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OSCILLATIONS OF ADVANCED DIFFERENCE

EQUATIONS WITH VARIABLE ARGUMENTS

G. E. CHATZARAKIS∗ AND I. P. STAVROULAKIS∗∗

Abstract. Consider the first-order advanced difference equation of the form

∇x(n) − p(n)x(µ(n)) = 0, n ≥ 1, [∆x(n) − p(n)x(ν(n)) = 0, n ≥ 0],

where ∇ denotes the backward difference operator ∇x(n) = x(n) − x(n − 1),
∆ denotes the forward difference operator ∆x(n) = x(n + 1)− x(n), {p(n)} is
a sequence of nonnegative real numbers, and {µ(n)} [{ν(n)}] is a sequence of
positive integers such that

µ(n) ≥ n + 1 for all n ≥ 1, [ν(n) ≥ n + 2 for all n ≥ 0] .

Sufficient conditions which guarantee that all solutions oscillate are estab-
lished. The results obtained essentially improve known results in the literature.
Examples illustrating the results are also given.

Keywords: advanced difference equation, variable argument, oscillatory solu-
tion, nonoscillatory solution.

1. INTRODUCTION

Differential and difference equations with advanced arguments describe math-
ematical models in which the present state depends on a future state [7, 8, 11].
Besides its theoretical interest, strong interest in the study of difference equations
with advanced arguments is motivated by the fact that they arise in many areas of
applied mathematics, such as population dynamics where, for example, a difference
equation with constant advanced arguments may represent a mathematical model
of species whose kth generation depends on the present and next generations [6].
Presently, there exists an extensive literature on the oscillation theory of advanced
type differential and difference equations. See, for example, [1, 5, 9,10, 12−19] and
the references cited therein.

Consider the first-order linear difference equation with advanced argument of
the form

∇x(n) − p(n)x(µ(n)) = 0, n ≥ 1, [∆x(n) − p(n)x(ν(n)) = 0, n ≥ 0], (E)

where ∇ denotes the backward difference operator ∇x(n) = x(n) − x(n − 1), ∆
denotes the forward difference operator ∆x(n) = x(n + 1) − x(n), {p(n)} is a
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sequence of nonnegative real numbers, and {µ(n)} [{ν(n)}] is a sequence of positive
integers such that

µ(n) ≥ n + 1 for all n ≥ 1, [ν(n) ≥ n + 2 for all n ≥ 0] . (1.1)

Strong interest in Eq. (E) is motivated by the fact that it represents a discrete
analogue of the advanced differential equation

x′(t) − p(t)x(τ(t)) = 0, t ≥ t0, (E1)

where p, τ ∈ C([t0,∞), R+), R
+ = [0,∞), τ(t) is nondecreasing and τ(t) > t for

t ≥ t0 [see, for example, 9, 10, 12, 13, 15].
By a solution of Eq. (E), we mean a sequence of real numbers {x(n)} which is

defined for n ≥ 0 and satisfies (E) for all n ≥ 1 [n ≥ 0].
As usual, a solution {x(n)} of Eq. (E) is said to be oscillatory if for every positive

integer n0 there exist n1, n2 ≥ n0 such that x(n1)x(n2) ≤ 0. In other words,
a solution {x(n)} is oscillatory if it is neither eventually positive nor eventually
negative. Otherwise, the solution is called nonoscillatory.

The oscillatory behavior of Eq. (E) was studied for the first time by Chatzarakis
and Stavroulakis in [5] where the following theorems were established:

Theorem 1.1 [5]. Assume that the sequence {µ(n)} [{ν(n)}] is nondecreasing.

If

lim sup
n→∞

µ(n)
∑

i=n

p(i)



lim sup
n→∞

ν(n)−1
∑

i=n

p(i)



 > 1, (1.2)

then all solutions of (E) oscillate.

Theorem 1.2 [5]. Assume that the sequence {µ(n)} [{ν(n)}] is nondecreasing,

and

lim inf
n→∞

µ(n)
∑

i=n+1

p (i)



lim inf
n→∞

ν(n)−1
∑

i=n+1

p (i)



 = α. (1.3)

If 0 < α ≤ 1, and

lim sup
n→∞

µ(n)
∑

i=n

p(i)



lim sup
n→∞

ν(n)−1
∑

i=n

p(i)



 > 1 −
(

1 −
√

1 − α
)2

, (1.4)

then all solutions of (E) oscillate.

If 0 < α < (3
√

5 − 5)/2,

p(n) ≥ 1 −
√

1 − α for all large n (1.5)

and

lim sup
n→∞

µ(n)
∑

i=n

p(i)



lim sup
n→∞

ν(n)−1
∑

i=n

p(i)



 > 1 − α

(

1

3
√

1 − α + α − 2
− 1

)

, (1.6)

then all solutions of (E) oscillate.
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In this paper, our main objective is to improve on the upper bound of the ratio
x(n−1)
x(µ(n))

[

x(n−1)
x(ν(n))

]

for possible nonoscillatory solutions {x(n)} of Eq. (E) and derive

new oscillation conditions for all solutions of Eq. (E), when the oscillation condition
(1.2) is not satisfied.

2. OSCILLATION CRITERIA

In this section, at first, a new lemma is presented, which will be used in the proof
of our main theorem.

Lemma 2.1. Assume that the sequence {µ(n)} [{ν(n)}] is nondecreasing,

lim inf
n→∞

µ(n)
∑

i=n+1

p (i)



lim inf
n→∞

ν(n)−1
∑

i=n+1

p (i)



 = α (1.3)

and {x(n)} is a nonoscillatory solution of (E).
If 0 < α ≤ 1/2, then

lim inf
n→∞

x(n − 1)

x(µ(n))

[

lim inf
n→∞

x(n − 1)

x(ν(n))

]

≥ 1

2
(1 − α −

√
1 − 2α). (2.1)

If 0 < α ≤ 6 − 4
√

2, and

p(n) ≥ α

2
for all large n, (2.2)

then

lim inf
n→∞

x(n − 1)

x(µ(n))

[

lim inf
n→∞

x(n − 1)

x(ν(n))

]

≥ 1

4
(2 − 3α −

√

4 − 12α + α2). (2.3)

Proof. The proof below refers to Eq. (E) with the backward difference oper-
ator. The proof for (E) with the forward difference operator follows by a similar
procedure.

Assume that {x(n)} is a nonoscillatory solution of (E). Then it is either eventu-
ally positive or eventually negative. As {−x(n)} is also a solution of (E), we can
restrict ourselves only to the case where x(n) > 0 for all large n. Let n1 ≥ 0 be an
integer such that x(n − 1) > 0, ∀ n ≥ n1. Then

x(n) > 0, x(µ(n)) > 0 ∀ n ≥ n1.

Thus, from (E), we have

∇x(n) = p(n)x(µ(n)) ≥ 0,

which means that the sequence {x(n)} is eventually nondecreasing.
Consider an arbitrary real number ε with 0 < ε < α. Then, in view of (1.3), we

can choose an integer n0 > n1 such that

µ(n)
∑

i=n+1

p (i) ≥ α − ε ∀n ≥ n0.
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Thus
µ(n)
∑

i=n+1

p (i) ≥ α − ε ∀n >> n0. (2.4)

Now, we will show that for each n >> n0, there exists an integer n∗ with n0 <<
n∗ ≤ n such that µ(n∗) ≥ n + 1, and

n
∑

i=n∗+1

p (i) <
α − ε

2
and

n
∑

i=n∗

p (i) ≥ α − ε

2
. (2.5)

Indeed, (2.4) guarantees that
∞
∑

i=0

p(i) = ∞.

In particular, it holds
∞
∑

i=n∗+1

p(i) = ∞.

If p(n) < (α − ε) /2, there always exists an integer n with n0 << n∗ < n so that
n
∑

i=n∗+1

p (i) <
α − ε

2
and

n
∑

i=n∗

p (i) ≥ α − ε

2
.

If p(n) ≥ (α − ε) /2, then n = n∗ >> n0 so that
n
∑

i=n∗+1

p (i) =

n
∑

i=n+1

p (i) (by which we mean) = 0 <
α − ε

2

and
n
∑

i=n∗

p (i) =
n
∑

i=n

p (i) = p(n) ≥ α − ε

2
.

That is, in both cases (2.5) is satisfied.
We will show that µ(n∗) ≥ n + 1. Indeed, in the case where p(n) ≥ (α − ε) /2,

since n∗ = n, we have µ(n∗) = µ(n) ≥ n + 1. In the case where p(n) < (α − ε) /2,
then n∗ < n. Assume, for the sake of contradiction, that µ(n∗) < n + 1. Then
µ(n∗) ≤ n, and therefore

µ(n∗)
∑

i=n∗+1

p (i) ≤
n
∑

i=n∗+1

p (i) <
α − ε

2
. (2.6)

On the other hand, in view of (2.4), we have

µ(n∗)
∑

i=n∗+1

p (i) ≥ α − ε >
α − ε

2
,

which contradicts (2.6). Thus, in both cases, we have µ(n∗) ≥ n + 1.
Furthermore, combining inequalities (2.4) and (2.5), we get

µ(n∗)
∑

i=n+1

p (i) =

µ(n∗)
∑

i=n∗+1

p (i) −
n
∑

i=n∗+1

p (i) > (α − ε) − α − ε

2
=

α − ε

2
. (2.7)
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Summing up (E) from n∗ to n, and using the fact that the functions x and µ are
nondecreasing, we have

x(n) = x(n∗ − 1) +

n
∑

i=n∗

p (i)x(µ(i)) ≥ x(n∗ − 1) +

(

n
∑

i=n∗

p (i)

)

x(µ(n∗))

which, in view of (2.5), gives

x(n) ≥ x(n∗ − 1) +
α − ε

2
x(µ(n∗)). (2.8)

Similarly, summimg up (E) from n + 1 to µ(n∗), we get

x(µ(n∗)) = x(n) +

µ(n∗)
∑

i=n+1

p (i)x(µ(i)) ≥ x(n) +





µ(n∗)
∑

i=n+1

p (i)



 x(µ(n + 1))

which, in view of (2.7), gives

x(µ(n∗)) > x(n) +
α − ε

2
x(µ(n + 1)). (2.9)

Combining inequalities (2.8) and (2.9), we obtain

x(n) > x(n∗ − 1) +
α − ε

2

[

x(n) +
α − ε

2
x(µ(n + 1))

]

i.e.

x(n) >

(

α−ε
2

)2

1 − α−ε
2

x(µ(n + 1)) = ℓ1x(µ(n + 1)) ∀n >> n0, (2.10)

where

ℓ1 =

(

α−ε
2

)2

1 − α−ε
2

.

Let n be an arbitrary integer with n >> n0. We conclude that there exists n∗

with n0 << n∗ ≤ n such that µ(n∗) ≥ n + 1, and therefore (2.5) and (2.7) are
satisfied. Then (2.8) and (2.9) are also fulfilled. Moreover, in view of (2.10) (for
the integer n∗ − 1), we have

x(n∗ − 1) > ℓ1x(µ(n∗)). (2.11)

Using (2.8), (2.11) and (2.9), we obtain

x(n) ≥ x(n∗ − 1) +
α − ε

2
x(µ(n∗)) > ℓ1x(µ(n∗)) +

α − ε

2
x(µ(n∗))

=

(

ℓ1 +
α − ε

2

)

x(µ(n∗)) >

(

ℓ1 +
α − ε

2

)[

x(n) +
α − ε

2
x(µ(n + 1))

]

i.e.

x(n) >

(

ℓ1 + α−ε
2

)

α−ε
2

1 −
(

ℓ1 + α−ε
2

) x(µ(n + 1)) = ℓ2x(µ(n + 1)) ∀n >> n0,

where

ℓ2 =

(

ℓ1 + α−ε
2

)

α−ε
2

1 −
(

ℓ1 + α−ε
2

) .

(Clearly, ℓ2 > ℓ1.)
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Following the above procedure, we can inductively construct a recursive sequence
of positive real numbers {ℓm} , m ≥ 1 with

ℓm+1 =

(

ℓm + α−ε
2

)

α−ε
2

1 −
(

ℓm + α−ε
2

) (m = 1, 2, ...)

such that

x(n) > ℓmx(µ(n + 1)) ∀n >> n0 (m = 1, 2, ...). (2.12)

Since ℓ2 > ℓ1, by induction, we can show that the sequence {ℓm} is strictly in-
creasing. Furthermore, by taking into account the fact that the sequence {x(n)} is
eventually nondecreasing and, in view of (2.12) we get

x(µ(n + 1)) ≥ x(n + 2) ≥ x(n) > ℓmx(µ(n + 1)) ∀n >> n0 (m = 1, 2, ...).

Therefore, for each m ≥ 1, we have ℓm < 1. This ensures that the sequence {ℓm} is
bounded. Since {ℓm} is a strictly increasing and bounded sequence of positive real
numbers, it follows that limm→∞ ℓm exists as a positive real number. Set

L = lim
m→∞

ℓm.

Then (2.12) gives

x(n) ≥ Lx(µ(n + 1)) ∀n >> n0. (2.13)

By the definition of {ℓm}, we have

L =

(

L + α−ε
2

)

α−ε
2

1 −
(

L + α−ε
2

) ,

which gives

L =
1

2

[

1 − (α − ε) ±
√

1 − 2(α − ε)
]

.

In both cases, it holds

L ≥ 1

2

[

1 − (α − ε) −
√

1 − 2(α − ε)
]

.

Thus, from (2.13), it follows that

x(n) ≥ 1

2

[

1 − (α − ε) −
√

1 − 2(α − ε)
]

x(µ(n + 1)) ∀n >> n0 (2.14)

Inequality (2.14) gives

x(n − 1) ≥ 1

2

[

1 − (α − ε) −
√

1 − 2(α − ε)
]

x(µ(n)) ∀n >> n0 + 1

or
x(n − 1)

x(µ(n))
≥ 1

2

[

1 − (α − ε) −
√

1 − 2(α − ε)
]

∀n >> n0 + 1.

Consequently,

lim inf
n→∞

x(n − 1)

x(µ(n))
≥ 1

2

[

1 − (α − ε) −
√

1 − 2(α − ε)
]

,

which, for arbitrarily small values of ε, implies (2.1).
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For the rest of the proof, we assume that 0 < α ≤ 6 − 4
√

2 ( which implies that
0 < α < 1/2) and, in addition, that (2.2) holds. Because of (2.2), we can consider
an integer n2 >> n0 such that p(n) ≥ α

2 for every n ≥ n2. Then

p(n) >
α − ε

2
∀n ≥ n2. (2.15)

By (2.14), we have

x(n) ≥ b1x(µ(n + 1)) ∀n ≥ n2, (2.16)

where

b1 =
1

2

[

1 − (α − ε) −
√

1 − 2(α − ε)
]

.

Let us consider an arbitrary integer n ≥ n2. By using (2.15) as well as (2.16) (for
the integer n − 1), from (E) we obtain

x(n) = x(n − 1) + p(n)x(µ(n)) > b1x(µ(n)) +
α − ε

2
x(µ(n))

and consequently

x(n) >

(

b1 +
α − ε

2

)

x(µ(n)). (2.17)

Now, summing up (E) from n + 1 to µ(n), and using the fact that the functions
x and µ are nondecreasing, we have

x(µ(n)) = x(n) +

µ(n)
∑

i=n+1

p(i)x(µ(i)) ≥ x(n) +





µ(n)
∑

i=n+1

p(i)



x(µ(n + 1))

which, in view of (2.4), gives

x(µ(n)) ≥ x(n) + (α − ε)x(µ(n + 1)). (2.18)

Combining inequalities (2.17) and (2.18), we obtain

x(n) >

(

b1 +
α − ε

2

)

[x(n) + (α − ε)x(µ(n + 1))] ,

i.e.

x(n) >

(

b1 + α−ε
2

)

(α − ε)

1 −
(

b1 + α−ε
2

) x(µ(n + 1)) = b2x(µ(n + 1)) ∀n ≥ n2,

where

b2 =

(

b1 + α−ε
2

)

(α − ε)

1 −
(

b1 + α−ε
2

) .

(Clearly, b2 > b1.)
By the arguments applied previously, a recursive sequence of positive real num-

bers {bm} , m ≥ 1 can inductively constructed, which satisfies

bm+1 =

(

bm + α−ε
2

)

(α − ε)

1 −
(

bm + α−ε
2

) (m = 1, 2, ...);

this sequence is such that

x(n) > bmx(µ(n + 1)) ∀n ≥ n2 (m = 2, 3, ...). (2.19)
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Since b2 > b1, by induction, we can show that the sequence {bm} is strictly increas-
ing. Furthermore, by taking into account the fact that x is nondecreasing and by
using (for n = n2) inequality (2.19), we obtain

x(µ(n2 + 1)) ≥ x(n2) > bmx(µ(n2 + 1)) (m = 2, 3, ...).

Hence, bm < 1 for every m ≥ 2, which guarantees the boundedness of the sequence
{bm} . Thus, limm→∞ bm exists as a positive real number. Set

B = lim
m→∞

bm.

Then it follows from (2.19) that

x(n) ≥ Bx(µ(n + 1)) ∀n ≥ n2. (2.20)

In view of the definition of {bm}, the number B satisfies

B =

(

B + α−ε
2

)

(α − ε)

1 −
(

B + α−ε
2

)

which gives

B =
1

4

[

2 − 3(α − ε) ±
√

4 − 12(α − ε) + (α − ε)2
]

.

Note that, because of 0 < α − ε < 6 − 4
√

2, it holds

4 − 12(α − ε) + (α − ε)2 > 0.

We always have

B ≥ 1

4

[

2 − 3(α − ε) −
√

4 − 12(α − ε) + (α − ε)2
]

and consequently (2.20) gives

x(n) ≥ 1

4

[

2 − 3(α − ε) −
√

4 − 12(α − ε) + (α − ε)2
]

x(µ(n + 1)) ∀n ≥ n2.

Finally, we see that the last inequality can equivalently be written as follows

x(n − 1) ≥ 1

4

[

2 − 3(α − ε) −
√

4 − 12(α − ε) + (α − ε)2
]

x(µ(n)), ∀n ≥ n2 + 1,

i.e.,

x(n − 1)

x(µ(n))
≥ 1

4

[

2 − 3(α − ε) −
√

4 − 12(α − ε) + (α − ε)2
]

, ∀n ≥ n2 + 1.

Therefore,

lim inf
n→∞

x(n − 1)

x(µ(n))
≥ 1

4

[

2 − 3(α − ε) −
√

4 − 12(α − ε) + (α − ε)2
]

,

which, for arbitrarily small values of ε, implies (2.3).
The proof of the lemma is complete.

Theorem 2.1. Assume that the sequence {µ(n)} [{ν(n)}] is nondecreasing,

and

lim inf
n→∞

µ(n)
∑

i=n+1

p (i)



lim inf
n→∞

ν(n)−1
∑

i=n+1

p (i)



 = α. (1.3)
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If 0 < α ≤ 1/2, and

lim sup
n→∞

µ(n)
∑

i=n

p(i)



lim sup
n→∞

ν(n)−1
∑

i=n

p(i)



 > 1 − 1

2

(

1 − α −
√

1 − 2α
)

(2.21)

then all solutions of (E) oscillate.

If 0 < α ≤ 6 − 4
√

2, p(n) ≥ α
2 for all large n, and

lim sup
n→∞

µ(n)
∑

i=n

p(i)



lim sup
n→∞

ν(n)−1
∑

i=n

p(i)



 > 1 − 1

4

(

2 − 3α −
√

4 − 12α + α2
)

, (2.22)

then all solutions of (E) oscillate.

Proof. The proof below refers to Eq. (E) with the backward difference oper-
ator. The proof for (E) with the forward difference operator follows by a similar
procedure.

If {x(n)} is a nonoscillatory solution of (E), then it is either eventually positive or
eventually negative. As {−x(n)} is also a solution of (E), we can restrict ourselves
only to the case where x(n) > 0 for all large n. Let n0 ≥ 0 be an integer such that
x(n − 1) > 0, ∀n ≥ n0. Then

x(n) > 0, x(µ(n)) > 0 ∀n ≥ n0.

Thus, from (E) we have

∇x(n) = p(n)x(µ(n)) ≥ 0 ∀n ≥ n0,

which means that the sequence {x(n)} is eventually nondecreasing.
Now, we consider an integer n1 >> n0 such that µ(n) ≥ n0 for n ≥ n1. Fur-

thermore, we choose an integer N > n1 so that µ(n) ≥ n1 for n ≥ N . Then, by
taking into account the fact that the functions x, µ are nondecreasing, from (E) we
obtain, for every n ≥ N ,

x(µ(n)) = x(n − 1) +

µ(n)
∑

i=n

p (i)x(µ(i)) ≥ x(n − 1) +





µ(n)
∑

i=n

p (i)



x(µ(n)).

Consequently,
µ(n)
∑

i=n

p (i) ≤ 1 − x(n − 1)

x(µ(n))
∀n ≥ N ,

which gives

lim sup
n→∞

µ(n)
∑

i=n

p (i) ≤ 1 − lim inf
n→∞

x(n − 1)

x(µ(n))
. (2.23)

Assume, first, that 0 < α ≤ 1/2. Then, by Lemma 2.1, inequality (2.1) is
fulfilled, and so (2.23) leads to

lim sup
n→∞

µ(n)
∑

i=n

p (i) ≤ 1 − 1

2

(

1 − α −
√

1 − 2α
)

,
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which contradicts condition (2.21).

Next, let us suppose that 0 < α ≤ 6 − 4
√

2 and that (2.2) holds. Then Lemma
2.1 ensures that (2.3) is satisfied. Thus, from (2.23), it follows that

lim sup
n→∞

µ(n)
∑

i=n

p (i) ≤ 1 − 1

4

(

2 − 3α −
√

4 − 12α + α2
)

,

which contradicts condition (2.22). The proof of the theorem is complete.

Remark 2.1. In the special case where µ(n) = n+k, ν(n) = n+σ the advanced
difference equations (E) takes the form

∇x(n)− p(n)x(n + k) = 0, n ≥ 1, [∆x(n) − p(n)x(n + σ) = 0, n ≥ 0] , (E′)

where k is a positive integer greater or equal to one and σ is a positive integer greater
or equal to two. For this equation, from Theorem 2.1 we derive the following:

Corollary 2.1. Assume that

lim inf
n→∞

n+k
∑

i=n+1

p (i)

[

lim inf
n→∞

n+σ−1
∑

i=n+1

p (i)

]

= α0. (1.3′)

If 0 < α0 ≤ 1/2, and

lim sup
n→∞

n+k
∑

i=n

p(i)

[

lim sup
n→∞

n+σ−1
∑

i=n

p(i)

]

> 1 − 1

2

(

1 − α0 −
√

1 − 2α0

)

, (2.21′)

then all solutions of (E′) oscillate.

If 0 < α0 ≤ 6 − 4
√

2, p(n) ≥ α0/2 for all large n, and

lim sup
n→∞

n+k
∑

i=n

p(i)

[

lim sup
n→∞

n+σ−1
∑

i=n

p(i)

]

> 1 − 1

4

(

2 − 3α0 −
√

4 − 12α0 + α2
0

)

,

(2.22′)
then all solutions of (E′) oscillate.

Remark 2.2. A slight modification in the proof of Theorem 2.1 leads to the
following corollary about the advanced difference inequalities:

Corollary 2.2. Assume that all conditions of Theorem 2.1 hold. Then we

have:

(i) The difference inequality

∇x(n) − p(n)x(µ(n)) ≥ 0, n ≥ 1, [∆x(n) − p(n)x(ν(n)) ≥ 0, n ≥ 0],

has no eventually positive solutions.

(ii) The difference inequality

∇x(n) − p(n)x(µ(n)) ≤ 0, n ≥ 1, [∆x(n) − p(n)x(ν(n)) ≤ 0, n ≥ 0]

has no eventually negative solutions.

Remark 2.3. Observe the following:
EJQTDE, 2012 No. 79, p. 10



When α → 0, then the conditions (2.21) and (2.22) reduce to

A := lim sup
n→∞

µ(n)
∑

i=n

p(i)



lim sup
n→∞

ν(n)−1
∑

i=n

p(i)



 > 1,

that is, to the condition (1.2). However, when 0 < α ≤ 1/2, then we have

1

2

(

1 − α −
√

1 − 2α
)

>
(

1 −
√

1 − α
)2

,

which means that the condition (2.21) improves the condition (1.4).

In the case where 0 < α ≤ 6 − 4
√

2, because 1 −
√

1 − α > α/2, we see that
assumption (2.2) is weaker than assumption (1.5), and, moreover, we can show that

1

4

(

2 − 3α −
√

4 − 12α + α2
)

> α

(

1

3
√

1 − α + α − 2
− 1

)

,

which means that the condition (2.22) improves the condition (1.6).

Remark 2.4. In the case where the sequence {µ(n)} [{ν(n)}] is not assumed
to be nondecreasing, define (cf. [2,3,4,5])

σ(n) = max {µ(s) : 1 ≤ s ≤ n, s ∈ N} , [ρ(n) = max {ν(s) : 1 ≤ s ≤ n, s ∈ N}] .

Clearly, the sequence of integers {σ(n)} [{ρ(n)}] is nondecreasing. In this case,
Theorem 2.1 can be formulated in the following more general form:

Theorem 2.1G. Assume that

lim inf
n→∞

µ(n)
∑

i=n+1

p (i)



lim inf
n→∞

ν(n)−1
∑

i=n+1

p (i)



 = α. (1.3)

If 0 < α ≤ 1/2, and

lim sup
n→∞

σ(n)
∑

i=n

p(i)



lim sup
n→∞

ρ(n)−1
∑

i=n

p(i)



 > 1 − 1

2

(

1 − α −
√

1 − 2α
)

(2.21G)

then all solutions of (E) oscillate.

If 0 < α ≤ 6 − 4
√

2, p(n) ≥ α/2 for all large n, and

lim sup
n→∞

σ(n)
∑

i=n

p(i)



lim sup
n→∞

ρ(n)−1
∑

i=n

p(i)



 > 1 − 1

4

(

2 − 3α −
√

4 − 12α + α2
)

,

(2.22G)
then all solutions of (E) oscillate.
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3. EXAMPLES

We illustrate the significance of our results by the following examples.

Example 3.1. Consider the difference equation

∇x(n) − p(n)x(n + 1 + [nα])) = 0, (3.1)

with

p(n) =







α
(n+1) ln(n+1) , n ∈ N0\B

d, n ∈ B

,

where α is a positive real number with 0 < α ≤ 1/2, [nα]denotes the integer part
of nα, d is a positive real number such that

1 − 1

2

(

1 − α −
√

1 − 2α
)

< α + d < 1 −
(

1 −
√

1 − α
)2

and

B = {terms of the sequence {b(n)}} ,

b(n) =
[

(b(n − 1) + 1)1/α + 1
]

, n ≥ 1 and b(0) = 0

where
[

(b(n − 1) + 1)1/α + 1
]

denotes the integer part of (b(n − 1) + 1)1/α + 1.

Equation (3.1) is of type (E) with µ(n) = n + 1 + [nα]. Here, {p(n)} is a
sequence of positive real numbers, and {µ(n)} is a sequence of positive integers
such that µ(n) ≥ n + 1 for all n ≥ 1. Moreover, we note that the sequence {µ(n)}
is nondecreasing.

We will first show that

lim
n→∞

n+1+[nα]
∑

i=n+1

α

(i + 1) ln(i + 1)
= α. (3.2)

Since α
(i+1) ln(i+1) is nonincreasing, and taking into account the fact that

∫ c

c−1

f(x)dx ≥ f(c) ≥
∫ c+1

c

f(x)dx,

where f(x) is a nonincreasing positive function, we have

n+1+[nα]
∑

i=n+1

α

(i + 1) ln(i + 1)
≥ α

n+1+[nα]
∑

i=n+1

∫ i+1

i

ds

(s + 1) ln(s + 1)

= α

∫ n+2+[nα]

n+1

ds

(s + 1) ln(s + 1)

= α ln
ln(n + 3 + [nα])

ln(n + 2)
EJQTDE, 2012 No. 79, p. 12



and

n+1+[nα]
∑

i=n+1

α

(i + 1) ln(i + 1)
≤ α

n+1+[nα]
∑

i=n+1

∫ i

i−1

ds

(s + 1) ln(s + 1)

= α

∫ n+1+[nα]

n

ds

(s + 1) ln(s + 1)

= α ln
ln(n + 2 + [nα])

ln(n + 1)
.

It is easy to see that

lim
n→∞

(

α ln
ln(n + 3 + [nα])

ln(n + 2)

)

= lim
n→∞

(

α ln
ln(n + 2 + [nα])

ln(n + 1)

)

= α · 1 = α.

From the above it is obvious that (3.2) holds true.
In particular, since b(n) + 1 ≤ b(n) + 1 + [(b(n))α] it follows from (3.2) that

lim
n→∞

b(n)+1+[(b(n))α]
∑

i=b(n)+1

α

(i + 1) ln(i + 1)
= α. (3.3)

Observe (it is a matter of elementary calculations to find) that

b(n) < b(n) + 1 ≤ b(n) + 1 + [(b(n))
α
] < b(n + 1) for large n. (3.4)

Now, in view of (3.4), we get

b(n)+1+[(b(n))α]
∑

i=b(n)+1

p(i) =

b(n)+1+[(b(n))α]
∑

i=b(n)+1

α

(i + 1) ln(i + 1)
for all large n

and consequently, because of (3.3)

lim
n→∞

b(n)+1+[(b(n))α]
∑

i=b(n)+1

p(i) = α. (3.5)

Furthermore, since d ≥ α
(i+1) ln(i+1) for all large i, we obtain

n+1+[nα]
∑

i=n+1

p(i) ≥
n+1+[nα]
∑

i=n+1

α

(i + 1) ln(i + 1)
for all large n,

which, by virtue of (3.2), gives

lim inf
n→∞

n+1+[nα]
∑

i=n+1

p(i) ≥ α. (3.6)

From (3.5) and (3.6) it follows that

lim inf
n→∞

n+1+[nα]
∑

i=n+1

p(i) = α. (3.7)
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Next, we shall prove that

lim sup
n→∞

n+1+[nα]
∑

i=n

p(i) = α + d. (3.8)

Observe that
b(n)+1+[(b(n))α]

∑

i=b(n)

p(i) = d +

b(n)+1+[(b(n))α]
∑

i=b(n)+1

p(i) for all large n,

and so, because of (3.5),

lim
n→∞

b(n)+1+[(b(n))α]
∑

i=b(n)

p(i) = d + α. (3.9)

But it is easy to prove that, for each large n, there exists at most one integer n∗ so
that

n + 1 ≤ b(n∗) ≤ n + 1 + [nα].

By taking into account this fact, we obtain

n+1+[nα]
∑

i=n

p(i) ≤
n+1+[nα]
∑

i=n

α

(i + 1) ln(i + 1)
+ d

=
α

(n + 1) ln(n + 1)
+

n+1+[nα]
∑

i=n+1

α

(i + 1) ln(i + 1)
+ d

for all large n. Thus, by using (3.2), we derive

lim sup
n→∞

n+1+[nα]
∑

i=n

p(i) ≤ α + d. (3.10)

From (3.9) and (3.10) we conclude that (3.8) is always valid. Thus,

1 − 1

2

(

1 − α −
√

1 − 2α
)

< lim sup
n→∞

µ(n)
∑

i=n

p(i) = α + d < 1 −
(

1 −
√

1 − α
)2

< 1

that is, condition (2.21) of Theorem 2.1 is satisfied and therefore all solutions of
(3.1) oscillate. Observe, however, that none of the conditions 1.4 and 1.2 is satisfied.

Example 3.2. Consider the equation

∇x(n) − p(n)x(n + 2) = 0, n ≥ 1 (3.11)

where

p(3n − 2) = p(3n− 1) = 3 − 2
√

2, p(3n) =
1001

1000

(√
2 − 1

)

, n ≥ 1.

Equation (3.11) is of type (E′) with k = 2. We have

α0 = lim inf
n→∞

n+2
∑

i=n+1

p(i) = 2
(

3 − 2
√

2
)

= 6 − 4
√

2

EJQTDE, 2012 No. 79, p. 14



and

lim sup
n→∞

n+2
∑

i=n

p(i) = 2
(

3 − 2
√

2
)

+
1001

1000

(√
2 − 1

)

= 0.757773526.

Also,
p(n) ≥ α0/2 ∀n ≥ 1.

Observe that

0.757773526 > 1 − 1

4

(

2 − 3α0 −
√

4 − 12α0 + α2
0

)

≃ 0.757359312,

that is, condition (2.22′) of Corollary 2.1 is satisfied and therefore all solutions of
(3.11) oscillate. Observe, however, that

0.757773526 < 1 − 1

2

(

1 − α0 −
√

1 − 2α0

)

≃ 0.951621308,

0.757773526 < 1 −
(

1 −
√

1 − α0

)2 ≃ 0.964076655

0.757773526 < 1,

and therefore none of the conditions (2.21′), (1.4) and (1.2) is satisfied.
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