0
After differentiating

#(t) = Bi(t)z(g1(t)) + Ba(t)(g2(t)) + (1),

so one can see that x(t) really solves (2.11).
The case g, 1(0) <t < g;*(0) can be proved analogically to the previous
one using the change X.72(t, s) = X251 (t, 5) from Lemma 2.8.

92,91
Finally, if max{g;"(0),9,"(0)} < ¢ then ¢(g:(t)) = ©(g2(t)) = 0 and
direct differentiation of (2.13) gives the desired result. O

Now, we apply formula (2.13) on a problem with concrete unbounded
delays.

Example 2.10. Let us consider the following initial value problem

#(t) = Bi(t)z(t = 1) + By()z(VE = 1), >0
) =

o) = (), —1<t<O0.

In this case g1 (t) =t —1, g7 '(s) = s+1, go(t) = V=1, g5 ' (s) = (s +1)?
and we can assume s > 0. Hence by (2.3),

O, t<s,
E, s<t<s+1,
XP (1, 5) = E+ft+131 (¢1)daq, :+1§t<s+2,
o E+f dQ1+f By ( %)ffil B1(q2)dgadq,
s+2<t<s+3,
L s+3<t.

EJQTDE, 2012 No. 54, p. 10



Next, from (2.10)

(2.15)
(@, t<s,
E, on M,
Fy(t,s) = B+ f Bl Q1)dQ1, on M,
Fy(t,s) == E+ f 1(q1)dq
+ fst+2 Bi(q) f5+1 31(92) dgadq, on Mj,
Xﬁlgfg (t,s) = Fu(t,s) == E+ f qu)dq + f(s+1 Bs(q1)da, on My,
F5(t,s) == E + f Bl (q1)dq +f8+2 Bi(q1) Sqil_ Bi(ge2)dgdq
+f(5+1 BZ C]1 dCh + f(5+1 fq1+1 Bl Q2)dCJ232(CJ1)dCJ1, on Ms,
Fs(t,s) == E+ f Bi(q1)dag: +f Bi(q1) Sq+11— B1(q2)dgadq:
+ f(i+1 BZ(Ql)dCha on Mg,
- otherwise
where

M1 {(t,s) eRY | s<t<(s+1)7s<t<s+1},

={(t,s) eR: |s<t<(s+1)%s+1<t<s+2},

={(t,s) eRL |s<t<(s+1)*s+2<t<s+3},

M4:{(, S)ERZ | (s+1)2<t<((s+1)°+1)%s+1<t<s+2},

M5_{(,s)€ RZ[(s+1)°+1<t<((s+1)0°+1)%s+2<t<s+3},
={(t,s) eRZ | (s+ 1)’ <t<(s+1)+1,s+2<t<s+3}

with R3 = [0, 00) x [0,00). For the convenience, these sets are sketched in
Figure 1.

Corollary 2.11. The solution of Fxample 2.10 has the form
(2.16)

'sO(t), 1<t <0,
+fot 0<t<l,
F4 t,0)p +f Y Fy(t,s)B(s ds+f | Fa(t, s)B(s)ds
+ft B 1<t<2,
2(t) = { Fs(t,0)p f TRt 5)B(s)ds + [y, Fa(t,s)B(s)ds
+ft F4tsB ds+ff1F2ts)B( )ds 2<t<(3+V5)/2,
Fs(t, O +f " Fy(t,s)B(s ds—i—f _ Fo(t,s)B(s)ds
j F3t3 (s)ds+ [, Fo(t,s)B(s )ds, (3+V5)/2<t<3,
3<t

EJQTDE, 2012 No. 54, p. 11



where B(s) = Bi(s)g(s — 1) 4+ Ba(s)p(v/s — 1) and Fy(t,s), ..., Fs(t,s) are
given in (2.15).

For the graph of the solution with concrete functions By, By € C([0,00), R),
¢ € C([-1,0],R) see Figure 1.

t X
(s+1)2+1)? s+1) s+1)2 49

w
J

FIGURE 1. Sets Mj, ..., Mg and solution (2.16) of Example
2.10 with By(t) =t, By(t) =1 and ¢(t) = —t.

One can proceed inductively from XP1.52(t,5) and, with the aid of the

latter theorem, construct the fundamental solution of FDE with any finite
number n > 3 of variable delays. So one obtains

(2.17)
(o, t <s,
V(1 ,s> s<t<gi(s),
Y(t8) + fo-1 Y (£,00) Ba(@1)Y (9n(q1), )dags + - -
Xzﬁ{-’-'-';&fn(t’ s) = . (1)

"+f k(s t‘h n(q1) fgn(k (s Y (gn(q1): g ) n(g2) -

fgn Y (g.(gh-1), 4 ) (g )Y(gn(%)as)d%---dql,
g5 (s) <t < gn ™ (s),k e N.

where Y (t,s) = XB-Bn-1(t g).

Theorem 2.12. Let s € R, 3 <n eN, B, € C([s,00), LRY,RY)), g; € G*
fori = 1,...,n. Then X(t) = XB1 """ Br(t,s) is the matriz solution of
equation

(218)  X(t) = BUOX(9:(t) + -+ Bu()X(9a()),  t>s

satisfying initial condition (2.2).
EJQTDE, 2012 No. 54, p. 12



Proof. The case n = 2 was proved in Theorem 2.6. So here we suppose that
the statement is true for n — 1 and we show that it holds also for n.
Clearly, at t = s

XBl ..... fn(S,S):XBl ..... B"_l(S,S):"‘:Xgl?l(S?S):E

[ AT In—1

and initial condition is verified. For the simplicity we denote Y(t,s) =
Bi,..., B :

Xbeoni(t, s) in the rest of the proof.
If s <t <g,!(s) then g,(t) < s and

X(t) =Y (t,5) = Bi(t)Y (g1(t),8) + -+ + Buo1 ()Y (gua(t), )
= Bi(1)X(91(t)) + - - + Bu-1(£) X (gn-1(t)) + Bn(t) X (gn(t))

since X (gn(t)) = ©.

Now, let g, *(s) <t < g;(kﬂ)(s) for some k£ € N. Then from (2.17) using
the inductive hypothesis, we get for the derivative

X(t) = Bi(t)Y (91(8),8) + -+ Bu1 ()Y (gn-1(t), 8) + Br(t)Y (9a(?), s)

+/:( ) [Bi(t)Y (g1(), q1) + -+ Bp1 ()Y (gn1(t), )] Bu(q1)Y (gn(q1), s)da
gn(qk—1)

Y (g0 (1), 42)Bu(a2) .. / Y (9n(d-1). ) Bular)

gn ' (s)

gn(t)

A Bn(t) /—(k—l)
9n (s)
t

XY (gn(qr), s)dap. - - - dgz + / [Bi(t)Y (91(t), q1) + -+ -+ Bna ()Y (gn1(1), @1)]

gn " (s)

gn(qr—1)
XBn(q) - - /_1( ) Y (9n(@r-1), ak) Bn(a1)Y (9n(qk), s)day, - . - dgi.
an S
By collecting terms beginning with B;(t) we obtain for each i =1,...,n—1
exactly B;(t) X (g:(t)) since Y (gi(t),q1) = © for ¢;(t) < ¢1 (hence the upper
boundary of integrals is changed from ¢ to g;(t)). Next, g;(k_l)(s) < gn(t) <
g, %(s), thus collecting terms beginning with B,,(t) yields B,(t) X (g.(t)) (in
comparison to X (), the number of integrals in X (g,(t)) is decreased by
one). In conclusion, the last identity is precisely the equation which X (¢)

has to satisfy. O
Matrix function X ﬁl’_’_'_'éfn (t,s) has properties that are analogical to those
of X ﬁff?(t, s) provided in Lemma 2.8. We conclude them into a lemma

without a proof.

Lemma 2.13. Let s € R, 3<n €N, B; € C([s,00), L(RY,RY)), g; € G*
fori=1,...,n. Then the following statements hold true for anyt € R:
(1) if B, = © for somei € {1,...,n}, then

Bu,...;Bi—1,Bi,Bit+1,...,Bn _ v Bi,-Bi-1,Bit1,.-,Bn
Xglv---vgi—lygivgi-Fl ----- gn (t’s)_Xgl,---,gi—l,QiH ----- gn (t,S),
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(2) if gi(t) = g;(t) for any t € [s,00) and some i < j, 1,5 € {1,...,n},
then

B1 B;_1,B; Bz+1 ~~~~~ Bj_1,Bj,Bjt1,...,Bn
X gz 1,9i59i+15+95—1,95,95+15--+ gn (t7 8)

Bl B;i—1,Bi+Bj,Bit1,..,Bj—1,Bj+1,.-,Bn
_X gz 1,94,9i+15--95—1:95+15---.9n <t7 S)7

(3) for any bzyectwe mapping o : {1,...,n} —{1,...,n}
XBreBo (1, 5) = X700 (8 ),

----- 9o (n)

The statement on the solutlon of the nonhomogeneous initial value prob-
lem with n delays follows (cf. [9]).
Theorem 2.14. Let3 <n €N, B; € C([0,00), L(RY,RY)), g; € G° fori =
1,...,n, f € C([0,00),RY), v := min{g(0),...,9.(0)}, o € C([,0], RY).
Then the solution of the equation
(2.19)  &(t) = Bi(t)z(gi(t)) + - -+ + Bu(t)x(gn(t)) + f(£), =0

satisfying initial condition (2.12) has the form

(2.20)
o(t), v <t <0,
z(t) = Xﬁ% ........ Pn(t,0)¢ +fo X Pty s) [Bi(s)p(gu(s))

+ - +Bn( )@/}( n(8)) ds+f0 XB} ........ B"(t s)f(s)ds, 0<t
where (t) is given by (2.14).

Proof. The proof is similar to the proof of Theorem 2.9, so we omit some

details. Note that
) - W(gi@))v t< g;l(o)v

foreacht=1,...,n.
If 0 <t < min{g; '(0),...,9,"(0)} then XP'--Bn(t s) = F for s € [0,1]
and z(t) has the form

£(t) = p(0) + / By()0(01()) + - -+ Bu(s)p(gn(s))] ds + / £(s)ds

what solves equation (2.19).
If there are the nonempty sets

Mlz{’il,...,ik}c{1,...,’/’L}, MQZ{]_,...,TL}\Ml
such that g; '(0) < t < g;l(()) for each i € Ml, j € Ms,, then applying

Lemma 2.13 we obtain X5 (t, 5) = Xglil,_’_'_','g}lk”“ (t,s) for s € [0,] and
0, 1€ M,
Y(gi(t) = :
e(g:i(t), i€ M.
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Consequently, we rewrite x(t) as
) = X000+ [ X0.5) | T BOWa6) + 3 Bj<s>so<gj<s>>] ds
i€ M, JEM>2

+ / X(t,s)f(s)ds

where X(t,s) = Xﬁi{ '''''''' o, " (t,s). Then for the derivative it holds

= 3" Bi(t)X(4:(1),000(0) + 3 B;(t)e(g; (1))

i€ My JEM>
/ S B 9|3 B 3 By ] ds
i€My i€ My JEM>
/ > Bt ,8)f(s)ds.
€My

After collecting the terms by B-(t) one gets

=Y Bilhz(g:() + Y Byl )+ f(t)

1€ My JEM2

what is exactly equation (2.19) since z(g;(t)) = ¢(g;(t)) for each j € Ms.
Finally, if max{g;'(0),...,9;1(0)} < ¢ then w(gl(t)) = 0 for each i €

{1,...,n} and direct differentiation of x(t) given by (2.20) verifies equation

(2.19). O

In Section 3 we shall seek conditions for the exponential stability of the
trivial solution of FDE with constant coefficients at linear terms. Here we
find the solution of such an equation.

Theorem 2.15. Letn € N, A, By,..., B, be pairwise permutable N x N
constant matrices, i.e. AB; = B;A, B;B; = B;B; for eachi,j € {1,...,n},
g € G fori=1,....,n, f e C([0,00),RY), v := min{g;(0),...,g.(0)},
0 € C([,0],RY). Then the solution of the equation

(2.21)  @(t) = Azx(t) + Bix(g1(1)) + - - - + Buw(gn(t)) + f(1), 20

satisfying initial condition (2.12) has the form
(2.22)

(1), v <t<0,
(1) = § X0 (8,0)eMp(0) + [y X PP (¢, 8)e =) [Bith(ga (s))

..........

+ee At Bnd’(Qn( dS + fO XBl """ B"<t 3) t_s)f<8)d8, 0 S t

.....

where Bi(t) = e A9 B; fori=1,... n and {(t) is given by (2.14).
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Proof. Denote y(t) = e~4*x(t). Then from (2.21), (2.12)
9(t) = Bit)y(g:(t)) + - + Bu(t)y(ga(t)) + f(1), >0
yt) =o(t), y<t<0

where f(t) = e A f(t), 3(t) = e Ap(t). Applying Theorem 2.14 to this
problem yields

@(t), v <t<0,

..........

.....

where
~ o(t), tely,0),
o= [F0. teno)
0,  t¢[0)
Note that @Z(t) = e Mq)(t) for any t € R and Ez(s){/;(g,(s)) = e M Bi(gi(s)).
When one returns to x(t), the formula (2.22) is obtained. O

3. EXPONENTIAL STABILITY OF NONLINEAR FDES

In this section, we apply the theory derived in the preceding section to
establish criteria for the exponential stability of the trivial solution of non-
linear FDE with multiple variable delays where the linear parts are given by
pairwise permutable constant matrices. First, we estimate the fundamental
solutions X (t,s) and X[Jt-2Bn (¢, s) with the aid of the next lemma.

.....

Lemma 3.1. If s € R and f € C([s,),R), then

/:f((h)/sql f(Q2).../8qklf(Qk)qu...dql = % (/:f(q)dq)k

for each k € N, t € R.

Proof. We prove the lemma via induction with respect to k. Denote

- [t [ @) [T oo
G- (/ tf(q)dq)k.

Clearly Fi(t) = G1(t). Let Fy_1(t) = Gr_1(t). Then Fy(s) =0 = Gi(s) and

R0 = 1070 = 0G0 = 7005 ([ i) =i

O
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Lemma 3.2. Let s € R, B € C([s,0), L(RN,RY)), g € G*. Then
t
IX2(t, )] < exp { / HB<q>qu}

Proof. 1t is sufficient to prove the statement for g : [s,00) — [g(s), 0)
surjective. By this, the other case is also covered.

Let t > g7 '(s) be arbitrary and fixed, k € N be such that g7*(s) < t <
g~ +1(s). Then from (2.3) we know that

XP(t,s)=E+ Xy(t,s) + - + Xi(t, s)

for any t > s.

where

t 9(q1) 9(gj-1)
Xj(t,S)Z/ _()B(ql)/ B(Q2)---/ B(g;)dg; . .. da
97(s

g=U=1(s) 9-1(5)

for j =1,..., k. Since g is increasing and according to Lemma 3.1 we derive

t 9(q1) 9(gj-1)
1X,(t9)]] < / 1B 1B(@)]... / 1B(g)lldg; . das

g=U=1(s) g71(s)

< [ [ s [ 15 an =5 ([ 15@0a)

As a consequence,

IX7 (¢, s)ll < 1+ [IX0(t, sl + -« + [1Xk(t, 5)]]

Z} ([ imnar) <35 ([ 15ian) e { [ 1mtonan}.

Obviously, the last estimate holds for each £ € N and hence for any ¢t >

97 (s).
If s <t< g '(s) then

t
IX7(t,s)|| = B[ =1 < exp {/ IIB(Q)Iqu}
so it remains true for such t. O

Lemma 3.3. Let s € R, 2 < n € N, B; € C([s,0), LRY,RY)), g; € G*
fori=1,...,n. Then

for any t > s.
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Proof. As before, it is enough to prove the lemma for g; : [s,00) — [g(s), 00)
surjective for each 1 =1,...,n.
We show that if the statement holds for n — 1 delays, then it is true for

n. Let k € N be such that g, *(s) <t < gn S (kL )( ) for arbitrary and fixed
t > ¢, '(s). Then from (2.17) we know that

XBl ----- fn(t’ 5) :Y(t’ 5)+X1(t, S)++Xk(t7 5)

where

t gn(q1)
Xt = [ vaBe [ Vi) B
gn g

gn(gj—1)
Y ), 0Bl antar), )y
gn (S

for j=1,...,kand Y(t,5) = XP1Bnoi(t s5). For X;(t,s) we get
(3.1)
gn(q1)

H&mws/_mwmmew/ 1 Gnla), a3z

gn’( =D (s

gn(gj-1)
£ X /_1( | 1Y (gn(@j-1): )11 Bn(@i) 1Y (9n(g5), $)lldg; - - - dga.
gn S

Applying the inductive hypothesis, we know that

IIY(tS)HSeXp{ ZHB qu}

Thus we estimate the right-hand side of inequality (3.1) by

t gn(q1) gn(qi—1)
/.HBmH/ 1Bu(a)]] / 1B.(ay)]
27 (s) =1 () gn(s)

XZ(t,qi,...,q;,5)dg;...d¢

for each j = 1,..., k, where for 3(¢) = 37 || Bi(q)||

t gn(q1)
Z(tqr,...,q5,8) ZeXp{/ ﬁ(Q)dQ+/ B(q)dg+ - -

q2

gn(gj-1) gn(g5) t
e [T e | xwm%s%%/ﬁ@@}
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Therefore we get

t t gn(q1)
1X,(t, )] < exp / B(a)da / 1B / C IBu@)]
s gnj(s) gn(J 1)(5)

gn(Qj—l)
X / 1Bo(ay)ldg; . . da
gn ' (s)

for each j = 1,..., k. In conclusion,

t t
g ol <end [ (14 [ 1Bl o
s g

n(s)

t gn(q1) gn(qk—1)
[ Bl [ Bl [ B dasda )
) g (s) g0t (s)

n

Finally, applying Lemma 3.1 as in the proof of Lemma 3.2 we obtain

Thus the statement is proved for ¢ > g, '(s). Analogically, one can prove it
for t > g;*(s) for any i = 1,...,n — 1 by the change of order described in
Lemma 2.13. If s <t < min{g; '(s),...,9;'(s)}, XPrBn(t, s) = E, hence
the statement holds. U

Now, we define what exactly we shall understand under the notion of
exponential stability. Then we use the estimations of fundamental solutions
to derive the sufficient conditions for the exponential stability of FDEs with
different types of nonlinearities (see [14, 15, 16, 17| for analogical criteria
for delay differential and difference equations with constant delays).

Definition 3.4. Let n € N, A, By, ..., B, be pairwise permutable N x N

constant matrices, i.e. AB; = B;A, B;B; = B,B, for each i,j € {1,...,n},

9i € GO for i = ]-7 s,y Y= mln{gl(0)7 s 7gn(0)}’ pE C([77 0]7RN) and
fiRY <o xRN - RY

~
n+1

be a given continuous function. A solution z,, : [y, 00) — R¥ of the equation
i(t) = Az(t) + Biz(g1(t)) + - - - + Bua(gn(t))

with initial condition (2.12) is called exponentially stable, if there exist
positive constants c¢j, cs,9, depending on A, By,...,B,, f and |¢| =
maxyefy,o] [|# ()], such that

(3.2)

2 (t) = 2, ()| < cre™,  t>0
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for any solution z, () of the equation (3.2) satisfying the initial condition
() =n(t), 7<t<0
with n € C([7, 0], RY), [In — ¢l < 4.

Theorem 3.5. Let n € N, A, By,..., B, be pairwise permutable N x N
constant matrices, i.e. AB; = B;A, B;B; = B;B, for eachi,j € {1,...,n},
A have eigenvalues A1, ..., Ay such that

ReA; < - <Rely < -k <0,
i € GO fori=1,...,n and there be k; < k such that

[ S 1Bt <k

for all t > 0, where Bi(t) = e A9 B, fori=1,... n. Then if f(z) =
o(||x||), the trivial solution of equation

(3:3)  @(t) = Ax(t) + Bix(g1(t)) + - + Buz(gn(t)) + f(2(t))

1s exponentially stable.

Proof. Let v := min{g1(0),...,9.(0)}, ¢ € C([7,0],RY). According to

Theorem 2.15 the solution of equation (3.3) satisfying condition (2.12) has
the form

----------

o Bublgalds [ XEB (1, 5)eM0 f(a(5))ds

.....

for t > 0, where v (t) is given by (2.14). From the property of eigenvalues of
A it follows that there are positive constants k, K such that ||e/?|| < Ke "
for all t > 0. Next, since f(z) = o(||z||), for any P > 0 there is § > 0
such that if ||z]| < 6, then || f(z)] < P||z||. Applying these two estimations,
Lemma 3.3 and assuming that ||z(s)|| is sufficiently small for s € [0,¢], ¢ > 0
we derive

(0] < Kl o) 4+ K SB[ o R g )

=1

LKP / o Bk (t=3) | 15 | s
0

with B(t) = >0, |B;(t)||. Denoting u(t) = exp{kt — fo q)dq}||x(t)|] we
get the estimate for wu(t)
(3.4)

n t t
u(t) < K|le(0)]| + KZ | Bi|l / oks— I @1 (g,(s)) || ds + KP/ u(s)ds.
i= 0 0
' EJQTDE, 2012 No. 54, p. 20



Now, the property of k; implies that for each i € {1,...,n} function
gi : [0,00) — [g:(0),00) is surjective and, especially, g;*(0) < oo. In-
deed, suppose in contrary that there exists @ € R such that g;(t) < @ for
all t > 0 and some i € {1,...,n}. The property of eigenvalues of A yields
the existence of a positive constant L; such that L;ef® < [e ' B;|| for all
t > 0 (assuming B; # ©). Consequently,

k1t>/ ZHB ||dq>/ 1B:(q)lldg
1

Kt _
> Li/ M9 @) g > Lie_kQ/ ekqdq:Lie_ine ’
0 0

for all t > 0, a contradiction results. So using the definition of () we can

estimate
-1

t . 9; (0) s
/ b5 2@y (g,(s)) | ds < / oo 0o (gy(s)) | ds
0 0

forallt > 0and ¢ =1,...,n, where the right-hand side is constant. Next,
from (3.4) we get u(t) < M + KP fo s)ds where
(3.5)

n g; ' (0) .
0<M=Mp)=KlleO)] + K ||Bi||/ oo P09 o (g,(5)) | ds.
i=1 0
Finally, applying Gronwall’s inequality, u(t) < Me®¥* which for z(t) means
t
le(t)]l < M exp {KPt e+ [ ﬁ(q)dq} < MelsPkr,
0

Therefore, if P < 1 then for max{|¢(0)||, M} < & it holds [z(¢)]| <
Me™™ for all t > 0 with n = k — k; — KP > 0, i.e. the trivial solution of
(3.3) is exponentially stable. O

Theorem 3.6. Let the assumptions of Theorem 3.5 be fulfilled. Moreover,
let S; :=sup;sgt — gi(t) < oo for eachi=1,...,n. If

f@ oy yn) = o[zl + Mlyall + -+ llynl),
i.e. for any P > 0 there exists § > 0 such that
[l yall, - llynll <0 = f @y, -yl < Pl +lyall+ - +lyall),

then the trivial solution of equation (3.2) is exponentially stable.

Proof. Let vy := min{g;(0),...,9.(0)}, ¢ € C([v,0], RY). Denote
(3.6)

0, t<0
E(t : Bi(t (t) = PO
(t) = { fo Ddg. t>0, E | u(t) = ez (t) ||
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with z(t) being the solution of equation (3.2) together with condition (2.12),
which is known to have a form (see Theorem 2.15)

+ 4 Bath(gn(s))] d8+/ XphoiPn (2, 9)e ) f(a(s), w(91(s), . w(ga(s)))ds

for t > 0, where ¥(t) is given by (2.14). Note that E(t) is a continuous
function defined on the whole R. Analogically to the proof of Theorem 3.5,
we derive estimation

¢ n t
u(t) <M+ KP [ u(s)ds + KPY [ 5000 (s))ds
0 i=1 70

with M given by (3.5), assuming ||¢|| and ||z(s)|| to be sufficiently small for
all s € [0,t], t > 0. Denoting h(t) the nondecreasing continuous function
defined on [0, c0) and given by

ht) == c+ KP/ s)ds + KPZ/ BNy (g;(s))ds

where ¢ = max{M, |||/}, we get the inequality u(t) < h(t) on [0,00). Let
us estimate for s € [0, ¢]:
u(gi(s)) < sup u(gi(0)) < sup  wu(gi(0))+ sup  u(gi(0))
0<o<s 0<o<g; ' (0) 97 H(0)<o<s
<Jlgll+ sup u(o) < 2h(s),

0<0o<s

(3.7)

by the property of a nondecreasing function h. Thus we obtain

t n t
h(t) <c+ KP / h(s)ds +2KPy / P E@)(5)ds

for all ¢+ > 0. Furthermore, for each i € {1,...,n}, if 0 < s < g; *(0), then
(3.8)

E(s) — E(gi(s)) = ks — / Bla)da < kg (0) = K(t — gi(t)|r—y10) < BS:
and if s > g;(0),
(39) E(s) — E(gi(s)) = k(s — gis / Bla)dq < k(s — gi(s)) < kS..

Therefore

h(t) <c+ KP 1+22 S
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whenever ¢t > 0. Finally, from Gronwall’s inequality

u(t) < h(t) < cexp {KP (1 + 2iek5i> t}

i=1

for all ¢ > 0. Hence

()] < cexp {KP (1 " 22) t—tt [ tﬁ(q)dq}

i=1
< cexp { (KP <1 +ZZekSi> —k+ k:1> t} )
i=1
So, if P < ——+t=k —— then for ¢ < § (that is for ||| sufficiently

K(1+23°7 | ekSi)?
small) the solution z(t) satisfies ||z(t)|| < ce™™ withn =k — k; — KP(1 +
250 ef¥) > 0, i.e. the trivial solution of (3.2) is exponentially stable. [J

In further work we shall write w; o< we for functions wy,wy : A — R\{0},
A C R, if the function 22 is nondecreasing on A.

Theorem 3.7. Let the assumptions of Theorem 3.5 be fulfilled and S; :=
sup;sot — gi(t) < oo for eachi=1,... ,n. If
F@ s yn) = ol 4+ [lpal” 4 - - + gl ™)

for given constants 1 < Yo, Y1, .-, Vn, i-€. for any P > 0 there exists 6 > 0
such that if ||z||, [|yall, - - -, [|ynl] < O then

LGy - un) < POl + ol 4+ gl ™)

then the trivial solution of equation (3.2) is exponentially stable.

Proof. Let v := min{g;(0),...,g,(0)}, » € C([,0], RY) and z(¢) be a solu-
tion of equation (3.2) satisfying initial condition (2.12). As before, assuming
lell, lz(s)]| to be sufficiently small for all s > 0 and using notations (3.5),
(3.6) we obtain inequality

t n t
u(t) < M+KP/ eE(S)(l‘/o)u(s)“/odS+KPZ/ eE(S)*%E(gi(S))u(gi(5))%‘d$.
0 — Jo

Denote

t n t
h(t) = C+KP/ eE(S)(l_’YO)U(S)’YOdS*FKPZ/ eE(s)—’yiE(gi(s))u(gi(S))fyids
0 i—1 70

with ¢ = max{||¢||, M}. Clearly, u(t) < h(t) for all ¢ > 0 and, arguing like

in (3.7), also u(g;(t)) < 2h(t) for all ¢ > 0 and each i = 1,...,n. Next,
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Et)(1 =) < (k—k1)(1 — )t for all t > 0 and by (3.8), (3.9)

E(t) < kS;, 0<t<g;'(0),
E(t) —viE(gi(t)) = { E(t) — E(g:(t)) + E(gi(t))(1 — %)
< kS; + (k= ki)(1 — 7)gi(t), t > g;'(0).

Therefore

h(t) ng /0 Xi(8)w;(u(s))ds

where \o(t) = K Pelk=k)(1=0)t

27i K PekSi 0<t<g (0
VOER S o 0steat 0y
2% [{ PelSit(k=k)(1=2)gi®) = ¢ > 1(0),
are continuous and positive functions on [0,00) and w;(z) = 2% for i =
0,...,n. Accordingly,
nooet
h(t)<c+ ) / Ai(8)w;(h(s))ds
i=0 70
for all ¢ > 0. Without any loss of generality we can assume that v, ..., 7,
form a nondecreasing sequence, i.e. 1 <y <y < -+- <7, (in the other
case we change the notation for them and also for corresponding coefficients

Ai(s))-
If 49 = 7Vn, the statement follows from Bihari’s lemma [3, 18]. Indeed, in
this case

with A(f) = S g Ad(t), w(2) = wo(2) = - - = wy(2). Then
t u dz
WD) < | As)ds, W) = / e

since W(H(0)) = W(c . Let P be such small that

Al :/ ds</w% (< 00).

Consequently, W(H (t)) < ||[A|| for all ¢ > 0 and
ut) < h(t) < H(t) <WH(A]]) = C < 0.
Hence we have

||x<>||<0e><p{/5 dq_kl}w@ (e
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whenever t > 0. Now, if |||l is sufficiently small, then ¢ is small and

0 y4
mewW</‘d — W),

w(2)

Thus C' < ¢ and the exponential stability of the trivial solution follows.
In the other case, when 7y < 7, Pinto’s inequality [18] is applied. Note
that wy o< - - - x w,. Let P be such small that

BN ;:/ )\i(s)ds</ = — i_0...m
0 Ciflwi(z)

where

C_1 = C, C; :W<_1(VVZ'(CZ'_1)+ ||)\Z||), iZO,...,n—l,

)

“od
Wl(u):/ %, w,u; > 0, i=0,...,n.
w; Wil 2

Then Pinto’s inequality yields

) <10 < W, (Wil + [ Aulo)ds) < W 0T (erms) + 101D

Here the right-hand side is constant for all ¢ > 0 and we denote it by C.
The trivial solution of equation (3.2) is exponentially stable if C' < §. So it
remains to verify, if this inequality can be assured by making ||| sufficiently
small. From definition of C' we know that C' < ¢ if

0
d
< [ =2
Cn—1 w"(’Z)

ie. if ¢,1 < 6,1 < 6 for §,,_1 > 0 sufficiently small. Analogically, this
is satisfied if ¢, 9 < 0,2 < 0,1 with 9, o > 0 small. Finally, we obtain
thatC<5ifc:c,1<5,1§50§-~-§5n,1§<5with5,1>0
sufficiently small. So if ||| is sufficiently small, the trivial solution is really
exponentially stable. This completes the proof. O

We have also a result for nonautonomous nonlinear FDEs:

Theorem 3.8. Let the assumptions of Theorem 3.5 be fulfilled and m; € N,

vij >1fori=0,...,n,j=1,...,m; be given constants. Assume that there
EJQTDE, 2012 No. 54, p. 25



exists a nonnegative function r € C([0,00),R) satisfying

/OOOT(S)eXp { (k:s B é/o ng(q)ndq) (1— %)} ds < oo,
/g:w) oo {k(s s (/ I1B;(a)ldg
o /ogi(S) ||§j(q)||dq> } ds < 0o

fori =1,...,n where v; = min{v;1,...,Ym; }, ¢ = 0,...,n, such that for
any positive constants a;j, 1 = 0,...,n, j = 1,...,m; there is § > 0 such
that if |all, I ll - gl < 6 then

g gl < rle [z el + 373 ] |
=1 j=1

Then the trivial solution of equation
i(t) = Az(t) + Biz(g1(t)) + - - - + Bua(gn(t))
+f(t,x(t),x(g1(t)),...,x(gn(t))), tZO

15 exponentially stable.

(3.10)

Proof. Let v := min{g;(0),...,9.(0)}, ¢ € C([y,0],RY). For the solution
x(t) of equation (3.10) satisfying initial condition (2.12) we assume that |||
and ||z(s)]|| are sufficiently small for all s > 0. In the notation of (3.5), (3.6)

we can write

t
u(t) < M+ K E aOJ/ 7(5)ePEA=10i)q(5)10i ds
0

7j=1
+Kzzaij/0 T(S)eE(S)—%'jE(yi(S))u(gi(S))%-jds.
i=1 j=1

Next, we denote
)\Oj(t) = K(IojT’(t)eE(t)(lf’Yoj)’ ,] = 17 ..., My,
)\1]<t) = K(IUT(t)eE(t)ifyijE(gi(t)), = 1, e, n, j = 1, e,y
to arrive at

ut)SM‘i‘i/t)\O]’(S) 'mﬂds—l-iZ/ Aij( )4 ds
j=1"0

i=1 j=1
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forall¢>0. If

h(t) :==c+ Z/o Aoj(8)u(s)ids + ZZ/O Aij(8)u(gi(s)) " ds

with ¢ = max{M, |||}, then u(t) < h(t) for all £ > 0. Analogically to (3.7),
u(gi(t)) < 2h(t) whenever t > 0 and i = 1,...,n. Therefore

n  m; t
h(t)<c+) > / 1135 (8)h(s) " ds

i=0 j=1"0
with p10;(t) = Aoj(t) for j = 1,...,mg and p;;(t) = 275 \;;(¢) fori = 1,...,n,
j = 17 e, My

Now we collect the coefficients y;;(s) by the same exponents and create

an increasing sequence of exponents. So we get exponents 1 < §; < --- < 6,
such that 1 <p <mg+---+my, and {0;}!_; = {Vi1,- -, Yim, }1—y. Moreover,
denoting 2 := {(4,1),...,(i,m;)}1~, the set of all indices, for each k €
{1y i 0k = yag = - = Vi, {30}y © Q and &, # i for
all (i,7) € O\{(iy, 7))}, (i.e. the set {(i, 7;)}/2, is the maximal subset of
index set € such that §; = ~;; for each (4,j) from this subset), then we
define v (t) == Zle’“l i, (t). Now, for wi(z) := 2% i =1,...,p we get the
sequence wy - - - x w, and h(t) fulfils

h(t) < ¢+ Z /0 vi(s)wi(h(s))ds.

The proof can be finished exactly as the previous one using Bihari’s inequal-
ity if p = 1, or Pinto’s inequality if p > 1. In addition, the assumptions
of the theorem establish the convergence of fooo vi(s)ds, 1 =1,...,p, which

is important for the mentioned inequalities (see proof of Theorem 3.7 or
[18]). O

Finally, we apply one of the derived stability criteria on a simple biological
model with delayed birthrates, concerning two species whose predator-prey-
position is periodically changed in time.

Example 3.9. Let us consider the following system
i1 (t) = —aywi(t) + By (t — e™") — yay (¢) o (t) sint
To(t) = —anry(t) + Boxa(t — e ) + vy (t)2o(t) sint

with parameters aq, as, (1, 32,7 > 0 such that a; < as.

(3.11)

This time, we have delay functions g;(t) = t — e™, go(t) = t — e,

matrices

(a1 0 (B0 (0 0
a=( ) m=(3). Bz_go 5)
1
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and nonlinear function f : [0,00) x R? — R? given by
f(t,x) = (—yz1wesint, yrix9 Sint)

for vector z = (z1,x2). It is easy to see that A, By, By are pairwise per-

mutable and
| sint|

1f(t @)l < 7 il
for all (¢,z) € [0,00) X R? and vector norm ||z|| = \/2? + 3. We have the

next lemma.

Lemma 3.10. Let 1 < vy < 2 be arbitrary and fixed. Then for any a > 0
there exists § > 0 such that if ||x|| < 0, then

ay|sint|
t )| < LA
1F ()] 5
Proof. Clearly, if ||z|| = 0, then || f(¢,x)|| = 0. Now, let a > 0 be fixed and
0 < [|z]] < d. Accordingly,
Hf<t7 .T})” S 7| Sint‘ ||:L,||2—y0 < /7‘ Sint‘aQ—'yo'
[ V2 V2

1
Hence, it is sufficient to set 6 = a2~ to obtain the statement of the lemma.
O

(el

Using the matrix norm ||C|| = % > leis]? (in order to satisty the basic

assumption ||E|| = 1), we obtain ||Bi(t)|| = 1™ /v/2 and ||Bs(t)|| =
Bae®2¢* /\/2. Consequently,

= = (81 + B2)e*

t)y=||Bi(t)|| + ||B2t)|| L —————

for all £ > 0. So we can take k; = (31+32)e*? /+/2 and condition fo q)dq <
kit is satisfied.

Corollary 3.11. If (81 + 32)e®? < 2ay, then system (3.11) has exponen-
tially stable trivial solution.

Proof. The corollary follows from Theorem 3.8. We show that all assump-
tions of this theorem are fulfilled. Let 1 < 7y < 2 be arbitrary and fixed,
and r(t) := V'\S/”ft‘ Then, by the assumption of the corollary, k1 < a; and

[ (s~ [ o) -0} s

< [ rexp{a =~ shas

- (k1—oa1)(v0—1)s o Y
e ds = < 00.
/0 V2(v0 = 1) (o — ky)
EJQTDE, 2012 No. 54, p. 28
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Next, since s — 1 < g;(s) < s and ((s) > &\@62 for i = 1,2, s > 0, we have

r(s)exp { anls —7igi() — [ Blayda+ [ Blada b ds
n [ e [

()

< % /g;)(o) exp {(k‘1 —a1)7:9i(s) + ays — /05 ﬁ(Q)dQ} ds

(a1—k1)y; oo

e B+ B2

< exp{[(kl—al)%—l—al—i] s}ds
\/§ gi—l(o) \/§

for ¢ = 1,2. The right-hand side of the latter inequality has the form

/ye(al*kl)'\/i 0

V2 S

(3

e Pds < o0

with n = (ag — k1) + 61%/552 — a1 > 0 whenever
N> V201 — (b1 + o) > 1).

T V20— (B1 + B2)e22
Clearly, when we set f(t,z,y1,y2) := f(t,x), then by Lemma 3.10

1 2y, y2) | < ar(®) (2] 4+ llyal™ + llyal7?) -
By that, the proof is finished. O
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